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Remarkable immunomodulatory abilities of mesenchymal stem cells, also called

multipotent mesenchymal stromal cells or medicinal signaling cells (MSCs), have entailed

significant advances in veterinary regenerative medicine in recent years. Despite positive

outcomes from MSC therapies in various diseases in dogs and cats, differences in

MSC characteristics between small animal veterinary patients are not well-known. We

performed a comparative study of cells’ surface marker expression, viability, proliferation,

and differentiation capacity of adipose-derivedMSCs (ADMSCs) from dogs and domestic

cats. The same growth media and methods were used to isolate, characterize, and

culture canine and feline ADMSCs. Adipose tissue was collected from 11 dogs and

8 cats of both sexes. The expression of surface markers CD44, CD90, and CD34

was detected by flow cytometry. Viability at passage 3 was measured with the

hemocytometer and compared to the viability measured by flow cytometry after 1 day of

handling. The proliferation potential of MSCs was measured by calculating cell doubling

and cell doubling time from second to eighth passage. Differentiation potential was

determined at early and late passages by inducing cells toward adipogenic, osteogenic,

and chondrogenic differentiation using commercial media. Our study shows that the

percentage of CD44+CD90+ and CD34−/− cells is higher in cells from dogs than in

cells from cats. The viability of cells measured by two different methods at passage 3

differed between the species, and finally, canine ADMSCs possess greater proliferation

and differentiation potential in comparison to the feline ADMSCs.

Keywords: mesenchymal stem cells, dog, cat, comparison, proliferation, differentiation, cell surface marker,

viability

INTRODUCTION

In recent years, significant interest for stem cell therapies has arisen in veterinary medicine. It has
become evident that mesenchymal stromal cells’ or medicinal signaling cells’ (MSCs’) therapeutic
actions are the result of their complex immunomodulatory abilities, including paracrine action
(1), secretion of extracellular vesicles (2–4), apoptosis mediated immunomodulation (5), and
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mitochondrial transfer of membrane vesicles and organelles (6,
7). In dogs and cats, most common veterinary patients, notable
positive outcomes have been reported from MSC therapies
of various diseases such as orthopedic diseases (8–12), feline
chronic gingivostomatitis (13–15), inflammatory bowel disease
(16, 17), and skin diseases (18). MSCs have been isolated from
various tissues such as adipose tissue (19–23), bone marrow
(20, 21, 23–25), synovium (20), synovial fluid (19, 26), umbilical
cord (27), Wharton’s jelly (28), peripheral blood (29), muscle,
and periosteum (30). Adipose tissue is generally considered the
most attractive source of MSCs because of a large MSC yield
and minimally invasive procedure needed for cell harvesting
(31). After their isolation, MSCs are characterized to prove
their mesenchymal nature. In addition to plastic adherence,
minimal criteria to define human MSCs, set by the Mesenchymal
and Tissue Stem Cell Committee of the International Society
for Cellular Therapy, include their ability to differentiate into
osteoblasts, adipocytes, and chondroblasts. Also, MSCs must
express CD105, CD73, and CD90 and lack the expression of
CD45, CD34, CD14 or CD11b, CD79a or CD19, and HLA class
II (32) surface markers.

While all animal MSCs are plastic-adherent and show
trilineage differentiation potential, not all express the same panel
of surface antigens. Previous MSC studies showed that canine
(19, 33–35) and feline MSCs (22, 36) consistently express CD44
CD90 and lack CD34 expression, while the expression of other
markers varies. Standards to define animal MSCs are therefore
not yet established. Clinical administration of MSCs usually
entails expanding cells in vitro to obtain a sufficient number of
cells. It is well-known that MSC populations are intrinsically
heterogeneous what can significantly impact their therapeutic
potency (37). Besides different factors, such as MSC source (19,
21, 23, 38), tissue collection site (39–41), animal age (39, 42–44),
and the number of passages (45–48) that have been demonstrated
to affect MSC characteristics ex vivo, animal species could likely
also influence MSC potency. Only a few studies compared MSCs
between species directly (49–51), while it is difficult to draw any
comparisons between different studies using cells from different
species because of the lack of standardization of methods for
the isolation, culture, and characterization of animal MSCs.
As differences in stem cell properties between different animal
species might lead to the differences in the stem cell therapy’s
success, they should be therefore explored. In addition to the
importance of studying interspecies differences, investigating
sex differences is another critical aspect of scientific research,
although it is often neglected in preclinical studies (52). It is
well-established that the sex of a patient can affect the risk for
both disease susceptibility and progression (53). Sex differences
have also been found in stem cell biology and therapeutic efficacy
in different species (54–57). Studying both males and females is
therefore necessary in different studies including cells, animals,
and humans, as it may lead to novel targets for disease modifiers
(53). The aim of our study was to determine differences in
adipose-derived MSCs (ADMSCs) properties from dogs and
cats of both sexes in terms of their surface marker expression,
viability, and proliferation and differentiation capacity. Although
no sex differences were found between the species in the study,

the results of our study show important differences in MSC
proliferation and differentiation potential between dogs and cats.
The results of our study show that species as a factor must be
considered when planning the preparation of canine and feline
ADMSCs for clinical applications.

MATERIALS AND METHODS

Animals and Adipose Tissue Collection
Adipose tissue was individually collected from 11 dogs (aged
6 months to 2 years, four males and seven females) and eight
cats (aged 3 months to 1 year, four males and four females)
during routine castration or ovariohysterectomy at the Small
Animal Clinic of the Faculty of Veterinary medicine in Ljubljana
and from the Veterinary Clinic of Biotechnology educational
center in Ljubljana. All animals were healthy, with no known
comorbidities. In all animals, adipose tissue was obtained from
the abdominal subcutaneous region. All animals were client-
owned, and all owners agreed to the collection of tissue and
signed informed consent. As the study was conducted on
client-owned animals undergoing a routine clinical procedure
with the owner’s approval to collect a small piece of adipose
tissue, no other approval of the ethical committee was needed
according to Slovenian legislation and official opinion from the
Administration of the Republic of Slovenia for Food Safety,
Veterinary and Plant protection responsible for issuing ethical
permits for animal experiments.

Isolation of ADMSCs
Adipose tissue was washed with Dulbecco phosphate-buffered
saline (DPBS, Gibco, USA) and cut with a scalpel into small
pieces. Adipose tissue was then incubated overnight at 37◦C
in Dulbecco modified eagle medium (DMEM, Gibco, USA)
containing 0.1% collagenase type II (Sigma–Aldrich, DE). The
digested tissue was centrifuged at 240 g for 4min, and the
supernatant was discarded. The pellet of cells was resuspended in
a cell culture medium containing DMEM and 10% fetal bovine
serum (Gibco, USA). The cell suspension was plated into six-
well plates (TPP, Switzerland) as passage 0 (P0) and cultured
at 37◦C in a 5% CO2 incubator. The cell culture medium was
changed every 2–3 days. After 70–90% confluency was reached,
cells were trypsinized and further processed for flow cytometry,
proliferation, and differentiation assays.

Flow Cytometry (Fluorescence-Activated
Cell Sorting) Analysis
For fluorescence-activated cell sorting (FACS) analysis, 1 ×

106 cells from passage 3 were used to detect the expression
of cell surface markers CD44, CD90, and CD34. Following
trypsinization, cells were counted, centrifuged (240 g for 4min),
and washed twice with DPBS. Cells were kept in suspension
in DPBS at 4◦C overnight. The following day, cells were
transferred to the Blood Transfusion Center of Slovenia. Cells
were stained with the following antibodies: APC conjugated
against CD44 (antibody clone IM7, 103012, Biolegend, USA) and
fluorescein isothiocyanate conjugated against CD34 (antibody
clone 581, 60013FI, Stemcell Technologies, USA) for both canine
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and feline ADMSCs, PE conjugated against CD90 (antibody
clone YKIX337.217, 12-5900-42, eBioscience, USA) for canine
ADMSCs, and PE conjugated against CD90 (antibody clone
5E10, 555596, BD bioscience, USA) for feline ADMSCs. For
antibody titration, 1, 2, 3, 4, 5, and 10 µL of each antiserum
per 100 µL of 1 × 106 cells were used. Appropriate dilutions
of antibodies used for staining are shown in Table 1. Cells were
then vortexed, incubated at room temperature in the dark for
10min, washed twice with DPBS, vortexed, and centrifuged
again (500 g for 5min). The supernatant was decanted. Finally,
cells were resuspended in 300 µL of DPBS for FACS analysis.
The exclusion of non-viable cells was performed by staining
cells with a 7-amino-actinomycin D solution (Miltenyi Biotec,
USA). Experimental settings were set up using unstained cells,
single color stain, and Fluorescence Minus One controls. A
minimum of 20,000 events was recorded. Cells were analyzed
with a BD FACSAria flow cytometer (BD Bioscience). FACSDiva
8.0.1 software (BD Bioscience) was used for FACS data analysis.

Proliferation Potential Assay
After 70–90% confluency was reached in each passage, cells were
trypsinized to the single cell and seeded at the density of 10e4

cells per cm2 as the next passage into a new T25 cell culture flask
(TPP). Cells in the cell culture were maintained up to the eighth
passage (P2–P8). At each passage from second to eighth, the
number of cells at seeding and harvesting was determined with
a hemocytometer, and cell viability was assessed using trypan
blue dye. Cell doubling (CD) and cell doubling time (CDT) were
calculated using the following formulas:

CD= log (Nt/N0)× 3.32
CDT= T/CD
C(CD)= CD(P1)+CD(P2)+....+CD(P10)

where Nt is the number of cells at harvesting, N0 is the number
of cells at seeding, T is the time of cell culture for each passage,
CD is the number of cells’ doublings at one passage, C(CD) is the
cumulative CD of all passages, and CDT is the time needed for a
cell number to double (58).

Cell Viability
Cell viability was measured by twomethods. During proliferation
potential assay, viability was measured with hemocytometer
immediately after cell trypsinization using trypan blue dye, at
each passage from second to eighth. At passage 3, viability was
also measured during FACS analysis using 7-amino-actinomycin
D solution to exclude non-viable cells from the surface marker
expression analysis and to compare the effect of additional
manipulation and overnight storage on cells from both species.

Differentiation Potential Assay
Differentiation potential was assessed by inducing cells into
adipocytes, osteocytes, and chondrocytes. Differentiation
potential was assessed at early (P2) and late (P8 for canine
ADMSCs and P6 for feline ADMSCs) passages. For the
adipogenic differentiation, 4 × 104 cells were seeded in 12-well
plates. The day after seeding, the cell culture medium was
removed. Adipogenic (StemPro Adipogenesis Differentiation
Kit, Gibco, USA) medium was added and changed every 2–3

days. The cell culture medium was added to the wells that served
as negative controls. Adipogenic differentiation was analyzed
with oil-red-O staining (Sigma–Aldrich, DE) after 14 days of
culturing, following standard procedure. For the osteogenic
differentiation, 4 × 104 cells were seeded in 12-well plates. After
90–100% confluency was reached, the cell culture medium was
removed. Osteogenic (StemPro Osteogenesis Differentiation
Kit, Gibco, USA) medium was added and changed every 2–3
days. Osteogenic differentiation was analyzed with alizarin red
S staining (Sigma–Aldrich, DE) following standard procedure
after 14 days of culturing. For the chondrogenic differentiation,
micromass cultures were generated by seeding 5-µL droplets
of 4 × 104 cells in the center wells of the 12-well plate. After
cultivating micromass cultures for 6 h under high humidity
conditions, a chondrogenic medium (StemPro Chondrogenesis
Differentiation Kit, Gibco, USA) was added to culture vessels.
The cell culture medium was added to the wells that served
as negative controls. Micromass cultures were incubated at
37◦C in an incubator with 5% CO2 and a humid atmosphere.
The medium was changed every 2–3 days. Chondrogenic
differentiation was analyzed with Alcian blue staining (Sigma–
Aldrich, DE) following standard procedure after 14 days of
culturing. Differentiated cells were then visualized under
light microscope.

Light Microscopy and Analysis
For analysis of multilineage differentiation potential of canine
and feline ADMSCs, an inverted microscope (Nikon Eclipse
TS100, Nikon, Japan) with Nikon Digital Sight DS-U2 camera
was used. Images were captured in NIS-Elements D3.2 Live
quality program. Images of adipogenic differentiation were
captured at 400× magnification and qualitatively analyzed.
Images of osteogenic and chondrogenic differentiation were
captured at 40× magnification. Seven view fields in one well
of a 12-well plate were randomly selected and quantitatively
analyzed by measuring the area of differentiated cells. In the
ImageJ program (59), images were converted to binary type and
then segmented using DynamicThreshold_1d.class plugin (60),
displaying (max + min)/2 images. The area of particles larger
than 100 µm2 was measured in each field view, and the total area
covered by differentiated cells was calculated.

Statistical Analysis
All statistical analyses were performed with the NCSS software
package (Kaysville, UT, USA). The normality of the data was
checked by the Kolmogorov–Smirnov test for normality. One-
way analysis of variance (ANOVA) was used to determine
differences in the cell surface marker expression and the viability
in the third passage with species and sex as independent variables.
Proliferation capacity and viability throughout the experiment
were analyzed by repeated-measures ANOVA with species and
sex as independent variables and passage as within factor.
Differences in differentiation were determined by repeated-
measures ANOVA with sex and species as independent variable
and optic field as within factor. Differences in differentiation were
determined separately for early and late passages. Additionally,
the post-hoc Tukey–Kramer multiple-comparisons test was used
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TABLE 1 | Data on antibodies and their dilutions used for FACS analysis in the study.

Cell surface

marker

Conjugation Antibody

clone

Isotype Target

species

Catalog

number

Source Antibody

dilution (canine

ADMSCs)

Antibody

dilution (feline

ADMSCs)

CD34 FITC 581 Mouse IgG1 Human 60013FI Stemcell

Technologies,

USA

1: 20 1: 20

CD44 APC IM7 Rat IgG2b Mouse,

human

103012 Biolegend, USA 1: 66 1: 400

CD90 PE YKIX337.217 Rat IgG2b Dog 12-5900-42 eBioscience,

USA

1: 20 /

CD90 PE 5E10 Mouse IgG1 Human 555596 BD bioscience,

USA

/ 1: 66

CD90 PE 5E10 Mouse IgG1 Human 60045PE Stemcell

technologies,

USA

/ /

CD105 PE-Cy7 SN6 Mouse IgG1 Human 25-1057-42 eBioscience,

USA

/ /

CD, cluster of differentiation; FITC, fluorescein isothiocyanate; PE, phycoerythrin; APC, allophycoerythrin; PE-CY7, phycoerythrin–cyanine 7; Slash (/), non-reactive.

to clarify the differences between particular pairs further.
Statistical significance was determined with p < 0.05.

RESULTS

Cell Culturing and Proliferation Potential of
MSCs
The adipose tissue was successfully collected from all animals.
Under the light microscope, cells from both species appeared
spindle-shaped with the fibroblast-like morphology (Figure 1).
Cells were maintained up to the eighth passage. We attempted
to grow cells for longer, but after the eighth passage, most cells
stopped proliferating or proliferated very slowly. Therefore, all
analyses were performed with cells up to the eighth passage.
At each passage from second to eighth, CD and CDT were
determined. Cumulative CD [(C)CD)] of canine ADMSCs was
significantly higher than (C)CD of feline ADMSCs (p < 0.01;
Figure 2A), and average CDT was significantly shorter for canine
ADMSCs than for feline ADMSCs (p < 0.05; Figure 2B). An
increase in CDT from the second to the eighth passage was
relatively gradual in canine ADMSCs in comparison to CDT of
feline ADMSCs, which increased unevenly. Interestingly, CDT
increased significantly in passage eight in cats only and was
different from all other feline and canine passages (p < 0.001;
Figure 2C). There were no statistically significant differences in
CD or CDT between the sexes of both species.

Flow Cytometry Analysis
Undifferentiated ADMSCs at passage 3 were evaluated for the
expression of cell surface markers CD44, CD90, and CD34
(Table 1). We also tested antibodies against CD105 (Table 1);
however, these antibodies did not work with our cells and were
therefore not included in the analyses.

FACS analysis revealed that the most canine and feline
ADMSCs were positive for CD44 and CD90 and negative for
CD34 (Figure 3). Percentage of live CD44+CD90+ ADMSCs was

statistically significantly higher in canine than in feline cells (p
< 0.01). The percentage of live CD34−/− ADMSCs was also
statistically significantly higher in canine than in feline cells (p <

0.05; Figure 4). No differences in cell marker expression between
sexes were observed in either of the species.

Cell Viability
MSC viability was determined with the hemocytometer using
trypan blue at each passage during the proliferation potential
assay. Additionally, viability was determined at passage
3 with flow cytometry using the 7-amino-actinomycin D
staining solution to exclude non-viable cells from the surface
marker expression analysis and to compare the effect of
additional manipulation and overnight storage on the cells from
both species. Mean viability of ADMSCs measured with the
hemocytometer during proliferation ranged from 93 to 96% in
the second passage and from 82 to 88% in the eighth passage
(Table 2), with no statistically significant difference between
canine and feline cells, although there was a trend toward
statistical significance with better viability of canine ADMSCs.
Also, no differences in viability between the sexes of both
species were observed. Contrary to the viability measured during
proliferation assay, flow cytometry results showed a statistically
significant difference in the viability between canine and feline
ADMSCs in passage 3, with cells from dogs showing higher
viability than cells from cats (p < 0.01). The mean viability of
canine and feline ADMSCs in passage 3 was 90.44 and 79.67%,
respectively (Figure 5).

Differentiation Potential of MSCs
Canine and feline ADMSCs were induced toward trilineage
differentiation at early (P2) and late (P8 for canine and P6
for feline ADMSCs) passage. Late passage for feline ADMSCs
was determined as passage 6, as these cells were able to
differentiate at passage 6 but not at later passages. Although
late passages are different and therefore not directly comparable,
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FIGURE 1 | Images of canine (A) and feline (B) ADMSCs. Cells from both species exhibited similar spindle-shaped fibroblast-like morphology.

our aim was to determine differentiation capacity toward the
end of the proliferative capacity of ADMSCs, and as these were
different between dogs and cats, we chose different passages for
late differentiation.

Osteogenic differentiation led to mineral deposits in
the extracellular matrix staining red with alizarin-red-
S (Figures 6A,B). After chondrogenic differentiation,
proteoglycans in the extracellular matrix of layered cell clusters
stained positive with Alcian blue (Figures 6C,D). Adipogenic
differentiation resulted in the formation of intracellular lipid
droplets staining red with oil-red-O (Figures 6E,F). Both
canine and feline ADMSCs differentiated into adipocytes,
osteocytes, and chondrocytes at early (P2) and late passages
(P8 for canine cells and P6 for feline cells). Adipogenic
differentiation was assessed qualitatively as quantification
of adipogenic differentiation was thwarted because of the
very small size of lipid droplets that needed to be visualized
under the large magnification. No apparent differences in the
adipogenic differentiation based on the qualitative assessment
between canine and feline cells were observed. Osteogenic
and chondrogenic differentiated cells were analyzed with the
ImageJ program wherein the area of particles larger than 100
µm2 was measured and compared between canine and feline
ADMSCs. Results showed that the total positively stained area in
chondrogenic differentiation was statistically significantly more
extensive in canine ADMSCs than in feline ADMSCs at passage
2 (early passage; p < 0.05, Figure 7), and there was a statistical
trend for difference between species in osteogenic differentiation
at passage 2 (early passage; p = 0.07). Interestingly, there was
a statistically significant difference between sexes in osteogenic
potential in passage 2 (early passage) with cells from female
dogs and cats showing larger osteogenic potential than cells
from males of both species (p < 0.01, Figure 7). In late passages,
we found statistically significant difference in the osteogenic
potential between species, although curiously post-hoc test
revealed that this difference was only present in males with male

dogs showing higher osteogenic potential than male cats (p <

0.01, Figure 7).

DISCUSSION

Despite substantial progress in veterinary regenerative therapy in
recent years, understandingMSC behavior and their mechanisms
of action is an ongoing process. MSCs differ in various
characteristics with regard to the tissue source (19, 21, 23, 38),
anatomical location (39–41), animal age (39, 42–44), and their
characteristics change with the number of passages (45–48).
There are very limited data about differences between MSCs
from different species. However, one mode of cell therapy used
in certain species could not be necessarily directly applicable to
another species. In the present study, we examined characteristics
of adipose-derived MSCs from two species, both common
veterinary patients, cats and dogs.

We performed a comparative study of surface marker
expression, viability, proliferation, and differentiation capacity
between canine and feline ADMSCs, with the same media and
methods used for the isolation, cell culture, and characterization
of ADMSCs of both species. Both canine and feline ADMSCs
exhibited similar spindle-shaped fibroblasts–like morphology.
Although animal MSCs are plastic adherent and able to
differentiate not only into adipocytes, chondrocytes, and
osteocytes but also into other lineages such as neuronal lineage
(61, 62), there are no minimal criteria set to define animal MSCs
based on the surface antigens as are for human MSCs (32).
Previous MSC studies mostly described ADMSCs from dogs
(19, 33–35) and cats (22, 36) as consistently CD34-negative and
-positive for CD44 and CD90. Expression of some other markers,
essential to define human MSCs, varies in animal MSCs. The
expression of CD105 and CD73 in canine and feline MSCs varies
depending on the tissue of origin (19) or is expressed only in dogs
(38, 63) but not in cats (36).
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FIGURE 2 | (C)CD and CDT of canine and feline ADMSCs. Canine ADMSCs (C)CD was statistically significantly higher than feline ADMSCs (C)CD (A, *p < 0.01), and

average CDT was statistically significantly lower for canine than for feline ADMSCs (B, *p < 0.05). No sex differences in CD or CDT were observed in either of the

species. Interestingly, CDT in canine ADMSCs increased gradually through passages, whereas CDT in feline ADMSCs increased unevenly. In dogs, no statistically

significant differences were observed between passages. Interestingly, CDT increased significantly in passage 8 in cats only and was different from all other feline and

canine passages (***p < 0.001; C). Results are presented as mean ± SEM.

The aim of our study was to compare the expression of
surface markers that are known to be consistently expressed on
MSCs from both species. Therefore, we used markers CD34,
CD44, and CD90. We also considered two other markers
(CD105 and CD73) that define human MSCs (32), but were
not included in the final study. Marker CD105 was not used
as we were unable to find commercially available anti-canine

or anti-feline CD105 antisera. However, we tested antibodies
against CD105 that were reportedly used in one previous
study (64), but we could not obtain positive signal despite
extensive optimization with our canine or feline cells. Marker
CD73 was not included in the study as it was shown before
that it is not expressed in feline cells and was therefore not
considered as a marker consistently expressed in both species.
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FIGURE 3 | Expression of canine and feline ADMSC surface markers analyzed by FACS at passage 3. Both canine and feline ADMSCs expressed CD44 and CD90

but did not express CD34.

FIGURE 4 | Percentage of CD440+CD90+ and CD34−/− canine and feline cells. Percentage of live ADMSCs expressing CD44 and CD90 was statistically significantly

higher in canine than in feline cells (*p < 0.01). The percentage of live CD34 negative ADMSCs was also statistically significantly higher in canine than in feline cells (*p

< 0.05). There were no differences in cell marker expression between the sexes of ADMSCs from either of the species. Results are presented as mean ± SEM.

However, as there are no reports on the comparisons of relative
marker expression between species, future studies should also
consider more thorough investigations of MSC surface marker

expression differences between various animals, especially when
species-specific MSC markers will hopefully become available in
the future.
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TABLE 2 | Average viability (%) of canine and feline ADMSCs measured by hemocytometer during proliferation potential assay at each passage (P2–P8).

Passage P2 P3 P4 P5 P6 P7 P8

Dog cells 96 93 94 92 91 86 88

Cat cells 93 91 91 92 89 76 82

FIGURE 5 | Viability of canine and feline ADMSCs measured by hemocytometer (left) and flow cytometry (right) at passage 3. When measured by hemocytometer, the

viability of ADMSCs was similar between both species. When measured by flow cytometry, the viability of feline ADMSCs was statistically significantly lower than that

of canine ADMSCs (*p < 0.01). No differences in cell viability between sexes from either species were present, regardless of the method. Results are presented as

mean ± SEM.

In line with the results of previous studies, we showed
that most of the canine and feline ADMSCs express MSC
surface markers CD44 and CD90 and lack the expression of
hematopoietic marker CD34. Interestingly, the percentage of
cells expressing CD44 and CD90 and not expressing CD34
was statistically significantly higher in canine ADMSCs than
in feline ADMSCs. It was previously described that MSCs
exhibit donor-to-donor and intrapopulation heterogeneity and
that MSC populations consist of distinct subpopulations, so the
properties of MSC populations cannot be ascribed to single
cells (37). One possible reason for the difference in relative
surface marker expression between canine and feline cells in our

study might be that feline cell populations are more intrinsically
heterogeneous than canine cells.

We measured the viability of cells by two different methods,
hemocytometer during proliferation potential assay immediately
after trypsinization at each passage and by flow cytometer
during surface marker expression analysis at passage 3 after 1
day of handling. The cell viability measured by two methods
was used to compare the effect of additional manipulation and
overnight storage on the cells from both species. The viability
of canine ADMSCs in passage 3, measured by flow cytometry,
was statistically significantly higher than the viability of feline
ADMSCs. However, the viability of both canine and feline
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FIGURE 6 | Multilineage differentiation of cells in passage 2. ADMSCs from cats and dogs successfully underwent osteogenic (A,B), chondrogenic (C,D), and

adipogenic differentiation (E,F). In osteogenic differentiation, mineral deposits in the extracellular matrix were stained red by alizarin-red-S (dog A, cat B).

Chondrogenic differentiation is indicated by the formation of chondrogenic nodules that stain blue with Alcian blue (dog C, cat D). Red intracellular lipid droplets

stained with oil-red-O are indicative of adipogenic differentiation (dog E, cat F). Respective negative controls are shown as inserts in each photomicrograph.

FIGURE 7 | Chondrogenic and osteogenic differentiation at early (P2) and late (P8 for canine cells and P6 for feline cells) passages. Positively stained area in

chondrogenic differentiation was statistically significantly more extensive in canine ADMSCs than in feline ADMSCs at passage 2 (*p < 0.05). In osteogenic

differentiation, there was a statistically significant difference between the sexes of both species (**p < 0.01) but not between species at passage 2, although there was

a statistical trend for difference between species (p = 0.07). In late passages, there was statistically significant difference in osteogenic differentiation between the

species, but only in males (a different from b, p < 0.01).

cells, measured with trypan blue through the passages, was not
significantly different at any passage. Several studies showed
that viability determined by microscopy and flow cytometry
contributes to similar results and that correlation data are in
good agreement with both methods (65–67). Therefore, it is
unlikely that this difference was caused by the difference in
methods, but rather by differences in handling the cells. While
cells for trypan blue staining were counted almost immediately

after trypsinization, cells for flow cytometry underwent much
longer manipulation, including overnight storage at 4◦C in DPBS
suspension and additional manipulation of cells prior to flow
cytometry analysis. Although these differences will have to be
confirmed in further studies, the results suggest that feline cells
might be more sensitive to handling and storage in suboptimal
conditions. This could have important implications for potential
clinical use of MSCs in veterinary medicine, as any such use
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inadvertently involves the transport of live cells. If feline cells
are more sensitive to handling and storage, this will have to
be considered.

The life span of MSCs cultured ex vivo is limited, and it
has been demonstrated in several studies that serial passages
alter their multipotent properties (45–48). The ability of MSCs
to self-renew is thus an important feature to be analyzed in
vitro and can be done by calculating CD and CDT—number
of cells’ doublings in one passage and time needed for a cell
number to double. It has been shown in several studies that
CD decreases and CDT increases with passages in cells from
various species (36, 38, 45, 68). Similarly, the results of our
study showed that the proliferation capacity of both canine
and feline ADMSCs decreased with passages. Interestingly, the
proliferation capacity of canine ADMSCs seems to decrease very
gradually with passages, whereas the proliferation capacity of
feline ADMSCs was much more varied between passages. This
variation between passages was observed in all feline samples and
therefore suggests a real effect, although it is difficult to explain
what might cause such non-linear difference between passages.

In previous studies, proliferation potential was shown to
depend on various factors, including tissue of origin and
anatomical site of the tissue collection. There might also be
a difference between species regarding MSC proliferation and
differentiation potential, depending on a tissue source. For
example, canine ADMSCs have higher differentiation potential
than MSCs from bone marrow, umbilical cord, amniotic
membrane, or placenta (21). In contrast, in horses, chondrogenic
(69) and osteogenic potentials (70) seem higher in bone marrow
MSCs than in ADMSCs. These results indicate the possibility that
MSCs from different animals have different properties indeed.
The results of our study confirmed that there is a difference
in proliferation potential between species. Canine ADMSCs
exhibited higher proliferation potential than feline ADMSCs as
cells from dogs had significantly higher (C)CD and significantly
shorter CDT than cells from cats.

Similarly, as in proliferation potential, there was a difference in
the differentiation potential between canine and feline ADMSCs.
While MSCs from both species were able to differentiate into
adipocytes, chondrocytes, and osteocytes at early passages, canine
cells were able to differentiate also at passage 8, whereas
feline cells were able to differentiate at passage 6, but not at
later passages. Canine ADMSCs also seemed to possess greater
chondrogenic and osteogenic potential than feline cells, as
seen after quantification of differentiation images. Adipogenic
differentiation was assessed only qualitatively as lipid droplets
were very small, and large magnification was required to visualize
these droplets. No apparent difference in qualitatively assessed
adipogenic differentiation between canine and feline ADMSCs
was observed. The small size of lipid droplets formed in canine
ADMSCs is in line with the results from other studies, where lipid
droplets from differentiated canine bone marrow–derived MSCs
were shown to be much smaller than those of human MSCs (50).
Also, lipid droplets formed during adipogenesis were reported to
be smaller in adipose and bone marrow–derived MSCs than in
MSCs from synovium or infrapatellar fat pad (20).

Taken together, lower proliferation and differentiation
potential and lower relative cell surface marker expression in
feline cells in comparison to canine cells could be explained,
at least in part, by the assumption that the feline ADMSC
population is more heterogeneous than canine ADMSCs.
These findings should be considered in stem cell therapies
as population heterogeneity combined with the requirement
for the large-scale cell expansion needed for stem cell therapy
may significantly impact the in vitro characteristics of cells and
possibly therapeutic potency of MSCs.

One of the aims of our study was to examine potential
sex differences in the viability, proliferation, and differentiation
potential in cells from dogs and cats. Sex-related differences have
been previously reported in regard to the neurogenic potential
(54, 55), immunomodulation (56), and therapeutic efficacy (57)
of stem cells in humans and animal models. In our study, the only
differences between sexes were observed in osteogenic potential,
which was different with cells from dogs and cats at passage
2. This suggests that cells do not differ majorly between sexes
in basic parameters such as proliferation and expression of cell
surface markers. However, more subtle sex-related differences
in animal MSC characteristics might still be present and must
not be neglected when studying cell characteristics, especially
their therapeutic potentials. Furthermore, sex difference in
osteogenic capacity is interesting as it might suggest different
properties of cells in regard to sex, and this might reflect in
differences in regenerative potential of ADMSCs from different
sexes. Therefore, this difference must be further explored in the
future study.

In conclusion, our study indicates that animal donor species
play an important role with regard to the MSCs’ characteristics
in vitro. ADMSCs from dogs have a higher proliferation rate
and better differentiation capacity than cells from cats. Feline
cells also seem to be more sensitive to the handling, as viability
after 1 day of handling was lower in feline than in canine
cells. Furthermore, the percentage of cells expressing stem cell
markers was lower in cells derived from cats than in canine
cells. However, sex differences were observed only in osteogenic
potential in the early passage. Therefore, the results of this
study suggest that species should be taken into account when
working with MSCs, and protocols for cell isolation, culturing,
or therapeutic use cannot be translated from one species
to another.
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