
REVIEW
published: 23 December 2020

doi: 10.3389/fvets.2020.614054

Frontiers in Veterinary Science | www.frontiersin.org 1 December 2020 | Volume 7 | Article 614054

Edited by:

Kangfeng Jiang,

Yunnan Agricultural University, China

Reviewed by:

Ganzhen Deng,

Huazhong Agricultural

University, China

Yaohong Zhu,

China Agricultural University, China

*Correspondence:

Zuoting Yan

yanzuoting@caas.cn

Shengyi Wang

wangshengyi@caas.cn

Specialty section:

This article was submitted to

Animal Reproduction -

Theriogenology,

a section of the journal

Frontiers in Veterinary Science

Received: 05 October 2020

Accepted: 18 November 2020

Published: 23 December 2020

Citation:

Oladejo AO, Li Y, Wu X, Imam BH,

Shen W, Ding XZ, Wang S and Yan Z

(2020) MicroRNAome: Potential and

Veritable Immunomolecular

Therapeutic and Diagnostic Baseline

for Lingering Bovine Endometritis.

Front. Vet. Sci. 7:614054.

doi: 10.3389/fvets.2020.614054

MicroRNAome: Potential and
Veritable Immunomolecular
Therapeutic and Diagnostic Baseline
for Lingering Bovine Endometritis

Ayodele Olaolu Oladejo 1,2, Yajuan Li 1, Xiaohu Wu 1, Bereket Habte Imam 1,

Wenxiang Shen 1, Xue Zhi Ding 1, Shengyi Wang 1* and Zuoting Yan 1*

1 Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and

Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China, 2Department of Animal Health

Technology, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria

The bovine endometrium is a natural pathogen invasion barrier of the uterine tissues’

endometrial epithelial cells that can resist foreign pathogen invasion by controlling

the inflammatory immune response. Some pathogens suppress the innate immune

system of the endometrium, leading to prolonged systemic inflammatory response

through the blood circulation or cellular degradation resulting in bovine endometritis

by bacterial endotoxins. The microRNA (miRNA) typically involves gene expression in

multicellular organisms in post-transcription regulation by affecting both the stability

and the translation of messenger RNA. Accumulated evidence suggests that miRNAs

are important regulators of genes in several cellular processes. They are a class of

endogenous non-coding RNAs, which play pivotal roles in the inflammatory response

of reproductive diseases. Studies confirmed that miRNAs play a key regulatory role in

various inflammatory diseases by mediating the molecular mechanism of inflammatory

cytokines via signal pathways. It implicates some miRNAs in the occurrence of bovine

endometritis, resorting to regulating the activities of some inflammatory cytokines,

chemokine, differentially expressed genes, and protein through modulating of specific

cellular signal pathways functions. This review dwells on improving the knowledge

of the role of miRNAs involvement in inflammatory response as to early diagnosis,

control, and prevention of bovine endometritis and consequently enlighten on the

molecular improvement of the genes coded by various differentially expressed miRNA

through the need to adopt recent genetic technologies and the development of new

pharmaceutical preparations.
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CHALLENGES POSED BY POSTPARTUM
BOVINE ENDOMETRITIS

The world has been battling reduced reproductive performance
in dairy cattle caused by uterine disorders. Endometritis is a
widely known reproductive disorder in dairy cattle that usually
leads to reduced milk production and fertility and a squalled
reproductive life wastage (1). Retained fetal membranes is
an important phenomenon in the pathogenesis of subclinical
endometritis in postpartum dairy cows (2, 3). Recently, Germeyer
et al. (4) recorded insufficient endometrial growth marked
by reduced endometrial cell proliferation that could lead to
reproductive failure. Researchers have documented that bacteria
are associated with the uterine disease, using virulence factors
that cause tissue damage and cause endometrial inflammation.
The ability of various bacteria to inflict persistent inflammatory
responses and probable cellular activity changes in bovine
endometrium differs based on time of invasion and population
of the microbes (5–11). The ability of the organism to
fight pathogenic microbes or the durability of the species
depends on resistance and tolerance (12–14). The postpartum
uterine disease is a polymicrobial disease, and the microbial
population in the uterus fluctuates during the postpartum era,
with cycles of bacterial infection, elimination, and re-infection
(15). The bacteria that most commonly grow in animals
with uterine disease are Escherichia coli, Trueperella pyogenes,
Fusobacterium necrophorum, Prevotella, and Bacteroides (16, 17).
Gram-positive bacteria have been isolated from the uterine
lumen of postpartum cow, which posed a significant influence
on the occurrence of inflammation as indicated by Ricci
et al. (18). Gram-positive bacteria (Staphylococcus species)
are the most prevalent pathogen isolated from the uterine
lumen in cows and the predominant pathogenic flora in
the early to late days of the postpartum period. Triacylated
lipoprotein (TAL) or lipothieioc acid (LTA), which were the
endotoxins found in the cell walls of Gram-positive bacteria,
performs an important role in disease symptom development
(19–21). Other Gram-positive bacteria include Streptococcus
species (18), Bacillus spp., and Corynebacterium pyogenes (7,
11). The clinical uterine disease appears only when bacterial
growth exceeds the competence of the immune system (9,
22). Exceeding the immuno-competence of the uterine tract
is mediated by the cellular reaction and associated changes
in key inflammatory molecular mediators, genes, and protein
postpartum and reaffirms that sustained inflammation is a
key feature of endometritis in dairy cow. Recently, there has
been an attempt to identify the molecular signatures associated
with subclinical or clinical endometritis in cattle (23). The
level of inflammatory cytokines and transcriptome profile of
changes in bovine endometrium is important in understanding
the effect of endometritis on uterine gene expression and
changes in dairy cows. Endometrial cell miRNAs control the
development of inflammatory cytokines that contribute closely
to regulating gene expression by either degrading the mRNA
or inhibiting the translation of proteins and are involved
in various biological processes and believed to be diagnostic

markers for preeclampsia and multiple types of cancer (24–
26). The miRNome profile and associated molecular signal
pathways are dysregulated, which disturb the homeostasis of
the uterine environment and uterine receptivity, resulting in
endometritis. Several types of research have given insight into
the role of miRNAs in inflammatory cytokine production and
differentially expressed genes and proteins by mediating the
function of cellular signal pathways (27–33). In this review,
we shall enumerate several works done on some individual
miRNAs implicated in endometritis molecular characterization
and regulation, how to improve the understanding of the role
of miRNA involvement in inflammatory response as to early
diagnosis, control, and prevention of bovine endometritis, and
consequently enlighten on the molecular improvement of the
genes coded by various differentially expressed miRNA through
the adoption of recent genetic technologies and development of
new pharmaceutical preparations.

MOLECULAR EXPRESSION OF RNA IN
ENDOMETRIAL CELLS

RNA is composed of single-stranded nucleic acids of the
four nucleotides A, C, G, and U bound by an alternating
residue of phosphate and ribose sugar. It is the first medium
in translating DNA information into proteins essential for a
cell’s functioning. Such RNAs also play a direct role in the
metabolism of cells (25, 34). It forms RNA, copying into a
single-stranded nucleic acid the base sequence of a portion
of double-stranded DNA, called the gene, in transcription.
Besides that, the messenger RNA (mRNA) molecules’ coding
region will translate into proteins; other cell RNA elements are
involved in various processes including transcriptional and post-
transcription regulation of genetic code, thermal and ligand
detection, translation control, and RNA turnover (34, 35).
They have shown that some RNA molecules embrace complex
protein molecules and act as biological catalysts. It bases most
RNA analysis in normal and infectious endometrial cells on
RNA coding protein (mRNA and its transcript), with a lack
of ribosomal RNA (rRNA) information, transfer RNA (tRNA).
rRNA is in the cell cytoplasm where ribosomes are found and
directs the transformation of mRNA into proteins. tRNA is in
the cellular cytoplasm and is involved in the synthesis of proteins
(34, 35). Transfer RNA usually transports amino acids to the
ribosome corresponding to the three-nucleotide codons of rRNA
and joins amino acids, forming polypeptides and proteins (25).
The messenger RNA (mRNA) and its transcripts are related to
their function in the characterization of molecular endometrial
cells. Besides mRNA, tRNA, and rRNA, RNAs are divided into
coding (cRNA) and non-coding RNA (ncRNA) (36). There are
two types of ncRNAs, housekeeping ncRNAs (tRNA and rRNA)
and regulatory ncRNAs, which are further classified according to
their size. Long ncRNAs (lncRNAs) have at least 200 nucleotides,
while small ncRNAs have <200 nucleotides (37–41). Among the
regulatory ncRNAs aremicroRNAs (miRNAs), small interference
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RNAs (siRNAs), piwi-associated RNAs (piRNAs), long non-
coding RNAs (lncRNAs), (40) circular RNAs (circRNAs), and
tRNAs derived from small RNAs (tsRNAs) (42–44), and the
most studied molecules are miRNAs, lncRNAs, and circRNAs,
with 60% reported that to be regulated by miRNAs (25, 45).
The messenger RNA (mRNA) transcribes the genetic code
from DNA into a form that can be read and used to make
proteins. The messenger RNA (mRNA) reportedly contained
genetic information from the nucleus via the cell’s cytoplasm.
The relative mRNA expression of the inflammatory cytokine
gene has also formed the basis for evaluating the effect of
endometritis on the adaptive immune system of postpartum
dairy cow (46, 47). Cytokine gene analysis indicated, however,
that a similar inflammatory process was occurring in cows
with persistent endometritis and those developing endometritis
between the first and second month postpartum. Previous
investigators (48, 49) reported an increased expression of a
variety cytokine genes such as IL-1a, IL-1b, IL-6, IL-8, and CSF-
1, pro-inflammatory cytokine genes, and a decreased expression
of IL-1RA and IL-10, regulatory genes, in uterine cytobrush
and endometrial cells from cows diagnosed with endometritis
during the early postpartum period (46, 50). Furthermore, cows
with spontaneously resolved endometritis as well as cows that
remained free of uterine disease during the first 2 months
postpartum displayed a significant down-regulation in the
expression of both pro-inflammatory and regulatory cytokine
genes (51). There was a decrease in TNFα and IL-1 at week
1 in endometritis cows compared to healthy cows. These two
main pro-inflammatory cytokines stimulate the expression of IL-
8 and adhesion molecules on vascular endothelial cells, leading
to neutrophil and monocyte chemoattraction, and activate
neutrophils and monocytes, promoting increased phagocytosis
and bacterial killing (49). IL-6 is an important pro-inflammatory
cytokine which functions in several aspects of inflammation
such as induction of fever, increase in vascular permeability,
and induction of acute-phase proteins by the liver. The lowered
expression of pro-inflammatory cytokine genes in the peri-
partum period in cows that developed endometritis could be due
to an intrinsic defect in endometrial cell function (52). Therefore,
concurrent regulation and molecular study of these cytokine
genes of bovine endometrium based on their production time
and reactivity in parturient physiological event in dairy cows may
form a basis for the development of preventive therapeutic agent.

MOLECULAR CHARACTERISTICS OF
miRNA OF THE ENDOMETRIUM IN
DIFFERENT PHYSIOLOGICAL
CONDITIONS

microRNAs (miRNAs) are non-coding RNA with 20–24
nucleotides that function in post-transcription regulation of
gene expression in complex organisms, affecting both the
stability and the translation of mRNAs (53–55) (Figure 1).
The differential coercive capacity of the miRNAs observed
in this study may be because of the difference in target
gene molecular architecture 30-UTR, which subsequently affects

miRNA–mRNA interaction (56). Besides the rule governing
miRNA–target mRNA interactions, a conserved seed match
composed of miRNA bases 2–9 is a good interaction predictor
(57–59), and perfect base-pair matching may not signify a
communication between miRNA and the target gene (56)
and the G:U base pairs that are at the target sites (57).
The number and the arrangement of miRNA recognition
sites may also affect the degree and the specificity of the
miRNA-mediated gene (55). GO and KEGG pathway review
of differentially expressed miRNAs and target genes predicted
the likely role of differentially expressed miRNAs in bovine
endometrial cell inflammatory response (58). Several studies
have stated that miRNAs are important gene regulators in
several cellular processes, including inflammation (59, 60).
Altered miRNA expression and unnecessary target repression
can have various implications, as it may involve these genes
in different molecular mechanisms and biochemical properties.
Target genes assigned to different functional classes provide
crucial input into the uterine functions that are critically
impaired by subclinical endometritis, depending on the signal
pathways identified (61, 62). Researchers have shown various
regulated biological functions where animal miRNAs have a
central role in the development of certain diseases and diverse
biological properties. Van Rooij and Kauppinen (63) stated that
many miRNAs are in pre-clinical and clinical trials as new
pharmacological therapeutics for cancer and viral and different
inflammatory diseases.

Several researchers have recently documented improvements
in the endometrial transcriptome (mRNA) and miRNome
profiles of bovine endometritis (54, 64). A recent study showed
strong alterations in the endometrial transcriptome (mRNA) and
miRNome profiles of cows affected by subclinical or clinical
endometritis, which had a major effect on uterine homeostasis
and receptivity (27, 65, 66). In the literature review, we
find that the specific function of miRNAs in understanding
the mechanisms underlying the interactions between innate
immune/inflammatory reactions and endometrial physiology
and the possible therapeutic function of certain inflammatory
agents remain an enigma. Ibrahim et al. (67) argued that
lipopolysaccharides (LPS) induced the aberrant expression of
miRNAs and their targets, which are involved in the control
of uterine homeostasis, leading to endometrial dysfunction.
Other researchers (27, 68) have investigated and reported
endometrial transcriptome and miRNome changes in the profile
and associated molecular pathways caused by subclinical or
clinical endometritis. The transcriptome profile alterations were
observed in subclinical or clinical endometritis in animals by
microarray and qRT-PCR analyses in endometrial cells with
subclinical or clinical endometritis equivalent doses of LPS
in vitro. They found that transcriptomic profiling showed an
altered expression level of 203 genes in clinical endometritis
(CE) relative to healthy endometrium (HE) species. There are
92 genes, including PTHLH, INHBA, DAPL1, and SERPINA1,
which were significantly highly regulated and 111 genes which
had significantly poorly regulated expression levels, including
MAOB, CXCR4, HSD11B, and BOLA, as recorded in clinical
endometritis. The expression patterns of only 28 genes in
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FIGURE 1 | Schematic diagram showing the four different pathways for the biosynthesis of microRNA.

subclinical endometritis have been substantially altered, of
which 26 genes including PTHLH, INHBA, DAPL1, MAOB,
CXCR4, and TGIF1 were identified in both subclinical and
clinical endometritis. Subclinical endometritis was reported to
induce the aberrant expression of miRNAs and deregulation
of their respective molecular networks and pathways. This
dysregulation of the corresponding target gene networks
and canonical and biological pathways suggests the possible
regulatory role of uterine miRNAs in the production and
progression of bovine subclinical endometritis (27, 62, 67, 68).
The expression of miRNAs in endometrial cytobrush samples
from healthy cows and cows with subclinical endometritis
was performed. A miRNA expression review revealed the
dysregulation of 35miRNAs, includingmiR-608, miR-526b∗, and
miR-1265 in clinical endometritis animals, and 102 miRNAs,
including let-7 families in subclinical endometritis in dairy
cows. There are other miRNAs, including let-7e, miR-92b, miR-
337-3p, let-7f, and miR-14, found in both HE and CE in
the postpartum cow. Further analysis of selected differentially
expressed genes and miRNAs in the endometrial stroma
and epithelial cells challenged in vitro with LPS stimulation
showed six candidate miRNAs to be down-regulated both
in HE and CE animals (miR-1265, miR-1204, miR-1203,
and miR-196b).

Palma-Vera and Einspanier (69) stated that MiR-106a
manifestation is regulated by interferon tau and predicted
the position of interferon-responsive factor genomic binding
sites that can regulate the transcription of genes encoding in
the endometrial response to embryonic development, so this
explains the essential nature of miRNA in bovine fertility. This
study unraveled the alteration of the endometrial transcriptome
and miRNome profile in cows affected by subclinical or
clinical endometritis. There are 23 overexpression-conveyed
miRNAs in subclinical endometritis, potentially target genes
that make up a gene network that mediates the production
of inflammatory cytokines, notably NF-kB, showing that
the regulation of this transcription factor is important in
constraining inflammatory responses in postpartum cow uterine
lumen. Extended inflammatory response disrupted fundamental
endometrial cellular processes influencing uterine receptivity,
folliculogenesis, oocyte maturation, and ovulation, eventually
contributing to decreased fertility and the need to allocate
unknown miRNA transcripts to work. The genomic position
of six differentially expressed miRNAs (miR-25, miR-194, miR-
423-3p, miR-98, miR-339-5p, and miR-215) overlapped with
different transcripts, and several studies have shown that intronic
miRNAs are both host-expressed genes (70–73) and produced
from a common transcript or that intronic miRNAs and their
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host genes may support commonly expressed genes (74). Di
Pietro et al. (75) also reported an upregulation of miR-27a-
3p and miR-124-3p in endometrium and serum during CE
and found no association between miR-27a-3p and IGF1 in
the endometrium. The receiver operating characteristic curve
analysis showed that an endometrial and serum miRNA study
could discriminate against women with chronic endometritis.
miR-27a-3p and miR-124-3p may be non-invasive CE markers
used for the evaluation of endometrial efficiency in in vitro
fertilization. miR-126, widely expressed in human endothelial
cells and vascular tissues, regulates an important step in
vasculogenesis (76, 77). miR-423-3p has IKBKB, JUN, INSR,
MAPK14, and ID3 mRNA recognition sites in 3-UTR. miR-
196 controls four central gene recognition sites in 30-UTR
of IKBKB (JUN, INSR, MAPK14, and NOS2 genes), while
miR-24-3p has a stronger post-transcriptional effect on bovine
subclinical endometritis. The over-expressed miRNAs were
highly associated with the Ingenuity Pathway Analysis canonical
pathway storage compared to the randomly chosen genes in
the list of reference genes (78). MiR-29a, expressed only by
follicular cells, was reported to be involved in gene regulation
during the early stages of corpus luteum development (79).
Similarly, certain miRNAs, such as let-7f and miR-125b, are
involved in regulating bovine cyclic reproductive activity (80).
Soleilhavoup et al. (81) stated that miR-34c has the potential of
a non-destructive and measurable biomarker to evaluate cattle’s
reproductive capacity.

miR-223 Role in the Upregulation of
Inflammatory Stimulations
NOD-like receptor NLRP3 plays a vital role in a variety of
inflammatory diseases, including type 2 diabetes, atherosclerosis,
and inflammatory bowel diseases, and the production of
immune responses, triggered by a number of endogenous
and exogenous agonists; LPS serves as the starting signal for
subsequent activation processes and hastens tissue damage (82–
85). Increased NF-kB p65 phosphorylation levels have shown
an association with increased miR-223 both in endometritis
and in bovine endometrial epithelial cells induced by LPS;
however, blockage of NF-kB significantly de-regulated miR-223
expression (86). Moreover, miR-223 overexpression suppressed
the canonical NF-κB pathway of bovine endometrial epithelial
cells as reported by Zhou et al. (87). Further reports have it
that miR-223 attenuated the production of pro-inflammatory
cytokines, which is induced by the activation of the canonical NF-
κB pathway and intracellular miR-223 levels promoted through
the activation of the NF-κB pathway, which leads to inhibited
NF-κB activity with impaired inflammatory processes at a certain
level. As a space–time dependent of NF-kB, Mir-223 expression
collectively serves to restrict the level of activation of NLRP3
and to protect inflammatory reactions. This pharmacological
stabilization of miR-223 upregulation can be a new therapeutic
approach of subclinical endometritis and other inflammatory
diseases in cows (86–88).

miR-488 Mediates the Negative Regulation
of the Inflammatory Pathway
miR-488 negatively regulates LPS-stimulated endometritis
through inhibition of reactive oxygen species (ROS) production
and the AKT/NF-kB signal pathway in bovine endometrium.
MiR-488 expression decreased on a dose-dependent basis
during endometrial inflammation induced by LPS, which
suggests a close relationship with the immune response triggered
by LPS (89). The pro-inflammatory cytokines’ inhibitory
expression was adversely associated with the expression of
the miR-488 and showed the suppression of the expression
of Rac1, and an inhibitory AKT/NF-kB signal mediated LPS
activation of endometritis. It also diminished the accumulation
of intracellular ROS to prevent the inflammatory reactions of
bovine epithelial endometrial cells (BEECs) mediated by LPS
(20, 39, 54, 55, 58, 61). The inflammatory response nature of
LPS-stimulated BEECs triggers the intracellular accumulation of
ROS and modulation of the signaling pathway AKT/NF-kB by
miR-488 directly targeting Rac1’s negative phase. The miR-488
control of Rac1/AKT/NF-κB signaling inflammatory pathways
in other inflammatory diseases, including endometritis, needs
further exploration (90, 91).

miR-148a as a Suppressor of Inflammatory
Indicators
We recognize the significant component of miRNAs in the
production of reproductive systems in cattle in previous studies
(92), miR-148a, which belongs to the miR-148-152 family, a
deeply conservative mammalian miRNA. It was documented
to be critical for regulating tumor growth, inflammation, and
immunity (93, 94). The analysis of data on miRNA sequencing
showed that miR-148a distinguished between healthy cows and
endometritis (23, 27). Other researchers found that miR-148a
expression alteration in bovine mammary epithelial cells with
E. coli and miR-148a was specific to E. coli infection (95, 96).
Indeed miR-148a may inhibit DSS-induced colitis in mice.
Oddly, the previous study also found that miR-148a expression
was reduced in LPS-stimulated BEECs and further indicated
that miR-148a may have a significant position in endometritis
pathogenesis. Intensive work needs to be carried out in evaluating
the prognostic and diagnostic role in physiopathogenesis of
endometritis in dairy cattle (93). In essence, the accepted role
of various receptors and ligands will be required for evaluation
of research reports based on the expression of microRNA
implicated during bovine endometritis to understand the
molecular physiology and pathogenesis, leading to the provision
of novel prevention, control, and treatment of endometritis by
the adoption of microRNA-based immuno-molecular diagnosis
and therapy.

The Let-7 Family miRNAs as Molecular
Negative Regulators of Inflammatory
Cytokines
The role of the Let-7 family miRNA molecular and cellular
signaling pathway in relation to bovine endometrium function
because of bacterial inflammation needs further research. In the
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inflammatory process, however, miR-let-7c plays an important
role. Zhao et al. (97) stated the regulatory mechanism underlying
the let-7c in the pathogenesis of endometritis. This miRNA’s
over-expression reduced the LPS-induced uterine inflammation
that reduced the exposure of pro-inflammatory cytokines by
inhibiting the activation of the NF-kB signal pathways. Following
LPS-induced injury, miR-let-7c was involved in tissue repair.
Jiang et al. (98) found that let-7c functioned to reduce the
release of pro-inflammatory cytokines as a negative regulator
of inflammatory reactions after LPS-induced inflammatory
responses. Hence, the let-7c family may serve as an anti-
inflammatory mimic product in the treatment and control of
bovine endometritis (97, 98).

miR-643 Inhibits
Lipopolysaccharide-Induced Endometritis
Progression
Significantly, an earlier study showed that 23 miRNAs were
expressed abnormally in endometritis in which miR-643
expression decreased most but not miR-215 (61). The miR-
643 expression in LPS-treated HEECs decreased, implying that
the down-regulation of miR-643 may lead to endometritis
progression. NF-κB signal activation may cause the expression
and release of inflammatory cytokines, including TNF-5-007,
IL-1β, and IL-6, resulting in inflammatory injury (99). Some
studies have documented various miR-643 targets, including the
X-linked apoptosis protein inhibitor and the zinc finger E-box
binding of the homeobox transcription factor 1 (100, 101). Zhao
et al. (102) argued that, collectively, by targeting the TRAF6
gene, miR-643-attenuated LPS-induced inflammatory response
may show a pathway for endometritis immunotherapy treatment.

miRNA-185 Regulates the VEGFA Signaling
Pathway
Retention of fetal membranes (RFM) of cows is an important
reproductive disorder that usually results in endometritis in
postpartum cows (33). Vascular endothelial growth factor
(VEGF) A, reportedly regulated by miRNA-185, may induce the
release of arachidonic acid through the signaling pathway that
influences RFM (10, 33). With miRNA-185 incriminated by the
activation of the VEGFA signaling pathway, the expression levels
of most of the investigated genes (VEGFA, PLC, PRK, RAF,
MEK,MAPK, and PLA) are reduced particularly by the abnormal
expression of P-p44/42 MAPK, which influenced the release of
fetal placenta after calving (103). The overexpression of miRNA-
185 inhibited the VEGFA signaling pathway, which plays a role
in retaining the fetal membrane during postpartum that may lead
to endometritis.

Uterine Exosome microRNA Features in
Endometritis
Exosomes are cup-shaped bilayer phenosomes of the membrane,
forming multi-vesicular bodies (MVBs) (104) with a size
between 30 and 150 nm via endocytosis (105). Part of those
exosomal-containing MVBs are the degrading and lysosome-
degraded MVBs and part of those MVBs forms exotic MVBs

which merge into the extracellular matrix by the cytoplasmic
membrane (Figure 2). These released exosomes (106) are
placental, epithelial, dendritic, mast, and T-cells. It can also
release exosomes in body fluids, such as serum, urine, amniotic,
semen, milk, saliva, and cavity fluid (107). Accumulated evidence
suggests the in vivo status of many physiological changes or
diseases (108–110) in the bio-fluid expression of miRNAs,
showing that they can be used as diagnostic markers for humans
and infectious diseases, including endometritis (105, 111–113).
It may release the exosomes into the uterine cavity via the
endometrial epithelium to the embryo or adjacent endometrium,
which is an important intercellular communication medium,
through the transmission of signals, miRNAs and mRNA.
Material transfer affects the receptivity, embryonic development,
and implantation of endometrial products (114–116). Recent
studies have suggested an improvement in the cleavage rate
and formation of blastocyst in cloned embryos by adding
exosomes isolated from the conditioned medium of somatic
cell nuclear transmission embryos (117). The first report also
shows that exosomes derived from bovine oviducts can improve
the embryo quality (118–123) and enhance the developmental
capacity of somatic cells, showing the crucial role that exogenous
exosomes play in embryo development (93, 100). The main
molecules of exosome miRNA regulation are mainly in receptor
cells, which have a gene-silencing role (124, 125). miRNAs
represent about 70% of the cellular total miRNAs in exosomes
(126, 127). Bovine uterus exosomes affected the development
of embryos under endometrial conditions. The identification
of this miRNAs was carried out by means of a deep sequence
that assessed their pattern of expression in the exosomes from
the cavity fluid of healthy cows and endometriotic cows. Three
of the most controlled miRNAs and six of the most expressed
miRNA applicants were selected as early detection markers for
endometritis detection.

RELATIONSHIPS BETWEEN miRNAs AND
ENDOMETRIUM TOLL-LIKE RECEPTORS
AND ANTIMICROBIAL PEPTIDES

The Toll receptor-like signaling pathway activates key molecules
for driving infectious agents to react with immune cells and
attracting them to the site of infection (128–130). Antimicrobial
peptides (131, 132) are the initial protection against microbes
based on innate immune systems, including Toll-like receptors.
Pathogen-associatedmolecular structures are recognized by Toll-
like receptors (TLRs), and 10 members of the gene’s family
are typically expressed (133–135). Bacterial lipids such as LTA
stimulate TLR1, TLR2, and TLR6 activation, while nuclear
acids, mostly from viruses, adopted TLR3, TLR7, TLR8, and
TLR9. TLR4 recognizes gram-negative bacteria such as E. coli
LPS (Figure 3). The bacterial flagellin TLR5 binds and the
bacterial DNA TLR9 recognizes (Figure 4A) (134). Cows, mare,
ewes, and sows registered gene expressions of TLR1; TLR1
transcripts were detected in the endometrium under earlier
reports (136, 137). In clinical endometritis, a substantial up-
regulation of TLR 2, indicating its role in infection compared
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FIGURE 2 | Infected bovine endometrial epithelium cell releasing uterine exosome which contains miRNA.

to the estrous process, was observed. The expression of TLR2
in cystic endometrial hyperplasia was documented in canine
uterus (138). The TLR2 stimulation by diacylated and triacylated
bacterial lipopeptides majorly from Gram-positive bacteria,
which stimulate the expression of IL-6 and IL-8 (20), records the
development of bovine endometrial cells. Endometrial mRNA
upregulation may be induced by the increased expression in
endometrial, stromal, and infiltrating leukocytes (139). TLR2
is known to occur throughout endometritis. TLR 2, occurring
on the cell surface, attracts bacteria lipopeptide, glycolipid, and
peptidoglycan ligand. T. pyogenes is a general cause of clinical
endometritis in dairy cow (15, 140, 141). During endometritis,
TLR6 transcripts increased dramatically and TLR2 constitutes a
heterodimer, a link to the ligands to stimulate an inflammatory
reaction (142). In bovine endometrial epithelial and stromal
cells, TLR6 stimulation by diacylated bacterial lipopeptides
upregulates IL-6 and IL-8 (20). Endometritis is regulated by
membrane-bound TLRs such as TLR 2, 6, and 10. By contrast, the
most commonly down-regulated or non-modulated intracellular
TLRs are TLR 3, 7, and 8. The inflammatory endometrium
status has been established as being more associated with the
membrane-bound upregulation of TLRs (TLR 2, 4, 6, and
10). LTA has no affinity for TLR4 but activates TLR2. TLR4
and TLR2 are both cell surface receptors. TLR4 is unique
among the TLRs because it recruits both MyD88/Mal and
TRIF/TRAM adaptor proteins; TLR2, on the other hand, recruits

just MyD88/Mal pathways. The TLR2/TLR6 complex is activated
by LTA and diacylated lipoproteins, but not by triacylated
lipoproteins (Figure 4B). Besides cytokines, the principal effector
of mucosal defense in pathogens, antimicrobial peptides (AMPs)
were found to be involved in the physiological role of the body
and had been recognized as part of the innate immune system
(143, 144). β-Defensin (DEFB) is a family of AMPs that can
permeate bacterial membranes, including DEFB1, DEFB4A, and
DEFB5, linguistic AMP, and tracheal AMP (145), which is central
to the AMP family. β-Defensins are cationic, small peptides that
are formed by three-stranded β-blades on six disulphide-linked
cysteines, containing 26–42 amino acids (146). TLR-mediated
signaling or the release of inflammatory cytokines (145–147)
triggers AMPs in response to infection or injury. Endometrial β-
defensin transcripts occur in cows, and the production of AMPs
such as TAP and LAP has been stimulated by the treatment
of LPS endometrial epithelial cells (139, 147, 148). They have
shown endometrial inflammation resolution to be important
for endometrial regeneration or regenerative mechanisms by
reducing inflammatory and immune-related cell populations,
expression of inflammatory mediators and gene expressions, and
enzyme proteolytic activity (39, 64, 149).

MicroRNAs were a recently described class of promoters
involved in multi-layer enhancement of TLR signaling pathways,
including TLR expression modulation, TLR-related adaptor
enzymes, signaling molecules, and transcription factors activated
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FIGURE 3 | Different Toll-like receptors activating specific cellular signal pathways expressed by different bacteria ligands. The cell receptor activation by bacterial

pathogen-associated molecular patterns with cellular interconnectivity of adapters, sensor proteins to influence inflammatory response.

by TLR and inflammatory cytokines. Scientific investigations
have shown that, in order to control the pathways of TLR
signaling and adaptive immune responses, miRNAs play a
significant role and act as immunostimulatory agents for diverse
cellular processes. Strikingly, a number of miRNAs control

several molecules that are active in the TLR signaling pathways
which are composed of signaling proteins, regulating molecules,
transcription factors, cytokines, and TLRs (150–154). Within
the miRNAs, TLR4 expression can be controlled by the let-7
miRNA family, including let-7e and let-7i. The downregulation
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of TLR4 expression in mouse peritoneal macrophages resulted
in increased expression and downregulation of let-7e by miRNA
mimics and inhibitors, respectively, leading to overexpression
of TLR4 (155). In human biliary epithelial cells, macrophages,
and epithelial cells, the Let-7 family controls TLR4 expression
(156), possibly due to the variations in the TLR-induced
miRNA expression profiles of various cell types. The myeloid-
specific miR-223 controlled both TLR4 and TLR3 expression
in granulocytes (157). A study showed that TLR4 can also
be downregulated by miR-146a, resulting in a macrophage
inflammatory response (158). Furthermore, MiR-511 may serve
as a presumed positive TLR4 regulator, whereas TLR4 expression
appears to suppress monocytes and dendritic cells under similar
conditions. (159). In addition, TLR3 targeted expression in
rat macrophages and enhanced arthritis by inducing pristane;
miR-26a negatively controlled the TLR3 signaling pathway
(160). Another receptor regulated by miRNAs is TLR2, whose
expression is adversely and positively regulated by miR-146a
and miR-105, respectively (154, 161). miR-19a/b upregulates
TLR2 expression in fibroblast-like synoviocytes of rheumatoid
arthritis patients (86, 162). In addition to decreasing TLR2
protein expression, miR19a/b overexpression by miRNA mimics
also greatly inhibits the behaviors of TLR2-triggered cytokines

and kinases (162). Also, miR-143 can impede the activation
of TLR2, which contributes to the regulation of invasion
and migration of primordial human colorectal carcinoma cells
(163). By specifically targeting several proteins, including TLR4,
MyD88, IRAK1, and TRAF6 (164), miR-146b will modulate the
TLR4 signaling pathway. The MyD88 expression may also be
controlled by miR-200a, miR-200b, and miR-200c and may alter
the efficiency of the TLR4 signaling pathway, thereby affecting
the inherent defenses of the host against pathogenic organisms
(165). MiR-21 also inhibits MyD88 and IRAK1 expression,
contributing to the upregulation during RNA virus infection of
the JNK/c-Jun signaling system (166). Therefore, the synergism
between miRNAs and TLRs of bovine endometrium needs
further exploration during postpartum in dairy cows, particularly
their function and molecular pathways in the pathogenesis of
subclinical endometritis.

CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

The vast molecular analysis of bovine endometritis has a lot
of reports on the utilization of LPS, a ligand of Gram-negative

FIGURE 4 | (Continued)
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FIGURE 4 | miRNA expression on cellular connectivity and activities with different Toll-like receptor regulation and molecular function of the cellular signaling pathways

(A). Toll-like receptor intracellular relationship with various microorganism ligands and activated or functional signal pathway with inflammatory cytokine stimulation (B).

bacteria, (16, 17, 167–171), with a dearth of information on
the use of Gram-positive bacteria ligands, such as in the case
of LTA- or TAL-induced endometritis, knowing fully that most
of the aberration to postpartum endometrial immune response
could be because of opportunistic bacteria, majority of which
are Gram-positive bacteria (19–21). Further investigation on
the role of gram-positive bacteria and their ligand needs to be
thorough while providing a lasting breakthrough in endometrial
infection, particularly in the adoption of miRNA molecular and
cellular evaluations. The new progress of immunotherapy is
beneficial to prevent the indiscriminate use of antimicrobials
in humans and animals through the molecular analysis of
miRNA inhibitors or agonists in the drug development system
to control and treat bovine endometritis. Endometrial cell
miRNAs regulate inflammatory cytokine production, either
contributing to mRNA degradation or inhibiting protein
translation, and are involved in different biological processes
and signal pathways to control gene expression (10, 48, 61,
74, 79). In this review, some miRNAs have been reported
to be either upregulated or down-regulated through specific
Toll-like receptors, leading to regulation of cellular signaling
pathways assigned to gene modulation by degrading mRNAs
in bovine endometritis (67, 68). The overexpression of some
miRNAs as reported could lead to a decreased or increased
level of pro-inflammatory cytokines and an increase or decrease

in the expression of anti-inflammatory cytokines, suppressing
or elevating the aberrant inflammatory responses that could
lead to curbing or progression of bovine endometritis. The
dysregulated or down-regulated expression of some miRNAs
could likewise lead to an increased or decreased level of pro-
inflammatory cytokines and a decreased or increased anti-
inflammatory cytokine level, which could lead to progression
or alleviation of endometrium inflammatory responses (172).
In another vein, miRNAs implicated or incriminated in
endometritis molecular pathophysiology would lead to the
potential activation or deactivation of assigned Toll-like receptors
through the functioning cellular signal pathways, creating
medium immunopharmacological preparations or molecular
modulation in the form of miRNA mimics or inhibitors that
could lead to the production of an anti-inflammatory molecular
therapeutic agent. The overexpression or knockdown of some
sets of miRNAs symbolized their essentiality in the onset of
postpartum bovine endometritis. Therefore, their molecular
characterization would pave the way for their adoption in
the development of miRNA utilization diagnostic protocol or
potential biomarkers in early bovine endometritis detection,
which may ultimately result to the molecular development of
rapid test diagnostic kits.

As genetic expressive regulators, miRNAs act by inhibiting or
degrading the translation of mRNAs by partially or completely
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combining them with the 3′-UTRs of the target mRNAs (54).
They participated by acting on the posttranscriptional target
gene in the inflammatory response (52, 61, 173). As reported,
some genes are differentially expressed through the activities of
TLRs and signaling pathways of bovine endometritis (27, 30, 59,
61, 67, 68, 100). The rapid improvement in molecular and cell
spatial approaches over the course of this century has led to the
discovery of several gene expressions in normal and diseased
ecosystems in the endometrium. The manipulatory attenuation
effect on endogenous bovine endometrium miRNA level by the
administration of inhibitor or mimic substrate could change the
expression of miRNA target genes and proteins. This could give
a clue of the possibility for genetic selection of endometritis-
resistant breed of bovine through the production of genetically
edited cows with molecular and cellular resistance to bovine
endometritis. Furthermore, the understanding of how exosome
miRNAs influence the mechanism of bovine endometritis and
somatic embryogenesis through their respective target genes
has been reported to have importance on the involution of
endometritis in dairy cow postpartum period and preceded
a scientific finding that needs to evaluate the differentially
expressed exosome microRNA, inflammatory response, and
various genes involved in their cellular signal pathways, therefore
the need to incorporate the sera or exosome miRNAomes
in the course of abnegating bovine endometrial inflammation
(174–176).

In conclusion, we suggest the need for further multi-
disciplinary research work in which there is a comprehensive
integration of bovine endometrial cell peculiarity in the
miRNAomics during the inflammatory disease response.
Differentially expressed diagnostic value must be broadly

investigated to enlighten the fundamental molecular mechanisms
of miRNAs involving the bovine endometrium, possible future
development of new immunotherapeutic methods, and clinical
trial on genes implicated in the inflammatory process through
newer genetic editing techniques, such as CRIP/Cas9, which
could be tested for drug and diagnostic kits development.
Ultimately, a multi-disciplinary consideration of miRNA
molecular pharmacological products with low toxicological
or/and broad spectrum, wide safety margin, and possibly clinical
trial will provide a baseline platform for the approval of the
product aiming at resolving bovine endometritis.
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