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Ticks transmit a variety of pathogens affecting both human and animal health. In

temperate and cold regions of Europe (Western, Central, Eastern, and Northern Europe),

the most relevant zoonotic tick-borne pathogens are tick-borne encephalitis virus (TBEV),

Borrelia spp. and Anaplasma phagocytophilum. More rarely, Rickettsia spp.,Neoehrlichia

mikurensis, and zoonotic Babesia spp. are identified as a cause of human disease.

Domestic animals may also be clinically affected by these pathogens, and, furthermore,

can be regarded as sentinel hosts for their occurrence in a certain area, or even

play a role as reservoirs or amplifying hosts. For example, viraemic ruminants may

transmit TBEV to humans via raw milk products. This review summarizes the role

of domestic animals, including ruminants, horses, dogs, and cats, in the ecology of

TBEV, Borrelia spp., A. phagocytophilum, Rickettsia spp., N. mikurensis, and zoonotic

Babesia species. It gives an overview on the (sero-)prevalence of these infectious agents

in domestic animals in temperate/cold regions of Europe, based on 148 individual

prevalence studies. Meta-analyses of seroprevalence in asymptomatic animals estimated

an overall seroprevalence of 2.7% for TBEV, 12.9% for Borrelia burgdorferi sensu lato

(s.l.), 16.2% for A. phagocytophilum and 7.4% for Babesia divergens, with a high

level of heterogeneity. Subgroup analyses with regard to animal species, diagnostic

test, geographical region and decade of sampling were mostly non-significant, with the

exception of significantly lower B. burgdorferi s.l. seroprevalences in dogs than in horses

and cattle. More surveillance studies employing highly sensitive and specific test methods

and including hitherto non-investigated regions are needed to determine if and how global

changes in terms of climate, land use, agricultural practices and human behavior impact

the frequency of zoonotic tick-borne pathogens in domestic animals.

Keywords: Borrelia, Rickettsia, Anaplasma, Babesia, Neoehrlichia mikurensis, tick-borne encephalitis, tick-borne

diseases, vector-borne diseases

INTRODUCTION

Many tick-borne diseases (TBDs) are so-called meta-zoonoses, i.e., they may be transmitted to
humans as well as animals via their invertebrate tick host (1). In temperate/cold regions of Europe,
the hard tick Ixodes ricinus is the most important vector of TBDs in terms of both animal and
human (public) health, followed by Dermacentor reticulatus and Dermacentor marginatus (2).
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Meta-zoonotic pathogens transmitted by I. ricinus include tick-
borne encephalitis virus (TBEV), Borrelia spp., Anaplasma
phagocytophilum, Rickettsia spp., Neoehrlichia mikurensis and
zoonotic Babesia spp., while ticks of the genus Dermacentor may
transmit Rickettsia spp. to both animals and humans, among
others (3). In addition, D. reticulatus is now also recognized as
a vector for TBEV (4).

Ixodes ricinus has a broad host spectrum, including birds,
various wild and domestic animals as well as humans, and
occurs in a wide variety of habitats throughout Europe, as far
north as 66◦ N (Norway), close to the Arctic Circle (5). The
species’ range has continuously expanded northward as well as
into higher altitudes during the past decades, probably driven
by climatic and environmental changes (6, 7). Similarly, the
distribution of D. reticulatus is expanding in several European
countries (8, 9). A northward spread has been documented in the
Baltic countries (10) as well as in Germany (11), but the species
has not been documented in Scandinavia to date. In contrast,
the distribution of D. marginatus seems to be comparatively
stable with a northern distribution limit at ∼51◦ N in central
Germany (11). In addition to the range expansion of different
tick species, changes in human behavior toward more outdoor
activities increase the risk of tick bites (2).

In consequence, the incidence and public health burden of
TBDs seem to be increasing in Europe. Lyme borreliosis (LB),
caused by spirochaetes of the Borrelia burgdorferi sensu lato
(s.l.) complex and transmitted primarily by I. ricinus, is the
most common TBD in humans in the Northern Hemisphere.
In Europe, annual incidence rates vary between 0.001 and 464
cases/100,000 inhabitants (12). In the Netherlands, a more than
2-fold increase of medical consultations and hospital admissions
due to LB was noted from 1994 to 2005 (13). A similar increase
in diagnosed LB cases was observed in the United Kingdom
from 1998 to 2016 (14). Likewise, the incidence of tick-borne
encephalitis, a flavivirus infection transmitted also primarily by I.
ricinus, has increased significantly since the year 1990 in several
European countries (15). The geographic pattern of this disease is
also changing, with new transmission foci emerging in previously
unaffected regions and countries, e.g., in the Netherlands in 2016
(16) and in the United Kingdom in 2018 (17).

In addition to rising disease incidences, several new tick-borne
pathogens have been described in recent decades (18). Although
known already since 1995 (19), pathogenicity of Borrelia
miyamotoi, a tick-transmitted relapsing-fever spirochaete, was
first reported in 2011 (20). Similarly, N. mikurensis was
isolated from ticks and mammals (21) years before being
recognized as a human (22) and probably veterinary (23)
pathogen. Furthermore, the list of emerging zoonotic tick-borne
pathogens relevant in Europe includes several Rickettsia spp.
(18) and Babesia spp. (24). Borrelia miyamotoi, N. mikurensis,
Rickettsia helvetica and the relevant zoonotic Babesia spp. are
all transmitted by I. ricinus, which constitutes the main vector
of zoonotic TBDs in central and northern Europe. In contrast,
D. marginatus, the vector of Rickettsia slovaca, has a rather
limited geographic distribution, and D. reticulatus, the vector of
Rickettsia raoultii, rarely bites humans (11). Therefore, these tick
species are of minor importance regarding zoonotic infections.

Domestic animals may also be clinically affected by these
pathogens, and, furthermore, can be regarded as sentinel hosts
for their occurrence in a certain area, or even play a role as
reservoir hosts. Additionally, viraemic ruminants may directly
transmit TBEV to humans via raw milk products, causing large
outbreaks (25). In this review, we summarize the role of domestic
animals, including ruminants, horses, dogs, and cats, in the
ecology of TBEV, Borrelia spp., A. phagocytophilum, Rickettsia
spp., N. mikurensis, and zoonotic Babesia species. Unlike for
humans, no systematic surveillance of TBDs in domestic animals
exists, making it difficult to assess whether the patterns of
increasing disease incidence observed in humans can also be
found in other species. Therefore (sero-)prevalence data on the
mentioned pathogens in domestic animals in temperate and cold
regions of Europe are compiled to analyze temporal and regional
trends, the influence of the utilized diagnostic test and to identify
knowledge gaps requiring further attention.

METHODS

Literature Survey
Systematic literature search on (sero-)prevalence data in
temperate and cold regions of Europe [Northern, Western,
Central, and Eastern Europe (excluding Russia); see Figure 1 for
included countries] was conducted in the PubMed database in
May and July 2020, using combinations of the term “prevalence”
with each of “animals,” “ruminants,” “horses,” “dogs,” “cats”
and each of “TBEV,” “Borrelia,” “Anaplasma,” “Rickettsia,”
“Neoehrlichia,” and “Babesia.”

Further records were obtained by searching the bibliographies
of relevant articles and via incidental findings using other
databases, e.g., Google Scholar. Original publications in
English and different national languages (e.g., German,
French, if available) were included. Articles that did not
refer to the considered geographical region, did not contain
(sero-)prevalence data, e.g., clinical case reports, or that
presented data from only one herd/flock, were excluded.

Meta-Analyses
For TBEV, B. burgdorferi s.l., A. phagocytophilum and Babesia
divergens seroprevalence, data based on healthy/asymptomatic
animals or randomly selected diagnostic samples were subjected
to meta-analyses, to gain a comprehensive picture on TBD
prevalence in the general domestic animal population. As the
number of studies retrieved for the remaining pathogens
was low, no meta-analyses were conducted. If studies
reported data on healthy and symptomatic groups, only
data referring to the healthy group were extracted, because
seroprevalences in symptomatic animals may be higher than in
the general population.

Random-effects meta-analysis of proportions was conducted
with the package “meta” (v. 4.13-0) (26) in R v. 4.0.2 (27),
using the inverse variance method with logit transformation and
restricted maximum likelihood estimation of the between-study
variance (τ 2). To assess heterogeneity between studies, Q-tests
were performed and the I2 statistic was assessed, with values
≥50% considered heterogeneous. To evaluate possible sources
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FIGURE 1 | European countries considered in the literature survey on

(sero-)prevalence of tick-borne zoonotic diseases in domestic animals.

Geographical regions are indicated by different colors: Scandinavia (green),

British Isles (yellow), Western continental (blue), and Eastern continental

Europe (red).

of heterogeneity, subgroup analyses were performed according
to animal species, type of diagnostic test used, geographical
region and decade of sampling. For analyses according to
geographical region, the considered countries were classified
into Eastern or Western continental Europe, Scandinavia or
British Isles (Figure 1). In cases when studies did not report the
period of sampling, it was assumed that the decade of sampling
corresponded to the decade of data publication. In subgroup
analyses, a common τ

2 was assumed across subgroups.
If studies reported more than one seroprevalence rate,

referring to different species, geographic regions, or data
acquisition periods, these were considered separately. Since
observational prevalence studies are unlikely to suffer from
publication bias, i.e., low prevalence rates have a similar
probability of being published as higher prevalence rates (28), no
assessment of publication bias was performed.

RESULTS

In total, 7,552 publications were assessed for eligibility and 7,404
were excluded because they were not relevant with regard to the
considered pathogens or geographical range, consisted of clinical
case reports referring to single animals or herds, dealt only with
imported animals or did not contain sufficient data. The selection
process during the literature survey is depicted in Figure 2, with
a final dataset containing 148 articles. Of these, 65 reported data
on A. phagocytophilum, 55 on B. burgdorferi s.l., 35 on TBEV, 18
on zoonotic Babesia species, 9 on Rickettsia spp., and 5 on N.

mikurensis. Some publications contained data on more than one
of these pathogens.

An overview of the roles of domestic animals regarding the
considered tick-borne pathogens is given in Figure 3. In the
following, these roles as well as the (sero-)prevalence rates are
discussed in detail for each infectious agent.

Tick-Borne Encephalitis Virus
Tick-borne encephalitis is regarded as the most important
arthropod-borne viral disease in Europe (29). It is caused by
a flavivirus which is mainly transmitted by I. ricinus, but the
vector potential of D. reticulatus has also been shown (4). Unlike
other tick-associated pathogens, it is not consistently distributed
throughout the range of its vectors, but occurs in a patchy pattern
in delimited geographic areas, termed microfoci or “hotspots.” In
these foci, it circulates between rodents and ticks and occasionally
spills over to domestic animals and humans (29). In recent
decades, a geographical spread of the virus has been observed in
Europe with new transmission foci having recently emerged in
the Netherlands (16) and the United Kingdom (17).

TBEVmay cause severe neurologic disease in humans, horses,
dogs, and probably also in ruminants (Figure 3). Furthermore,
most domestic animals are regarded as useful sentinels for human
TBE risk (30), with the exception of cats for which no data exist,
explaining the comparatively large number of retrieved studies.

In total, 36 studies were retrieved (eight containing data on
cattle, seven on sheep, 10 on goats, seven on horses, and 13 on
dogs). As cross-reactions with other flaviviruses (e.g., West Nile
virus, Louping Ill virus) in serological tests are common, only
studies which confirmed positive samples via seroneutralisation
test (SNT), considered the gold standard of TBEV serology (31),
were included in the meta-analysis of seroprevalence (N = 20,
with 39 animal cohorts). Therefore, subgroup analysis according
to diagnostic test was not performed. The estimated overall
prevalence was 2.8%, with a significant level of heterogeneity
(I2 = 95.8%; 95% CI: 95.0–96.5%; P < 0.001). No significant
differences between animal species (χ2

= 2.6, df = 4, P = 0.622;
Figure 4) nor between decades (χ2

= 4.4, df = 2, P = 0.110) or
regions (χ2

= 1.9, df= 2, P = 0.390) were found.

Ruminants
Domestic ruminants develop viraemia upon TBEV infection,
which usually lasts a few days, but remain mostly asymptomatic
(32). However, they excrete TBEV in milk during the viraemic
phase, potentially leading to human infection via raw milk
products like unpasteurized milk or raw milk cheese. In goat
milk, infective virus can be detected for up to 19 days post
infection (33). Such alimentary transmission often causes clusters
of cases [e.g., (34, 35)] and is regarded as the second most
important route of human infection (25).

In addition, a few clinical cases of neurologic disease in
small ruminants due to TBEV have been described (36, 37).
Possibly, clinical cases in these species are often overlooked or
misinterpreted, e.g., as Listeria monocytogenes infection (36), and
may be more common than previously thought. Furthermore,
ruminants are regarded as useful sentinel species for TBEV
occurrence. They have a comparatively restricted range of
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FIGURE 2 | PRISMA flow-chart detailing the selection process applied during the literature survey.

activity, i.e., they travel less than dogs and horses, and show
persistence of antibodies for up to 28 months post infection
(38). Therefore, several studies have been conducted on TBEV
seroprevalence in domestic ruminants, particularly in goats and
sheep (Supplementary Table 1).

Studies on cattle (N = 8, two from Norway, one each from
Belgium, Finland, Hungary, Lithuania, the Netherlands,
and Poland) reported seroprevalences ranging from
0.0% in the Netherlands (39) to 26.5% in Hungary (40)
(Supplementary Table 1). One Norwegian study assessed TBEV
excretion in milk and found 5.4% PCR-positive samples (41).

Seven studies reported seroprevalence data on sheep (two each
from Sweden and Germany, one each from Hungary, Lithuania,
and Slovakia), with values ranging from 0.0% in northern
Germany (42) to 25.6% in farms with high lamb morbidity and
mortality in Sweden (43). However, no confirmation of positive

samples by SNT was performed in the latter study, so that cross-
reactions with other flavivirus infections, e.g., louping ill, which
has previously been detected in Norwegian sheep (44), cannot
be ruled out. Seroprevalence in the 10 studies reporting data on
goats (four from Germany, one each from Austria, Lithuania,
the Netherlands, and Poland) ranged from 0.0% in the northern
German federal state ofMecklenburg-Western Pomerania, which
is not regarded as a TBEV risk area (45), to 14.6% in the Swiss
canton of Ticino (46). Direct pathogen detection in sheep and
goats, e.g., by PCR, was not reported in the considered studies.

Horses
As in ruminants, TBEV infections in horses are mostly
asymptomatic (47). However, cases of encephalomyelitis with
symptoms such as anorexia, ataxia, spasms, and epileptic seizures

Frontiers in Veterinary Science | www.frontiersin.org 4 December 2020 | Volume 7 | Article 604910

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Springer et al. Zoonotic TBDs in Domestic Animals

FIGURE 3 | Animal species and tick-borne pathogens. The size of animal icons corresponds to the number of studies. Symbols indicate the role of each animal

species in the ecology of the respective pathogen. Symbols in brackets indicate that this role is uncertain. Borrelia miyamotoi is not shown as no (sero-)prevalence

studies regarding this pathogen in domestic animals were retrieved.

have been described (48, 49). Mild neurologic deficits may persist
after recovery (49).

The literature survey resulted in the identification of seven
studies on TBEV seroprevalence in horses (three from Germany,
two from Austria, one each from Hungary and Slovakia;
Supplementary Table 1), with values ranging from 0.0% in
Hungary (40) to 33.0% in a TBEV risk area in Bavaria, Germany
(49). All of these studies confirmed positive samples by SNT
(Supplementary Table 1).

Dogs and Cats
In dogs, a similar TBE disease course as in humans with severe,
often fatal neurological manifestations due to encephalitis has
been described (50). However, high seroprevalence rates in some
areas indicate that only a small proportion of infected dogs
develops disease, whereas most infections remain asymptomatic
(47). Because dogs usually accompany their owners, they are
regarded as valuable sentinels for human TBEV risk. However,
as companions of man, they often have a travel history, which
makes assessment of TBE risk in a certain area based on dog sera
less reliable compared to other sentinel animals (30).

In the present survey, 13 studies presenting data on TBEV
(sero-)prevalence in dogs were identified (three from Germany,
two from the Czech Republic, one each from Austria, Belgium,
Denmark, Finland, the Netherlands, Norway, and Poland, and
one study reporting data on dogs from different European
countries; Supplementary Table 1). Seroprevalence ranged from

0.0% in the Netherlands (39) to 53.6% in dogs with neurological
signs in Germany (51). However, positive results were not
confirmed by SNT in the latter study, so that the possibility of
cross-reactions with other flaviviruses needs to be considered.
Cross-reactions also appear probable in light of the high
seroprevalence detected in healthy dogs (30.4%) in the same
study, compared with an estimated overall seroprevalence of
1.4% based on asymptomatic dogs when positive samples
were confirmed by SNT (Figure 4). Nevertheless, another study
including dogs with neurological illness determined a TBEV
infection rate of 12.6% by real-time PCR (52), indicating that
TBEV prevalence among dogs with neurologic disease may
be substantial.

No cases of TBEV infections in cats have been published
to date. Preliminary data of a study including more than
200 cats from a TBE-endemic area in Germany showed no
seropositive individuals (personal communication with Martin
Pfeffer, Institute of Animal Hygiene and Veterinary Public
Health, University of Leipzig, and Gerhard Dobler, Bundeswehr
Institute of Microbiology, Munich).

Borrelia burgdorferi s.l.
The B. burgdorferi s.l. complex currently comprises 22 recognized
species of spirochaetal bacteria (53), at least nine of which occur
in European tick populations (54). Of those, Borrelia afzelii and
Borrelia garinii are the most prevalent and constitute the most
important agents of human LB throughout Europe (54, 55).
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FIGURE 4 | Forest plot displaying the results of random-effects meta-analysis of tick-borne encephalitis virus seroprevalence in domestic animals, with subgroup

analysis according to animal species. Individual study results are shown as yellow squares, corresponding in size to the weight of the study on the overall prevalence

estimate. Error bars indicate 95% confidence intervals (CI). Pooled prevalences are shown as red diamonds and the red dotted vertical line indicates the estimated

overall prevalence.
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Borrelia burgdorferi s.l. predominantly circulates between Ixodes
ticks (in Europe I. ricinus) and wild mammals (e.g., B. afzelii, B.
bavariensis), birds (e.g., B. garinii, B. valaisiana), or reptiles (B.
lusitaniae) as reservoir hosts (56).

In total, 53 studies reporting B. burgdorferi s.l.
(sero-)prevalence rates in domestic animals were retrieved
(Supplementary Table 2). Since a vaccine against borreliosis in
dogs was introduced to the European market at the end of the
1990s, it is important to distinguish between vaccinated and
naturally exposed dogs when evaluating seroprevalence (57).
Antibodies against the variable major protein-like sequence
expressed (VlsE) and one of its invariable regions, the C6
peptide, as well as the outer surface protein OspF indicate natural
exposure, because these antigens are not present in the available
vaccines (58). Therefore, dog seroprevalence studies conducted
after 1995 were only considered in the meta-analysis if they were
based on a C6 or OspF assay.

Meta-analysis of seroprevalence, including 48 animal cohorts
(13 cattle, 3 sheep, 9 horse, 21 dog, and 2 cat cohorts) from
30 publications, estimated an overall seroprevalence of 12.4%
(95% CI: 0.1–17.2%) with a significant level of heterogeneity (I2

= 98.0%; 95% CI: 97.8–98.3%; P < 0.001). Subgroup analysis
indicated a significant effect of animal species (χ2

= 24.4, df =
4, P < 0.001), with a lower seroprevalence in dogs (5.8%, 95% CI:
3.7–8.9%) than in cattle (23.6%, 95% CI: 14.8–35.4%) and horses
(22.5%, 95% CI: 12.6–36.9%; Figure 5). In contrast, there were
no significant differences according to decade (χ2

= 4.7, df = 3,
P= 0.193), diagnostic test used (χ2

= 3.3, df= 2, P= 0.193), and
geographical region (χ2

= 2.9, df= 2, P= 0.230) when analyzing
all 48 cohorts.

Due to the significant effect of animal species, further analyses
were conducted on the data subset for dogs, as this species had
the largest sample size (21 cohorts from 16 studies). In the data
subset on dogs, a significant effect of diagnostic test was found
(χ2

= 7.5, df = 2, P = 0.023), with a lower seroprevalence
determined by a C6-based rapid ELISA (3.1%, 95% CI: 1.5–
6.0%) than by conventional ELISA (11.2%, 95% CI: 6.0–20.0%;
Supplementary Figure 1). In contrast, no significant effect of
geographical region (χ2

= 2.4, df = 2, P = 0.302) nor decade
of sampling (χ2

= 3.5, df= 3, P = 0.324) was found in dogs.

Ruminants
Species-specific Borrelia-host associations are thought to be
primarily driven by variation in resistance toward host defense
mechanisms, particularly complement (59). Different species of
the B. burgdorferi s.l. complex differ in their level of susceptibility
toward inactivation of sera from certain animals in vitro [e.g.,
(60, 61)]. Notably, all tested members of the B. burgdorferi
s.l. complex display high sensitivity toward serum complement
from several ruminant species, including deer, bison, and cattle
(59). Thus, these species seem to be irrelevant as B. burgdorferi
s.l. reservoirs. In contrast, ticks feeding on these species may
even lose their Borrelia infection, as suggested by prevalence
patterns in engorged ticks recovered from deer, cattle and goats
vs. prevalence in questing ticks (62, 63). Therefore, it has been
suggested that an increase in grazing domestic ruminants may
lower the risk of Lyme disease acquisition in a certain area (62).

However, this does not apply to all ruminants, as several B.
burgdorferi s.l. species are resistant toward serum of sheep and
their wild relatives, the mouflon (59), and sheep may sustain
natural B. burgdorferi s.l. cycles in the absence of other tick
hosts (64).

Despite their apparent ability to eliminate B. burgdorferi s.l.
spirochaetes, active B. burgdorferi sensu stricto (s.s.), and B.
afzelii infections with associated symptoms (skin erythema, fever,
acute lameness due to arthritis) have been described in cattle in
rare cases (65, 66). Other studies draw a connection between
serological evidence of B. burgdorferi s.l. infection and clinical
signs such as lameness and swollen joints (67), but causality in
these cases is extremely questionable. Experimental infections of
cattle with B. burgdorferi s.s., B. garinii, and B. afzelii produced
no clinical signs (68). Similarly, clinical manifestations of LB have
been suspected in sheep (69), but experimental infections failed
to produce any symptoms (70). Regarding goats, neither clinical
cases nor infection experiments have been published to the
authors’ knowledge. Overall, clinical relevance of B. burgdorferi
s.l. for ruminants is questionable. Nevertheless, they seroconvert
upon contact with the pathogen (68) and may therefore be
regarded as sentinels for pathogen presence.

In the present survey, 12 studies reporting seroprevalence
rates in cattle were retrieved (six from Germany, one each
from France, Poland, Slovakia, Sweden, and Switzerland
and one reporting data from Poland as well as Slovakia;
Supplementary Table 2). Reported seroprevalences ranged from
1.1% in northern Sweden (71) to 66.0% in Germany (72). Five
studies reported data on sheep (two from Sweden, one each from
France, Norway and Slovakia), with seroprevalences ranging
from 0.0% in healthy sheep in central Sweden to 84.6% in lambs
with arthritis on the island of Gotland, Sweden (71). The highest
seroprevalence in asymptomatic sheep was determined in France
(56.5%) (73). The only study containing data on goats reported a
17.2% seroprevalence rate in this species in Slovakia (74). Direct
pathogen detection, e.g., by PCR, was not reported for ruminants
in the considered studies.

Horses
In horses, a broad spectrum of clinical manifestations, including
arthritis, lameness, anterior uveitis, encephalitis, and abortion,
has been attributed to B. burgdorferi s.l. infection; however,
in many cases a causal relationship has not been conclusively
proven (75). Experimental inoculations of ponies led to systemic
infection, persisting for at least 9 months, but did not induce
any clinical signs nor histopathological alterations, except for
skin lesions (76, 77). More recently, however, several case reports
of equine neuroborreliosis with B. burgdorferi s.l. detection
in the central nervous system have been published (78–81).
In one of these studies, the species was identified as B.
burgdorferi s.s. and high spirochaetal loads were demonstrated
in tissues with inflammation (79). However, all of these cases
occurred in North America, thus, it remains unclear if European
B. burgdorferi s.s. isolates and other LB agents are capable
of causing clinical manifestations in horses. Evidence from
in vitro studies suggests that all tested B. burgdorferi s.l.
species are susceptible to inactivation by equine complement,
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FIGURE 5 | Forest plot displaying the results of random-effects meta-analysis of B. burgdorferi s.l. seroprevalence in domestic animals, with subgroup analysis

according to animal species. Individual study results are shown as green squares, corresponding in size to the weight of the study on the overall prevalence estimate.

Error bars indicate 95% confidence intervals (CI). Pooled prevalences are shown as red diamonds and the red dotted vertical line indicates the estimated overall

prevalence.
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except for B. burgdorferi s.s. which displays an intermediate
sensitivity (59).

In contrast to the paucity of conclusive clinical equine
borreliosis cases in Europe, six studies evaluating seroprevalence
rates in this species were retrieved (one each from Poland,
Denmark, France, Germany, and Sweden and one reporting data
from both Poland and Slovakia). Reported seroprevalence rates
ranged from 12.4% in south-eastern to 48.4% in eastern France
(82). Studies employing direct detectionmethods, e.g., PCR, were
not retrieved.

Dogs and Cats
According to a consensus statement by the American College
of Veterinary Internal Medicine (ACVIM), most B. burgdorferi
s.l. seropositive dogs and cats display no clinical signs, neither
after natural nor experimental infections (58). A small subset
of dogs, however, may develop arthritis due to B. burgdorferi
s.s. infection, as demonstrated by experimental infections
(83–85). Furthermore, nephritis is putatively associated with
B. burgdorferi s.s. infections, however, well-documented case
reports are rare and no experimental studies exist in this
regard (58). To the authors’ knowledge, evidence for clinical
manifestations due to other species of the B. burgdorferi s.l.
complex in dogs is lacking to date, although B. afzelii has been
isolated from a dog with clinical signs attributable to LB in
Europe (86). Furthermore, DNA of B. valaisiana and B. garinii
has been amplified from symptomatic dogs [(87, 88); see below].
In experimental studies, dogs have been shown to transmit
borreliae to ticks, indicating a potential reservoir function (89).
However, in the light of abundant wild reservoir hosts, such
as rodents and birds, the impact of pet dogs on the natural
epidemiological cycle is probably neglectable (90).

Cats have been infected experimentally and show
seroconversion, but no clinical signs of infection (91, 92).
Some case reports have attributed clinical signs in cats, such as
cardiac arrhythmia and lameness, to B. burgdorferi s.l. infection
based on seropositivity, PCR detection of the pathogen and/or
resolution upon antibiotic treatment (93, 94); however, as in
many other cases a causative relationship remains speculative.

Nevertheless, seroprevalence in domestic dogs and cats may
provide an estimate of human LB risk. A strong association was
found between canine seroprevalence and mean LB incidence on
county level in the United States of America (95).

In the present survey, 38 studies reporting B. burgdorferi
s.l. (sero-)prevalences in dogs were compiled (seven each from
Germany and Poland, four from Sweden, three each from
the Netherlands, Slovakia, and Switzerland, two each from
the Czech Republic and France and one each from Austria,
Denmark, Finland, Hungary, Latvia, Lithuania, and Norway).
Seroprevalences ranging from 0.0% in northern Norway (96)
to 57.5% in Bernese Mountain dogs in Switzerland (97) were
reported. This dog breed seems to have a predisposition for B.
burgdorferi s.l. infection, as demonstrated by several studies (97–
99), although the reasons for this predisposition are unknown
(58). As reported above, a significant effect of the utilized
diagnostic test on the seroprevalence in dogs was found (section
Tick-Borne Encephalitis Virus, Supplementary Figure 1), with

lower rates determined by the most recently developed test, a
C6-based rapid ELISA, than by conventional ELISA or IFAT (57).

Some studies also reported PCR detection rates in dogs,
ranging from 0.0% in asymptomatic dogs (100) to 60.0% in
animals with clinical signs attributable to borreliosis (87). DNA
of B. burgdorferi s.s., B. afzelii, B. valaisiana, and B. garinii was
amplified in these cases (87, 88).

Three studies reported data on cats (one each from the
Czech Republic and the United Kingdom, one based on cats
from different European countries). Two of these assessed
seroprevalence, which ranged from 2.2% in symptomatic cats
from different European countries, determined by a C6-based
rapid ELISA (101), to 19.2% of cats presented at veterinary clinics
in the Czech Republic, determined by conventional ELISA (102).
The third study determined a 1.6% B. burgdorferi s.l. infection
rate in systemically ill cats in the United Kingdom by PCR (103).

Borrelia miyamotoi
Borrelia miyamotoi was first isolated from Ixodes persulcatus
in Japan in 1995 (19), but pathogenicity for humans was
not recognized until 2011 (20). Since then, this pathogen
has been known to cause a febrile illness (104) and, more
recently, it has been associated with meningoencephalitis
in immunocompromised patients (105, 106). Similar to B.
burgdorferi s.l., rodents and birds seem to be reservoir hosts
for this spirochaete (104). Little is known about the role of
domestic animals regarding B. miyamotoi ecology. In contrast
to B. burgdorferi s.l., prevalence of B. miyamotoi in ticks is not
negatively affected by the presence of cattle (62, 107). Borrelia
miyamotoi DNA has been detected in two healthy cats in the
USA (108). However, infection of other domestic animals has
not been documented so far to the authors’ knowledge and no
(sero-)prevalence studies have been conducted.

Anaplasma phagocytophilum
Anaplasma phagocytophilum is regarded as an important
zoonotic pathogen, causing disease in humans, domestic
ruminants, horses, dogs, and rarely in cats, while wild
mammals act as reservoir hosts (109). This obligate intracellular
rickettsial pathogen replicates in neutrophilic granulocytes
and leads to thrombocytopenia, leukopenia, anemia, and
immunosuppression associated with variable clinical signs (110).
The epidemiology of A. phagocytophilum is complex due to
the circulation of various strains and ecotypes, and shows
considerable differences between Europe and North America
(109). Human, equine, and canine granulocytic anaplasmosis
have been described in Asia, Europe, and North America, while
domestic ruminants only seem to be affected in Europe (109).
Based on groEL genetic sequences, eight haplotype clusters of A.
phagocytophilum were recently identified, and most isolates from
humans and domestic animals belong to cluster 1, while other
clusters, e.g., containing samples from roe deer, do not seem to
be zoonotic (111).

Overall, 65 studies reporting (sero-)prevalence rates of A.
phagocytophilum in domestic animals in the study region were
retrieved (Supplementary Table 3). The meta-analysis based on
seroprevalence rates of asymptomatic animals, including data

Frontiers in Veterinary Science | www.frontiersin.org 9 December 2020 | Volume 7 | Article 604910

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Springer et al. Zoonotic TBDs in Domestic Animals

on 35 animal cohorts (2x cattle, 3x sheep, 9x horses, 18x dogs,
3x cats) from 28 publications, yielded an estimated overall
seroprevalence of 16.2% (95% CI: 11.7–22.0%), with a significant
level of heterogeneity (I2 = 98.6%; 95% CI: 98.4–98.8%; P <

0.001). Although rather high seroprevalence rates were detected
in sheep as compared to the other animal species, subgroup

analyses indicated no significant difference (test for subgroup
differences: χ

2
= 6.4, df = 4, P = 0.171; Figure 6). Likewise,

significant differences according to geographical region (χ2
=

0.38, df = 2, P = 0.828), the decades of sampling (χ2
= 0.78,

df = 2, P = 0.676; Figure 6) or the type of diagnostic test were
not detected (χ2

= 4.98, df= 2, P = 0.083).

FIGURE 6 | Forest plot displaying the results of random-effects meta-analysis of A. phagocytophilum seroprevalence in domestic animals, with subgroup analysis

according to animal species. Individual study results are shown as blue squares, corresponding in size to the weight of the study on the overall prevalence estimate.

Error bars indicate 95% confidence intervals (CI). Pooled prevalences are shown as red diamonds and the red dotted vertical line indicates the estimated overall

prevalence.
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Ruminants
In domestic ruminants, the disease caused byA. phagocytophilum
is known as tick-borne fever and presents with fever, anorexia,
abortion and a drop in milk production (109). In sheep but
not in cattle, immunosuppression is also common, frequently
resulting in secondary infections (112), which may be fatal
in some cases (113). After recovery, sheep develop persistent
infections with recurrent phases of high bacteraemia for at least
1 year, suggesting they may also act as a pathogen reservoir
(114, 115). Furthermore, field data suggest that cattle can
also become persistently infected or are frequently re-infected,
indicating a possible reservoir function, which needs to be
explored further (116). Recent genetic analyses have shown that
A. phagocytophilum isolates from sheep and cattle in Europe
cluster with isolates from humans, dogs, and horses (117).

In total, six studies reported (sero-)prevalence rates for cattle
(two studies from Sweden and one study each from Belgium,
the Czech Republic, Norway, and Switzerland), seven for sheep
(two each from the Czech Republic and Norway, one each from
Denmark, Germany and Sweden), and two for goats (Switzerland
and United Kingdom, Supplementary Table 3).

In cattle, seroprevalence rates varied from 5.5% in the
Czech Republic (118) to 100% in a clinically-affected herd in
Norway (119). The highest published seroprevalence rate in
asymptomatic cattle was 63.0% in a Swiss study (120). Three
studies reported prevalence rates based on PCR, which ranged
from 5.5% in the Czech Republic (118) to 85.7% in symptomatic
animals in Sweden (121).

In sheep, prevalence of A. phagocytophilum antibodies ranged
from 36.0% in Norway (122) to 100% in a flock in the Czech
Republic (123). PCR-determined prevalence rates in sheep varied
from 2.9% in the Czech Republic/Slovakia (124) to 41.9% in
sheep flocks with high lamb morbidity and mortality in Sweden
(43). Regarding goats, a PCR-determined prevalence of 5.6% was
reported from Switzerland (125). In addition, four of five feral
goats caught in Northern Ireland, UK, were PCR-positive (126).

However, (sero-)prevalence rates in ruminants may be
difficult to compare between studies, since marked seasonal
variation has been found. For example, in a Swiss study,
seroprevalence of two cattle herds varied between 16% before and
63% at the end of the grazing season (120). Asmost ruminants are
housed during winter, determined (sero-)prevalence rates greatly
depend upon the season of sampling.

In addition, serologic cross-reactivity with other Anaplasma
spp., e.g., Anaplasma marginale in cattle (127) and probably
also Anaplasma ovis in sheep (128), needs to be considered. In
Europe,A. marginale occurs mainly in theMediterranean region,
but also in Switzerland, Austria, and Hungary (129). Anaplasma
ovis has been detected in France (130) as well as Slovakia (124)
and Hungary (129).

Horses
In horses, A. phagocytophilum may cause an acute febrile
disease with depression, anorexia, ataxia, icterus, and lower
limb oedema, which is usually self-limiting (131). Similar to
sheep, horses may develop persistent subclinical infections with
recurrent bacteraemia after spontaneous recovery from acute

disease (132). Notably, equine A. phagocytophilum strains seem
to be similar or identical to those causing disease in humans and
dogs (133).

Most equine granulocytic anaplasmosis (EGA) cases have
been reported from European countries (131). In the present
investigation, 11 studies reporting (sero-)prevalence rates of
A. phagocytophilum in horses were identified, two each from
the Czech Republic, France, and Sweden and one each from
Denmark, France, the Netherlands, Switzerland, and Sweden.
Another two studies reported data from Poland, Slovakia and
the Ukraine and from Germany, Poland and the Ukraine,
respectively. Reported seroprevalence rates ranged from 4.0%
in Switzerland (134) to 72.8% in the Czech Republic (135).
Remarkably, the latter study was based on healthy horses.
Prevalences determined by PCR ranged from 0.0% in the Ukraine
(136) to 62.9% in Sweden, whereby the latter study was based on
horses presenting symptoms attributable to EGA.

Dogs and Cats
Canine granulocytic anaplasmosis (CGA) is regarded as one of
themost important vector-borne diseases in Europe.While many
cases are probably subclinical, acute febrile illness may also occur
(137). Frequent clinical signs are lethargy, anorexia, and pale
mucous membranes, sometimes accompanied by enlarged lymph
nodes, bleeding (petechias, epistaxis), and immune-mediated
arthritis (137). Similar symptoms may be seen in cats infected
with A. phagocytophilum, although experimental studies indicate
that symptoms are usually mild (138). Experimental infections
have been shown to persist for at least 51/2 months in dogs
(139) and 3 months in cats (91). The A. phagocytophilum strains
causing disease in dogs seem to be zoonotic (117).

In total, 37 studies on A. phagocytophilum (sero-)prevalence
in dogs were retrieved from the literature, including 10 from
Germany, six from Poland, five from Sweden, two each from
Austria, the Czech Republic, Hungary Slovakia, and Switzerland,
and one study each from Finland, France, Latvia, Lithuania, and
the United Kingdom. One study included dogs from Germany
and Switzerland. Reported seroprevalence rates, determined
either by IFAT or (rapid) ELISA, ranged from 2.1% in northern
Norway (96) to 56.5% in Austria (140) (Supplementary Table 3).
However, the latter study included dogs with symptoms
possibly related to CGA. Since infection may not lead to
clinical disease, and CGA is characterized by rather unspecific
symptoms, several studies did not find a significant difference
in seroprevalence between apparently healthy animals and
those presenting some form of illness [e.g., (100, 141)].
Nevertheless, cohorts of symptomatic dogs were excluded from
the meta-analysis on seroprevalence. Serologic tests available
for assessing A. phagocytophilum exposure may cross-react with
Anaplasma platys antibodies, therefore, seroprevalence may be
overestimated. However, as A. platys transmission in Europe
is restricted to Mediterranean countries (137), this pathogen
only plays a role as an imported bacterium in the countries
considered in this review, with the exception of southern France.
Nevertheless, with increased travel activity and import of dogs by
animal welfare organizations, this should be kept in mind when
interpreting seroprevalence rates.
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Prevalence rates determined by PCR ranged from 0.0% in
Switzerland and Poland (142, 143) to 66.7% in dogs with
symptoms attributable to CGA in Sweden (121). The highest
prevalence in apparently healthy dogs was 12.2% in a group of
Latvian hunting dogs (144).

Regarding cats, six studies were found (four from Germany,
one from the United Kingdom and one from Ireland). These
studies reported IFAT-determined seroprevalence rates from
6.1% in healthy cats (145) to 18.9% in random diagnostic samples
(146). PCR detection rates varied from 0.0% in healthy cats (145)
to 4.3% in necropsy samples from shelter cats (147).

Neoehrlichia mikurensis
Neoehrlichia mikurensis, a member of the family
Anaplasmataceae, was first discovered in the early 2000s,
recognized as a human pathogen in 2010 and recently cultivated
in tick cell lines as well as human endothelial cells (148). It
occurs in I. ricinus populations throughout Europe and human
cases, mainly involving immunosuppressed patients, have been
reported from several countries (149). Regarding domestic
animals, knowledge on the relevance of N. mikurensis as a
pathogenic agent and respective prevalence data are scarce.

In the present literature survey, five studies investigating
N. mikurensis occurrence in domestic animals (four in dogs
and one in cats) by PCR, but no seroprevalence studies, were
obtained (Table 1). Infections in dogs seem to be rare, as
only 0.3% of 1,023 dogs in Germany (151) and 0.1% of 889
dogs in Switzerland were infected (142). The positive dog in
Switzerland was splenectomised (142). Another positive dog
died of haemolytic anemia in the Czech Republic (150) and
in a case report from Germany, canine N. mikurensis infection
was associated with neutropenia and thrombocytopenia (23).
However, the clinical relevance of N. mikurensis in dogs is still
unclear (23, 142). A single study also tested spleen samples from
141 cats in Germany, but N. mikurensis was not detected (147).
Other domestic animal species have not been investigated so far
to the authors’ knowledge.

Rickettsia spp.
Several tick-transmitted human-pathogenic Rickettsia spp. occur
in Europe. While the causative agent of Mediterranean spotted

fever, Rickettsia conorii, has been known since the beginning
of the twentieth century, several further Rickettsia spp. and
their associated syndromes were described in the 1990s and
2000s (153). In central and northern Europe, R. helvetica,
transmitted by I. ricinus, is probably the most frequent species.
It causes a mild febrile illness in humans and is only sometimes
associated with skin rash (154). In addition, I. ricinus may
transmit Rickettsia monacensis, which leads to a clinical picture
similar to Mediterranean spotted fever (153). Rickettsia slovaca
and R. raoultii, causative agents of scalp eschar and neck
lymphadenopathy (SENLAT), are transmitted by Dermacentor
species (153).

With the exception of dogs, domestic animals do not seem to
be susceptible to disease caused by human-pathogenic Rickettsia
species. In dogs, infection with Rickettsia rickettsii, which causes
RockyMountain spotted fever in North America, leads to clinical
signs similar to those in humans (155). In addition, R. conorii
has been associated with canine febrile illness (156). Dogs are
also capable of transmitting R. conorii to ticks and may thus
exert a reservoir function (157). However, canine disease due
to the Rickettsia spp. relevant in central and northern Europe
or a respective reservoir function have not been reported to the
authors’ knowledge.

Overall, domestic animals can mainly be regarded as
sentinels for human exposure to Rickettsia spp. in central and
northern Europe. However, only nine studies were identified
(three from Germany, two from Switzerland, one each from
the Czech Republic, Ireland, Poland, and Sweden), reporting
data on horses, dogs, and cats (Table 2). Regarding domestic
ruminants, no studies on Rickettsia (sero-)prevalence in the
considered geographical region were obtained. The only study
on horses reported a 36.5% R. helvetica seroprevalence in
Sweden (158).

In dogs, a high level of exposure to spotted-fever group
rickettsiae was reported, with seroprevalence rates ranging from
17.0 to 93.9% (158, 160). When R. helvetica-specific antigens
were used, seroprevalences of 17.0% (158) and 66.0% (160)
were determined. Despite this high level of exposure, Rickettsia
DNA (mainly R. raoultii) was found in only 0.8% of tested
dogs in Germany (151), whereas two PCR-based studies from
Switzerland (142, 162) and one study from Poland (161) reported

TABLE 1 | (Sero-)prevalence studies on Neoehrlichia mikurensis in domestic animals in temperate and cold regions of Europe.

Country Region Year(s) of sampling Method(s) Positive/total Prevalence Comment(s) References

DOGS

Czech Republic NA 2009–2012 PCR 1/19 5.3% Dogs with fatal immunhaemolytic

anemia

(150)

Germany Brandenburg 2013–2014 HRM PCR 3/1,023 0.3% (151)

Hungary Somogy NA PCR 0/90 0.0% Candidatus Neoehrlichia lotoris-like

detected in 6 dogs

(152)

Switzerland Zurich 2005–2006 Real-time PCR 1/889 0.1% The positive dog was splenectomised (142)

CATS

Germany Berlin 2006–2008 HRM PCR 0/141 0.0% Spleen samples from shelter cats (147)

HRM PCR, high-resolution melt PCR.
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TABLE 2 | (Sero-)prevalence studies on tick-transmitted Rickettsia spp. in domestic animals in temperate and cold regions of Europe.

Country Region Year(s) of sampling Method(s) Positive/total Prevalence Comment(s) References

HORSES

Sweden NA 2010–2011 IFAT 23/63 36.5% R. helvetica used as antigen (158)

DOGS

Czech Republic NA 2009–2012 PCR 0/19 0.0% Dogs with fatal immunhaemolytic

anemia

(150)

Germany Nationwide 2012–2014 ELISAa 469/602 77.9% Dogs that never left Germany (159)

Nationwide 2012–2014 Micro-IFAT 568/605 93.9% Same samples as in (159);

clearly differentiable samples:

66.0% R. helvetica, 2.8% R.

raoultii, 1.6% R. slovaca

(160)

Brandenburg 2013–2014 PCR 8/1,021 0.8% Identified species: 7x R. raoultii,

1x R. felis

(151)

Poland North-Western

Poland

NA PCR 0/100 (group 1),

0/92 (group 2),

0/50 (group 3)

0.0% (group 1),

0.0% (group 2),

0.0% (group 3)

Group 1: healthy shelter dogs,

group 2: suspected borreliosis,

group 3: diagnosed babesiosis

(161)

Sweden NA 2010–2011 IFAT 17/100 17.0% R. helvetica used as antigen (158)

Switzerland Zurich 2005–2006 Real-time PCRb 0/889 0.0% (142)

Zurich NA Real-time PCRb 0/884 0.0% (162)

CATS

Ireland Dublin 2008 PCR 0/121 0.0% (163)

Sweden NA 2010–2011 IFAT 19/90 22.1% R. helvetica used as antigen (158)

aCommercially available, detects all spotted-fever group rickettsiae.
bSpecific for R. helvetica.

ELISA, enzyme-linked immunosorbent assay; IFAT, immunofluorescence antibody test.

0.0% prevalence. Similarly, R. helvetica antibodies were detected
in 22.1% of tested cats in Sweden (158), but no Rickettsia DNA
was amplified from 121 tested cats in Ireland (163). Therefore, it
seems unlikely that dogs and cats contribute to the epidemiology
of tick-transmitted rickettsioses as reservoir hosts in northern
and central Europe.

Zoonotic Babesia spp.
Piroplasms of the genus Babesia are tick-transmitted protozoan
parasites, which usually display a high degree of host specificity.
Nevertheless, a few species are zoonotic, predominantly affecting
immunocompromised patients (24). In Europe, most human
infections are caused by the cattle parasite B. divergens (154).
On the American continent, human babesiosis due to Babesia
microti, which is rodent-associated, is more common. Babesia
microti also occurs in Europe. However, clinically symptomatic
human B. microti infections reported in Europe were mostly
acquired in the Americas, so it is unclear whether European
B. microti strains are human-pathogenic (154). Furthermore,
Babesia venatorum, a parasite of deer, has been recognized
as a human pathogen in immunocompromised patients in
Europe (154).

Regarding domestic animals, only cattle are affected by and act
as reservoirs for a Babesia spp. with zoonotic relevance, namely
B. divergens, whereas the species parasitizing horses, sheep, goats,
and dogs are not zoonotic. No cat-specific Babesia species are
distributed in Europe. Babesia microti DNA has been detected in
cats in southern Europe (e.g., in Italy) but the relevance of this
finding remains unclear (164).

In cattle, B. divergens infection may lead to severe haemolytic
anemia, which can be fatal (165, 166). Symptoms consist of
fever, pale or jaundiced mucous membranes, anorexia, weakness,
elevated heart and respiratory rates and hemoglobinuria,
hence the colloquial name of the disease, “redwater” (165).
Recovering animals acquire immunity, which is maintained by
repeated pathogen exposure (165). Calves under the age of
∼9 months display higher resistance toward clinical disease
and are subsequently immunologically protected (167, 168),
thus, clinical disease in endemic situations usually only occurs
in immunologically naïve animals, which were either recently
introduced to the area or had no access to pasture during the first
year of life (165).

In the present survey, 18 studies reporting Babesia
(sero-)prevalence data in cattle were retrieved (four each
from France, Germany, and the United Kingdom, two from
Belgium, and one each from Hungary, Norway, Sweden,
and Switzerland; Table 3). Reported seroprevalence rates,
determined mostly by IFAT, ranged from 0.0% in asymptomatic
animals in Northern Germany (177) to 100% in animals
presenting with acute babesiosis in France (172). The highest
seroprevalence in randomly chosen individuals, but from a
region where babesiosis was known to occur, was 90.6% at the
end of the grazing season (167). The latter study also showed
that seroprevalence varied throughout the year, similar to the
pattern described above for A. phagocytophilum (120), making
different studies difficult to compare. Keeping this draw-back
in mind, an overall seroprevalence of 7.4% (95% CI: 2.6–
19.2%) was estimated based on 11 healthy or randomly chosen
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TABLE 3 | (Sero-)prevalence studies on zoonotic Babesia spp. in domestic animals in temperate and cold regions of Europe.

Country Region Year(s) of

sampling

Method(s) Positive/total Prevalence Comment(s) Referencea

Cattle (B. divergens)

Belgium Central

Belgium

1988 IFAT 136/1,721 7.9% (169)*

Southern

Belgium

2010 IFAT 7/65 (spring),

13/65 (summer),

8/65 (autumn)

10.7% (spring),

20.0% (summer),

12.3% (autumn)

Farms with a known history of

babesiosis or anaplasmosis

(170)

France Nationwide 1988 Blood smears /

inoculation in

gerbils

374/424 88.2% Animals treated for clinical

babesiosis

(171)

Sarthe 1991 ELISA 115/200 57.5% Farms with clinical babesiosis

during the last 5 years

(171)

Ille-et-Vilaine 2001–2002 IFAT, in vitro

culture

19/19 (IFAT, group 1),

31/77 (IFAT, group 2),

19/19 (culture, group

1), 31/77 (culture,

group 2)

100% (IFAT, group 1),

40.3% (IFAT, group 2),

100% (culture, group

1), 40.3% (culture,

group 2)

Group 1: acute babesiosis,

group 2: asymptomatic

(172)*

Mid-eastern

France

2001–2002 IFAT, PCR 18/254 (IFAT),

12/254 (PCR)

7.1% (IFAT), 4.7%

(PCR)

(173)*

Western

France

2007 IFAT 102/711 14.3% (174)*

Germany Bavaria 1982 IFAT, ELISA 211/1,616 13.1% (175)*

Northern

Germany

1984–1985 IFAT 108/251 43.0% Farms with history of babesiosis,

includes vaccinated animals

(176)

Northern

Germany

1988–1990 IFAT 0/212 (group 1),

0/354 (group 2),

8/200 (group 3)

0.0% (group 1), 0.0%

(group 2), 4.0% (group

3)

Group 1: Borrelia-positive

animals, group 2: farms with

suspected babesiosis, group 3:

farms with history of babesiosis

(177)*

Bavaria 2002 IFAT 1/287 0.4% (178)*

Hungary Northeastern

Hungary

2005 IFAT 2/654 0.3% (179)*

Norway Southern

Norway

2004–2005 IFAT 84/306 27.4% (180)*

Sweden Southern

Sweden

NA Real-time PCR 38/71 53.5% Includes 39 cattle with

symptoms of babesiosis

(181)

Switzerland Jura Canton 1981 IFAT 98/289 (April),

190/327 (July),

309/341 (December)

33.9% (April),

58.1% (July),

90.6% (December)

(167)

United Kingdom Scotland 1976 IFAT 290/368 78.8% Two farms which experienced

babesiosis outbreak

(182)

Scotland NA IFAT 2,522/22,044 11.4% (183)*

Northern

Ireland

1978 IFAT 5,731/18,000 31.8% (184)*

Scotland 2014 PCR 0/107 0.0% Farms with a known history of

babesiosis or anaplasmosis

(185)

SHEEP

United Kingdom Scotland 2014 PCR 11/93 11.8% Identified as B. venatorum (185)

*Included in meta-analysis of seroprevalence.

ELISA, enzyme-linked immunosorbent assay, IFAT, immunfluorescence antibody test.

cattle cohorts (Supplementary Figure 2). A significant level of
heterogeneity was detected (I2 = 99.6%; 95% CI: 99.6–99.7%;
P < 0.001). No significant temporal change in seroprevalence
was detected from the 1970s to the 2000s (test for subgroup
differences, χ² = 0.96, df = 2, P = 0.619), although a decline
in bovine babesiosis prevalence and/or clinical incidence has

been postulated for several European countries (179, 180, 186).
This may be due to the fact that several studies reporting
this decline were based on clinical incidence (179, 186) and
were thus not included in the calculation. Furthermore, no
difference according to geographical region was found (χ²= 5.8,
df= 3, P = 0.121).
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A few studies also reported detection of B. divergens by PCR,
with infection rates ranging from 0.0% in Scotland (185) to
53.5% among clinically symptomatic cattle in Sweden (181). In
randomly selected cattle in France, an infection rate of 4.7% was
determined by PCR (173).

In addition to cattle, sheep might act as reservoirs for zoonotic
Babesia spp., as B. venatorum infections have recently been
detected in 11.8% of 93 studied sheep in the United Kingdom,
whereas the 107 tested cattle were negative (185).

DISCUSSION

The present survey aimed at presenting an overview of the most
important zoonotic TBDs in domestic animals in temperate and
cold regions of Europe, where I. ricinus is the predominant
tick vector. While a rather large number of studies on B.
burgdorferi s.l., A. phagocytophilum and TBEV were retrieved,
studies on Rickettsia spp. in domestic animals were few, probably
because Rickettsia spp. have not (yet) been associated with clinical
disease in these species. Therefore, the prevalence and clinical
relevance of Rickettsia spp. in domestic animals represent a
knowledge gap. Similarly, only few studies exist on the relatively
recently discovered pathogen N. mikurensis in domestic animals,
although first reports indicate that this pathogen may be of
clinical relevance for dogs (150). Studies on relevant zoonotic
Babesia spp. were only found with regard to B. divergens in
cattle, while only one study investigated B. venatorum, which
is usually deer-associated, in cattle and sheep. As Babesia spp.
are characterized by a high level of host-specificity (187), it
was not surprising that no prevalence studies were conducted
on rodent-associated B. microti in domestic animals in the
considered regions.

In general, a high level of heterogeneity was detected in
the datasets. To limit this heterogeneity in meta-analysis of
seroprevalence, only animal cohorts asymptomatic for the
considered pathogen or random diagnostic samples were
included, and further restrictions were applied regarding the
diagnostic test used for TBEV in all domestic animals and B.
burgdorferi s.l. in dogs. Nevertheless, heterogeneity remained
high, even after conducting subgroup analyses according to
species, diagnostic test (if applicable), geographic region and
decade. A significant effect was only found regarding species
differences in B. burgdorferi s.l. infections, with higher rates in
domestic ruminants and horses than in dogs. On the one hand,
this might be due to the close relationship between dogs and
their owners, resulting in better protection from TBDs due to
treatment with (repellent) acaricides, and shorter duration of tick
attachment, as ticks are probably noticed sooner on dogs than
on horses or cattle. On the other hand, the choice of diagnostic
test may have contributed to the significantly lower B. burgdorferi
s.l. seroprevalence in dogs. Although no significant effect of
diagnostic test was found in the overall dataset, analyzing the data
subset on dogs alone revealed a significant effect, with lower rates
determined by the most recently developed test, a rapid ELISA
with a high sensitivity and specificity for antibodies against the
Borrelia C6 antigen (57). This test was almost exclusively used in

dogs, except for two studies on horses. This indicates that cross-
reactivity with other pathogens, e.g., Leptospira spp. (74), may
have been an issue, especially in older and in non-canine studies.

Regarding A. phagocytophilum, conspicuously high
seroprevalence rates in sheep were reported. However, as
the meta-analysis included only three studies on sheep, no
significant species differences were found when conducting
subgroup analysis. However, this should be investigated further,
as granulocytic anaplasmosis is a severe, possibly fatal disease in
sheep (113). In addition, sheep might constitute a reservoir for
human-pathogenic A. phagocytophilum strains (114, 115, 117).
Thus, more studies on A. phagocytophilum (sero-)prevalence in
sheep seem warranted.

In addition to species differences and different diagnostic
tests used, the chosen cut-off level to determine seropositivity,
the source of the antigen in serological tests or the timing
of sampling—as seroprevalences may increase during seasons
of tick exposure (120, 171)—may have further increased
heterogeneity of study results. These aspects, hampering the
comparability of studies, may have contributed to the fact that
no temporal changes in TBD seroprevalence in domestic animals
were found. Possibly, a larger number of studies may have been
necessary to detect a temporal trend under these conditions.
Furthermore, there were large temporal gaps in the available
seroprevalence studies. For example, studies on TBEV considered
suitable for meta-analysis were mainly conducted as of the year
2000, with only one comparable study from the 1960s and
none from the decades in between. Regarding Babesia spp.,
there was a gap in available screening studies on asymptomatic
animals concerning the 1990s as well as the 2010s. Regarding
B. burgdorferi s.l., most studies were conducted in the 1980s,
following the initial description of the pathogen (188).

In consequence, the trend of increasing TBD incidence in
humans was not reflected by the available data from domestic
animals. Apart from the mentioned drawbacks that may have
masked such a trend, it is also possible that seroprevalences in
domestic animals are rather stable and that the increased TBD
incidence in humans is due to factors which are not relevant for
animals. For example, increased exposure due to more outdoor
activities or increased awareness of patients and physicians for
TBDs may lead to an increased disease incidence or more
diagnoses of TBD infections in humans (2).

With regard to the geographical spread of zoonotic TBDs,
e.g., concerning TBE, (sero-)prevalence in animals is usually not
studied in a certain area until there is an indication of pathogen
presence due to human cases. Therefore, it is difficult to ascertain
when the pathogen emerged in animal populations in this area.
As an example, no studies on TBEV in domestic animals in the
United Kingdom were retrieved, where TBEV has only recently
been detected (17).

CONCLUSIONS

This survey revealed a high heterogeneity in (sero-)prevalences
of zoonotic TBDs in domestic animals in temperate and cold
regions of Europe. In addition, temporal gaps in available
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studies were detected, e.g., for TBEV and B. divergens. The
high level of heterogeneity as well as the temporal gaps make it
difficult to assess long-term temporal trends for comparison with
data on humans. Furthermore, only few studies were retrieved
regarding Rickettsia spp. and the recently described pathogen N.
mikurensis, and none regarding B. miyamotoi. Therefore, more
studies investigating these neglected pathogens are warranted.
Additionally, further surveillance studies employing highly
sensitive and specific test methods and including hitherto non-
investigated regions are needed to determine if and how a
changing world impacts the frequency of neglected zoonotic
tick-borne pathogens in domestic animals.
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