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To prevent economic losses due to post-weaning diarrhea (PWD) in industrial pig

production, zinc (Zn) feed additives have been widely used, especially since awareness

has risen that the regular application of antibiotics promotes buildup of antimicrobial

resistance in both commensal and pathogenic bacteria. In a previous study on 179

Escherichia coli collected from piglets sacrificed at the end of a Zn feeding trial, including

isolates obtained from animals of a high-zinc fed group (HZG) and a corresponding

control group (CG), we found that the isolate collection exhibited three different levels of

tolerance toward zinc, i.e., the minimal inhibitory concentration (MIC) detected was 128,

followed by 256 and 512µg/ml ZnCl2. We further provided evidence that enhanced zinc

tolerance in porcine intestinal E. coli populations is clearly linked to excessive zinc feeding.

Here we provide insights about the genomic make-up and phylogenetic background of

these 179 E. coli genomes. Bayesian analysis of the population structure (BAPS) revealed

a lack of association between the actual zinc tolerance level and a particular phylogenetic

E. coli cluster or even branch for both, isolates belonging to the HZG and CG. In addition,

detection rates for genes and operons associated with virulence (VAG) and bacteriocins

(BAG) were lower in isolates originating from the HZG (41 vs. 65% and 22 vs. 35%,

p < 0.001 and p = 0.002, resp.). Strikingly, E. coli harboring genes defining distinct

pathotypes associated with intestinal disease, i.e., enterotoxigenic, enteropathogenic,

and Shiga toxin-producing E. coli (ETEC, EPEC, and STEC) constituted 1% of the isolates

belonging to the HZG but 14% of those from the CG. Notably, these pathotypes were

positively associated with enhanced zinc tolerance (512µg/ml ZnCl2 MIC, p < 0.001).

Taken together, zinc excess seems to influence carriage rates of VAGs and BAGs in
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porcine intestinal E. coli populations, and high-zinc feeding is negatively correlated with

enteral pathotype occurrences, which might explain earlier observations concerning the

relative increase of Enterobacterales considering the overall intestinal microbiota of piglets

during zinc feeding trials while PWD rates have decreased.

Keywords: E. coli, zinc, pig, virulence associated genes, bacteriocins, gut

INTRODUCTION

The gastrointestinal microbiota of pigs is a large, multifaceted
and complex microbial community which has been estimated
to comprise of 1010-1011 bacteria per gram of gut content (1).
Different stress factors are capable of altering the healthy gut
microbiome of a piglet, e.g., weaning from the sow, which
is among the most stressful events in a piglet’s life (2): The
prompt change in diet, social and environmental life conditions
affects the gut microbiota in composition and structure and
prevalently enhances vulnerability for onset of enteral post-
weaning infections (3). Considering feed additives, different
products are marketed to assist in boosting the pigs’ immune
system, regulate gut microbiota, and reduce negative impacts
of weaning and other environmental challenges, including
pharmacological levels of zinc and copper (4). However, a
recent review concluded that it is not possible to recommend
a specific additive that will have positive effects in all diets,
since the effects strongly depend on the health status of the
animals (4). Therefore, maintaining a physiological/healthy
gut microbiota composition and equilibrium during and after
weaning is important to prevent attachment, proliferation and
spread of pathogenic microorganisms, especially enterotoxigenic
Escherichia coli, which is a frequent cause of post-weaning
diarrhea (PWD) in piglets (5).

E. coli causing intestinal diseases usually express virulence
factors which induce and/or support an inflammation of the
gut often leading to diarrhea, while the number of intestinal
commensals decreases (6). Complex mechanisms of interaction
between commensal and pathogenic bacteria have evolved within
the gut, including competition for nutrients, shielding from the
activated enteral immune response and induction of competitor-
eliminating bacteriocin production (7). These bacteriocins are
polypeptide toxins comprising colicins and microcins which
exhibit a broad range of different cytotoxic mechanisms (8–
10). Both colicins and microcins are capable of killing a
narrow spectrum of competing Enterobacterales, including other
E. coli lineages (9). Porcine pathogenic E. coli have been
shown to produce predominantly colicins, especially colicin BM
and Ib (11).

To prevent or mend PWD which is most commonly caused
by enterotoxigenic E. coli (12), high-level dietary zinc oxide
supplementation is used in the pig production sector in different
parts of the world (5, 13, 14). Although the particular effects
of zinc on the enteral microbiota are not fully understood yet,
piglets fed with high-zinc supplemented diets clearly showed
changes with respect to the overall composition and abundance
of distinct gut-associated bacteria (15–17), which are probably

associated with bacteriocin-producing bacteria as well. We
therefore hypothesized that the occurrence of genes encoding
bacteriocins might have an impact on the composition of the
E. coli population in zinc-fed piglets.

The manifestation of clinical symptoms and pathology of
E. coli-induced enteral diseases is closely associated with the
occurrence of certain virulence associated genes (VAGs) (18,
19). Mainly based on the presence of distinct VAGs but also
additional, especially phenotypical characteristics, diarrheagenic
E. coli of importance for the pig production sector are
often classified as enterotoxigenic E. coli (ETEC). Furthermore,
enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli
(STEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli
(EIEC) and diffusely adherent E. coli (DAEC) have been reported
as a probable cause of diarrhea in pigs as well (5, 19–21).

While we have recently shown that high-zinc supplemented
diets foster accumulation of E. coli associated with increased zinc-
tolerance in weaned piglets (22), the effects of that particular feed
additive on the occurrence of VAGs and bacteriocin associated
genes (BAGs) among the intestinal E. coli population of these
piglets were not investigated so far. In the current study, we
analyzed the phylogenetic relationship and make up of a broad
collection of E. coli obtained from a former piglet zinc-feeding
trial together with strains isolated from pigs suffering from
clinical disease in order to investigate the presence of a putative
correlation between feeding group and the zinc tolerance level of
the isolates with the occurrence of VAGs and/or BAGs.

MATERIALS AND METHODS

Animal Trial and Bacterial Isolates
The representative set of E. coli isolates characterized here was
selected based on a previous feeding trial (23) carried out in
accordance with the principles of the Basel Declaration following
the institutional and national guidelines for the care and use
of animals. The protocol was approved by the local state office
of occupational health and technical safety “Landesamt für
Gesundheit und Soziales, Berlin” (LaGeSo Reg. Nr. 0296/13) as
described before (23).

Briefly, 32 landrace piglets of regular commercial origin
weaned at day 25 ± 1 were separated into two groups for 4
weeks: the first group of piglets, designated here as the high-
zinc group (HZG) was fed with a diet supplemented with a
comparatively high amount of zinc oxide (2,103mg zinc/kg
diet), while the second group served as the control group. This
control group (CG) received a common piglet diet containing a
concentration of zinc oxide (72mg zinc/kg diet) sufficient tomeet
the nutritional requirements to avoid trace metal malnutrition
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(23). The trial started with 32 piglets, which were sacrificed
mid-trial (38 ± 2 days of age, n = 16, 8 per group) and at
the trial’s end (52 ± 2 days of age, n = 16, 8 per group).
No symptoms of disease were observed within the two feeding
groups during the entire trial. Here we focus on E. coli obtained
from three different sampling sites (feces, digesta and mucosa
obtained from the colon ascendens) of those piglets sacrificed
at the end (52 ± 2 days of age; n = 16) of the feeding trial. In
total, 179 E. coli were collected as a stratified random sample
(HZG = 99, CG = 80), with an average number of 11 E. coli
isolates investigated per piglet (all three sampling sites). These
isolates were previously studied with regard to their respective
zinc tolerance levels and susceptibility patterns for antibiotics and
biocides (22).

To compare, we chose six additional porcine strains isolated
from clinically ill piglets [diarrhea (n= 4), edema disease (n= 2)]
available in the strain collection of the Institute of Microbiology
and Epizootics (IMT) as representatives for non-commensal
isolates and a high-zinc tolerant isolate from a clinical human
case (RKI6122) (24).

Whole Genome Sequencing, Phylogenetic
Analysis, and Screening for Virulence
Associated- (VAGs) and Bacteriocin
Associated Genes (BAGs)
E. coliwere sequenced using IlluminaMiSeq R© 300 bp paired-end
whole genome sequencing (WGS) with an obtained coverage of
>90x. The Illumina short reads were hybrid assembled using
unicycler v4.4 (25). Adapter-trimmed reads were used for de novo
assembly into contiguous sequences (contigs) and subsequently
into scaffolds using SPAdes v3.11. All draft genomes were
annotated using Prokka v1.14.5 (26). Illumina raw read data
sequenced for this study is available at NCBI under Bioproject
ID PRJNA552271. The determination of the maximum common
genome (MCG) (27) alignment was done comprising those genes
present in all 179 genomes. To obtain this, we clustered the
coding sequences based on the parameters sequence similarity
(min. 90%) and coverage (min. 90%) and defined the genes that
were present in each genome, fulfilling the threshold parameters
as MCG. This resulted in 2,804 orthologous genes that we
used for the comparisons. We extracted the allelic variants of
these genes from all genomes by a BLAST-based approach,
aligned them individually for each gene and concatenated them,
which result in an alignment of 2.762 Mbp for these 179
strains. This alignment was used to generate a phylogenetic tree
with RAxML v 8.2.10 (28) using a General Time Reversible
model and gamma correction for among site rate variation.
Bayesian analysis of population structure (BAPS) (29) was
applied to identify genetically distinct linages based on the
constructed phylogeny.

An in-house BLAST-pipeline with the general gene identity
threshold of 95 and 90% minimum coverage was used to identify
25 VAGs selected because of their (putative) importance
in intestinal pathogenicity (Table 1). Further genotype
characterization included the determination of multilocus
sequence type (ST) and sequence type complex (STC) using

MLST 2.0 (35), and serotype prediction using SerotypeFinder
2.0 (36).

The screening procedure for bacteriocin associated genes
included colicin types depending on either a Tol-dependent
translocation system (group A) such as colicin A, E1–E4, E6–E9,
K, N, S4, U, Y or a Ton system (group B) including colicin B, Ia,
Ib, E5, E7, 5, 10, G, H, Js, D, andM (37–41). An in-house BLAST-
pipeline was set-up for each of the corresponding genes with the
general identity threshold of 95 and 90%minimum gene coverage
(Supplementary Figure 1) (9, 41).

Each gene encoding a bacteriocin (colicin, microcin) was
further investigated with respect to its predicted amino acid
(aa) sequence coverage and identity using corresponding
reference/prototype aa sequences of the particular E. coli protein
from NCBI (Supplementary Figure 1). An in silico comparative
analysis was performed on these aa sequences using Geneious
Prime (version 2019.0.04).

A detailed overview of the characteristics of all animal trial
isolates and the strains included for comparative purposes are
provided in Supplementary Tables 1, 2.

Statistical Analysis
Data were analyzed using SPSS software version 25.0 (IBM,
New York, NY, USA). P-values < 0.05 were considered
statistically significant.

A mixed-model regression approach was used to test whether
the feeding group and E. coli ZnCl2 MICs had an effect on
the total number of different VAGs, with the individual pig as
random factor. Since the dependent variable showed a Poisson
distribution, Poisson regression and logarithmic link function
were applied, with feeding group and ZnCl2 MICs (< vs. > =

512) included as factors into the model. Interactions were tested
and removed when the p-value was >0.05. Variance components
analysis was used to determine the proportion of variance
that accounted for differences between individual animals. In a
second mixed logistic regression model, the individual effects of
the above mentioned influence factors on the presence of major
diagnostic markers was tested. Interactions were also tested as
described above.

RESULTS

Population Structure Analysis of Porcine E.

coli of Different Feeding Groups and Zinc
Tolerance Levels
Considering the overall phylogenetic diversity, we identified
2,804 orthologous genes representing the “maximum common
genome” (MCG) of 186 genomic sequences representing isolates
from both feeding groups (HZG = 99, CG = 80), six isolates
previously collected from diagnostic samples of severely ill piglets
(diarrhea, edema disease) and one further isolate of human
origin [RKI6122 (24)] which exhibited a MIC value of 1,024
µg/ml ZnCl2.

The phylogeny was constructed from the MCG alignments
of 186 genomes (Figure 1) and further investigated using
Bayesian Analysis of Population Structure (BAPS). Seven distinct
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TABLE 1 | Occurrence and distribution of VAGs associated with different types of intestinal pathogenic E. coli of relevance for pigs.

ZnCl2 MIC (µg/ml) Feeding group

128 256 512 HZG CG

n % n % n % n % n %

Gene Protein Associated pathotype 7 100 136 100 36 100 99 100 80 100

aidA adhesin involved in diffuse adherence DAEC/ETEC 3 43 15 11 3 8 4 4 17 21

aah AT adhesin heptosyltransferase DAEC/ETEC 3 43 15 11 3 8 4 4 17 21

bfpA type IV bundle-forming pili EPEC

eae Intimin STEC/EPEC 12 9 1 1 11 14

faeG F4 fimbrial adhesin ETEC

fasA F6 fimbrial adhesin ETEC

fanC F5 fimbrial adhesin ETEC

fedA F18 fimbrial adhesin ETEC

f41 F41 fimbrial adhesin ETEC

iha novel non-hemagglutinin adhesin STEC 12 9 19 53 20 20 11 14

pic serine protease autotransporter EAEC 18 13 4 11 9 9 13 16

paa porcine AE associated protein STEC/EPEC 10 7 1 1 9 11

saa STEC autoagglutinating adhesin STEC

cdt cytolethal distending toxin EPEC 2 6 2 2

astA/ east1 enterohemolysin EAEC 31 23 4 11 9 9 26 33

ehxA enterohemolysin EPEC 10 7 1 1 9 11

efa1/ lifA lymphostatin EPEC 10 7 1 1 9 11

eltAB heat-labile (LT) enterotoxin subunit A and B ETEC 2 29 8 22 6 6 4 5

estA heat-stable enterotoxin STa ETEC 4 3 7 19 7 7 4 5

estB heat-stable enterotoxin STb ETEC 12 9 2 6 3 3 11 14

set1AB Shigella enterotoxin 1, ShET1 EAEC 2 2 1 3 2 2 1 1

stx1 Shiga toxin 1 (subunit A and B) STEC 2 2 2 3

stx2 Shiga toxin 2 (subunit A and B) STEC 14 10 14 18

All 179 porcine E. coli from both feeding group (HZG and CG) were screened with respect to the presence or absence of 13 different adhesion and 11 different toxin encoding genes

associated with intestinal E. coli pathotypes. References for the major diagnostic markers are provided by Ref. (18–20, 30–34).

n, number of isolates; HZG, high zinc fed group; CG, control group; VAG, virulence associated genes; DAEC, diffuse adherent E. coli, ETEC, enterotoxigenic E. coli; STEC, Shiga

toxin-producing E. coli; EPEC, enteropathogenic E. coli, EAEC, enteroaggregative E. coli.

phylogenetic groups were identified, namely the BAPS cluster
I-VII (Figure 1). BAPS cluster I comprised 54 isolates of both
feeding groups (HZG: n = 35; CG: n = 19) distributed among
eight STs, half of which containing strains with a ZnCl2 MIC
of 256µg/ml [ST21 (n = 10), ST56 (n = 4), ST58 (n = 8), and
ST1308 (n = 2)]. ST101 (n = 4) and ST4577 (n = 6) isolates
showed a ZnCl2 MIC of 512µg/ml, including the only two CG-
isolates with this MIC. ST154 (n = 14) isolates were associated
with ZnCl2 MICs of either 256 (n= 12) or 512µg/ml (n= 2), and
ST40 (n = 6) isolates showed ZnCl2 MICs of 128µg/ml (n= 1)
and 256µg/ml (n= 5).

Cluster II (n = 6; HZG: n = 2; CG: n = 4) contained five
isolates associated with the 256µg/ml ZnCl2 MIC including
ST567 (n= 1), ST681 (n= 2), and ST1040 (n= 2). A third ST681
isolate of cluster II showed a 512µg/ml ZnCl2 MIC.

With 84 isolates, BAPS cluster III formed the largest
phylogenic group and consisted exclusively of isolates belonging
to STC10 (HZG: n = 51; CG: n = 32; pathogenic isolate: n = 1).
In more detail, ST10 (n = 45) isolates with distinct ZnCl2 MICs
[128µg/ml (n= 3), 256 mg/ml (n= 23), and 512µg/ml (n= 19)
ZnCl2], and ST34 (n= 38) isolates with either 128µg/ml (n= 3)

or 256µg/ml (n = 35) ZnCl2 MICs, respectively, belonged to
cluster III. In addition, one STEC isolate (IMT4632) isolated
from a pig suffering from diarrhea (ST10; 256µg/ml ZnCl2 MIC)
clustered here, too.

Because of “long-branch attraction” artifacts (42), 12 CG
isolates belonging to two different phylogenetic lineages (ST218,
n = 8 and ST993, n = 4) with a ZnCl2 MIC value of 256µg/ml
were assigned to BAPS cluster IV. Also, two of the strains
included for comparative reasons, i.e., one porcine ETEC-isolate
(IMT203; ST100; 256µg/ml ZnCl2 MIC) and the high-zinc
tolerant human isolate (RKI6122; ST617; 1,024µg/ml ZnCl2
MIC), clustered in BAPS IV, too.

Cluster V included 13 STC23-isolates (ST23, n = 8 [HZG: n
= 3; CG: n = 5] and ST88, n = 5 [all CG]) associated with the
256µg/ml ZnCl2 MIC. Six isolates of ST3057 (HZG: n = 3, CG:
n= 3) were assigned to BAPS cluster VI (256µg/ml ZnCl2 MIC,
n= 4; 512 ZnCl2 MIC, n= 2).

Last, BAPS cluster VII consisted of ST1607 (n = 3) isolates
associated with 256µg/ml ZnCl2 MIC and ST2946 (n = 2)
isolates associated with 512µg/ml ZnCl2 MIC, all originating
from animals of the HZG. Four of the pathogenic E. coli isolates
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FIGURE 1 | Maximum Common Genome Alignment of 179 commensal E. coli isolates, six porcine pathogenic E. coli and a high-zinc tolerant reference. Information

about feeding group, ZnCl2 MIC values, BAPS (Bayesian analysis of the population structure (BAPS) clusters, sequence types, serotypes, presence (dark green) and

absence (light green) of genes encoding adhesins, toxins, colicins, and microcins are presented from left to right.

included in our analysis (IMT19–ST42, STEC; IMT20–ST114,
STEC; IMT6655–ST4247, ETEC; and IMT8071–ST302, EPEC;
all associated with 256µg/ml ZnCl2 MIC) clustered here, too
(Supplementary Table 3).

In other words, the BAPS cluster analysis mirrored the
predicted serotypes and STs, irrespective of the individual isolate’s
zinc tolerance level, clearly rejecting the idea of a directional
association between a certain E. coli phylogenetic lineage and a
particular zinc tolerance level or feeding group.

Distribution of VAGs in E. coli Genomes of
the HZG and the CG
To assess the virulence potential of the isolate collection, we
screened all genomes for the presence of genes that have
frequently been reported as being associated with porcine enteral

diseases (Supplementary Table 1). As a result, 18 out of 24
targeted genes were identified in at least one of the screened
genomes (Table 1), with the number of VAGs per isolate ranging
from 0 VAGs (n = 86 isolates) to a maximum of 7 VAGs (n =

3). Interestingly, 93% of the isolates originating from the HZG
but 72% of the CG isolates harbored none, one, or two VAG(s)
only. Isolates harboring more than two VAGs constituted 7% of
the HZG and 28% of the CG isolates, indicating an influence of
high-zinc diets on the intestinal microbiota with respect to VAG-
carrying E. coli. Regression analysis revealed that the feeding
group (p < 0.001) as well as the respective ZnCl2 MIC (p <

0.001) were associated with the number of VAGs present in
an isolate. For instance, isolates belonging to the CG had 4.4
times higher odds for harboring higher numbers of VAGs (95%
confidence interval: 2.0–9.8) compared to E. coli from the HZG.

Frontiers in Veterinary Science | www.frontiersin.org 5 December 2020 | Volume 7 | Article 614513

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Johanns et al. Zinc Shapes Intestinal E. coli Populations

However, the odds ratio to carry higher numbers of VAGs was
4.2 (95% confidence interval 2.4–7.4) for E. coli associated with
the 512µg/ml ZnCl2 MIC when compared to the lower MICs.

Since most of the VAGs frequently associated with enteral
diseases in piglets are carried by highly mobile genetic
elements (43–46), divergent distribution of VAGs even beyond
ST/serotype boundaries might occur. While there was an obvious
association between ST/serotypes and VAG pattern, we also
noted variation, even between isolates of the same serotype
obtained from one piglet (e.g., pig 1, ST21O26:H11 or pig 4, ST10
O182:H19) (Supplementary Table 1, Figure 1).

Since all isolates were originally obtained from healthy piglets
kept under the defined conditions of an animal experiment, the
overall low detection rates for enterotoxin and adhesion encoding
genes, especially for ETEC-associated fimbriae (0%), was not
surprising. However, all genes encoding the 11 toxins of interest
here were identified among the 179 E. coli (Table 1). Again,
isolates belonging to the CG harboredmore toxin encoding genes
than those obtained from the HZG (56 vs. 18%).

Eight of the 179 isolates were positive for the genes encoding
the heat-labile enterotoxin eltAB (HZG, n = 6; CG, n = 2).
Twenty-five isolates carried either the heat-stable enterotoxin
gene estA (HZG, n = 7; CG, n = 4) or estB (HZG, n = 3; CG,
n= 11) (Table 1).

Shiga toxin encoding genes were completely absent in E. coli
representing the HZG, while 16 isolates of the CG were positive
(20%, n = 16: stx1 n = 2 and stx2e n = 14). Genes encoding
other toxins including astA encoding the enteroaggregative E.
coli heat-stable enterotoxin EAST-1 (HZG, n = 9; CG, n =

26), enterohemolysin-encoding ehxA (HZG, n = 1; CG n =

9) or efa-1/lifA (HZG, n = 1; CG, n = 9) were detected
in genomes from isolates of both feeding groups (Table 1,
Supplementary Table 1).

Considering additional factors involved in the onset of
PWD in piglets (47), 21 isolates (HZG, n = 4; CG, n =

17) harbored genes encoding an adhesion-involved-in-diffuse-
adherence (AIDA-I) autotransporter and the AIDA-associated
heptosyltransferase (aah) required to fully activate AIDA-I
(Table 1). While 14% (n = 11) of the CG-isolates were found
positive for the eae- encoded intimin associated with attaching
and effacing, only one (1%) HZG isolate (RKI4865, ST21) was
eae-positive, too.

According to the VAG profile, the six clinical porcine isolates
included comprised two enterotoxigenic E. coli (ETEC—eltAB-
and/or estB-positive), two Shiga toxin-producing E. coli (STEC—
stx1− and stx2-positive), one ETEC/STEC-hybrid (estA, estB, stx1,
stx2), and one enteropathogenic E. coli (aEPEC—eae-positive),
respectively (Supplementary Table 2).

Occurrence of Pathotypes Among E. coli

Isolates With Different Zinc Tolerance
Levels
The E. coli isolates obtained from piglets fed with a high-zinc
supplemented diet showed generally a lower VAG frequency.
Based on this finding, we further investigated whether a specific
pathotype is associated with a particular zinc tolerance level

considering the previously determined ZnCl2 MIC values of 128,
256, or 512µg/ml (22, 24) or not.

Our results showed that major diagnostic markers defining
an isolate as ETEC were associated with all three different zinc
tolerance levels and both feeding groups (Table 2). Moreover,
ETEC showed a broad heterogeneity with respect to their
phylogenetic backgrounds. However, genes encoding for ETEC-
associated fimbriae F4, F5, F6, F18, and F41 were not identified.
VAG combinations (eae, paa) that define porcine atypical EPEC
(aEPEC) expressed the 256µg/ml ZnCl2 MIC only, and were
predominately detected among CG isolates (one exception)
(Table 2). Isolates showing STEC characteristics were associated
with the 256µg/ml ZnCl2 MIC and the CG only.

The mixed logistic regression model showed that both, the
ZnCl2 MIC and the feeding group were associated with the
occurrence of major diagnostic markers defining an enteral
pathotype in the present E. coli collection. The probability
for harboring major diagnostic markers defining an enteral
pathotype was lower in the HZG than in the CG [p= 0.002, odds
ratio 47.6 (95%-confidence interval: 4.3–500)]. However, the
ZnCl2 MIC 512 resulted in 58.6-fold higher odds for the presence
of a major diagnostic marker (p < 0.001; 95% confidence
interval 7.4–467.7). Nevertheless, 77% of the total variation was
associated with variation between individual animals, indicating
a greater similarity of E. coli obtained from one animal than
between those of different pigs.

Distribution of BAGs in E. coli Genomes of
the HZG and the CG
Amongst others, to kill or at least suppress the growth of non-
host specific bacteria is one of the most important functions of
the host-microbiota, a challenge which is fostered, beyond others,
by production of plasmid-borne colicins and/or microcins (37,
51). To answer the question about whether genes required for
colicin or microcin production were diversely distributed in E.
coli obtained from different feeding groups, we screened the
genomes under investigation accordingly. A detailed overview
of information on aa sequence with the respective reference
sequences used here for BAG identification is provided in
Supplementary Figure 1.

Overall, 28 of 80 (35%) E. coli obtained from piglets belonging
to the CG and 22 of 99 (22%) from the HZG harbored at least one
BAG (Table 3). Themost frequently detected BAGs were operons
encoding for colicin B (cba+cbi: HZG n= 1; CG n= 18; cbi only,
HZG n = 4; CG n = 5) and colicin M (HZG n = 5, CG n = 21)
which are commonly co-located on a Col plasmid [(52), 35]. In
addition, the plasmid carrying the colicin Ia encoding operon had
a lower occurrence among the HZG isolates (HZG n= 6 vs. CG n
= 16). Contrarily, the plasmid carrying the operon encoding for
microcin V, one of the few actively secreted microcins (53), was
more frequently associated with HZG isolates (HZG n = 15 vs.
CG n= 3).

Other types were only rarely detected, including colicin S4
(HZG n = 4; CG n = 1), colicin Ib (HZG, n = 4; CG, n = 2),
colicin E5 (HZG, n= 0; CG, n= 2), colicin E7 (HZG, n= 3; CG,
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TABLE 2 | Distribution of VAG profiles including major diagnostic markers and additional determinants associated with intestinal E. coli pathotypes.

ZnCl2 MIC Feeding group

Serotype ST µg/ml HZG CG Pathotype Major diagnostic marker Additional virulence determinants identified REF

O92:H2 ST34 128 0 2 ETEC eltAB (19, 34, 48)

O26:H11 ST21 256 0 7 aEPEC eae iha, paa, ehxA, efa1/lifA (49)

O26:H11 ST21 256 1 2 aEPEC eae iha, paa, pic, ehxA, efa1/lifA (49)

O177:H45 ST1040 256 0 2 STEC eae, stx1 iha, aidA, aah (50)

O84:H11 ST10 256 0 1 ETEC estB (19, 34, 48)

O157:H43 ST218 256 0 5 ETEC estB aidA, aah (19, 34, 48)

O157:H43 ST218 256 0 1 ETEC estB aidA, aah, pic (19, 34, 48)

Ounknown:H43 ST218 256 0 1 ETEC estB aidA, aah (19, 34, 48)

O100:H30 ST993 256 0 4 ETEC/STEC estA, stx2e (19, 34, 48)

O98:H5 ST3057 256 0 3 ETEC estB aidA, aah (19, 34, 48)

O98:H5 ST3057 256 1 0 ETEC estB aidA, aah, pic (19, 34, 48)

O8:H8 ST4577 512 4 2 ETEC eltAB (19, 34, 48)

O8:H9 ST23 256 0 5 STEC stx2e (50)

O8:H9 ST88 256 0 3 STEC stx2e (50)

O8:H10 ST88 256 0 1 STEC stx2e (50)

O104:H10 ST88 256 0 1 STEC stx2e (50)

O182:H19 ST10 512 7 0 ETEC estA iha (19, 34, 48)

O98:H5 ST3057 512 2 0 ETEC estB aidA, aah (19, 34, 48)

O109:H48 ST2946 512 1 0 ETEC eltAB cdt, pic (19, 34, 48)

O109:H48 ST2946 512 1 0 ETEC eltAB cdt (19, 34, 48)

Screening results for 179 porcine E. coli with respect to the presence of major diagnostic markers defining an intestinal pathotype of importance for pigs. Sequence- and serotypes of

isolates representing two different feeding groups (HZG, CG) and their respective ZnCl2 MICs are shown. References (REF) for themajor diagnostic markers and additional virulence genes

(19, 34, 48–50).

ST, sequence type; HZG, high-zinc fed group; CG, control group; VAG, virulence associated genes; ETEC, enterotoxigenic E. coli; aEPEC atypical enteropathogenic E. coli, STEC, Shiga

toxin-producing E. coli.

n= 2), microcin H47 (HZG, n= 2; CG, n= 1), and microcin J25
(HZG, n= 4; CG, n= 0).

Considering the pathogenic isolates investigated in this study,
IMT203 (ETEC) and IMT8071 (EPEC) harbor genes encoding
colicin B und M (Supplementary Table 2), while IMT19 (STEC)
and the high-zinc tolerant reference strain RKI6122 possessed
genes for colicin Ia.

Occurrence of BAGs Among E. coli Isolates
With Different Zinc Tolerance Levels
As mentioned before, the focus of our analysis was on the three
different ZnCl2 MIC values determined for the E. coli collection
in a previous study (22).

Of the seven 128µg/ml ZnCl2 MIC isolates, two harbored
BAGs. Both belonged to ST34, serotype O92:H2 and were
positive for genes encoding colicin B, V, E5, and E7, while the
remaining E. coliwith 128µg/ml ZnCl2 MIC did not carry any of
the BAGs investigated.

One third of the isolates with MICs of 256µg/ml ZnCl2 (n =

136, 17 STs) carried at least one bacteriocin gene (n = 46, 34%).
In addition, colicin M, colicin S4, colicin Ib and the microcin J25
were found to be exclusively associated with isolates showing the
MIC value of 256µg/ml for ZnCl2 in a wide range of genomic
backgrounds (Figure 1, Table 3). Isolates with a higher level
of zinc tolerance (512µg/ml MIC; n = 36, 7 STs) showed, by

comparison, only rarely colicin encoding genes (n = 3, 8.33%)
(Figure 1, Table 3).

DISCUSSION

Here we showed an analysis of E. coli genomes representing
intestinal isolates collected from piglets fed with either a zinc-
rich or common piglet diet (23) which exhibited three distinct
zinc tolerance levels (22). A combination of different in silico
analyses of theWGS data provided insights into the phylogenetic
structure of these 179 porcine E. coli and their virulence
and bacteriocin associated gene profiles. At present, there is
only limited information available on the genetic diversity and
relatedness of intestinal E. coli from pigs receiving high-zinc
supplemented feed (13, 16, 23, 54).

Our results confirm that a certain phylogenetic background
does not contribute to a particular zinc tolerance level in E. coli,
since the tolerance levels obviously differed even within the
STs of a single BAPS cluster (Figure 1). Despite their clearly
phylogenetic heterogeneity (Figure 1), all six pathogenic porcine
E. coli included for comparative purposes were assigned to the
same “middle class” zinc tolerance level (256µg/ml ZnCl2 MIC).

Serogroups frequently reported as being associated with
diarrhea in pigs are O8, O138, O139, O141, O147, O149, and
O157 (5, 20, 44, 55, 56). Our E. coli collection included
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TABLE 3 | Occurrence and distribution of 31 BAGs among 179 porcine E. coli.

ZnCl2 MIC (µg/ml) Feeding group

128 256 512 HZG CG

n % n % n % n % n %

Gene Protein 7 100 136 100 36 100 99 100 80 100

cba Colicin B 2 29 17 13 1 1 18 23

cbi 2 29 26 19 5 5 23 29

cma Colicin M 26 19 5 5 21 26

cmi 26 19 5 5 21 26

csa Colicin S4 5 4 4 4 1 1

csi 5 4 4 4 1 1

csl 5 4 4 4 1 1

cia Colicin Ia 20 15 2 6 6 6 16 20

iia 20 15 2 6 6 6 16 20

cib Colicin Ib 6 4 4 4 2 3

iib 6 4 4 4 2 3

cea Colicin E1 12 9 1 3 10 10 3 4

imm 12 9 1 3 10 10 3 4

lys 12 9 1 3 10 10 3 4

ceaE Colicin E5 2 29 2 3

imm 2 29 2 3

lys2 2 29 2 3

ceaG Colicin E7 2 29 3 2 3 3 2 3

ceiG 2 29 3 2 3 3 2 3

celG 2 29 3 2 3 3 2 3

cvaA Microcin V 2 29 15 11 1 3 15 15 3 4

cvaB 2 29 15 11 1 3 15 15 3 4

cvaC 2 29 15 11 1 3 15 15 3 4

cvi 2 29 15 11 1 3 15 15 3 4

mcjA Microcin J25 4 3 4 4

mcjB 4 3 4 4

mcjC 4 3 4 4

mcjD 4 3 4 4

mchB Microcin H47 2 1 1 3 2 2 1 1

mchC 2 1 1 3 2 2 1 1

mchI 2 1 1 3 2 2 1 1

BAG screening results for 179 porcine E. coli representing two feeding groups associated with different ZnCl2 MICs are displayed.

ST, sequence type; HZG, high-zinc fed group; CG, control group; BAC, bacteriocin associated genes.

a total of n = 23 isolates belonging to O8 (different
H-types), one O149:H12 and seven O157:H43 isolates
(Supplementary Table 1). Besides its association with porcine
diarrhea, O157 isolates are of clinical importance for human
patients, since Shiga toxin-producing E. coli of this particular
serotype have been reported as a cause of severe foodborne
illnesses (57, 58). Considering the collection investigated here,
strains of this serotype were exclusively found in the CG,
associated with the 256µg/ml ZnCl2 MIC, harboring two to five
VAGs, but all were negative for genes encoding Shiga toxins.

Isolates belonging to the O8 serogroup were detected in
samples from both feeding groups, but more frequently in those
representing the CG (HZG, n = 8; CG, n = 15). Interestingly,

these CG isolates harbored none to two VAGs, including n=9
that are stx2e-positive, while Shiga toxin-encoding genes were
completely absent from isolates of HZG samples.

Despite the high standards of the animal trial performed and
the good health status of the animals during the whole trial period
(23), our strain collection apparently included E. coli belonging to
serotypes frequently associated with disease. In addition, isolates
harboring key pathogenic markers defining pathotypes (Table 2)
were identified as well, but they were less frequent among isolates
representing the HZG, indicating a possible prophylactic effect
of the feed additive. It also underlines the importance of the
husbandry conditions to ensure a healthy gut microbiome (59),
and, in line with this -to minimize the necessity of antibiotic
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consumption affecting the natural composition of the intestinal
microbiota (60).

Furthermore, we identified serotype O26 : H11 belonging
to ST21 (Supplementary Table 1), a strain background
mainly reported for isolates of human and bovine origin
and presumptively associated with EPEC and STEC/EHEC
pathotypes (61–65). Previously, aEPEC strains of ST21-O26:H11
showed a close phylogenetic relationship to STEC/EHEC and the
results of lysogenic conversion experiments using stx-depleted
bacteriophage identified aEPEC (ST21-O26:H11) as progenitors
of typical EHEC (66). Atypical EPEC (ST21-O26:H11) were also
identified in our isolate collection, harboring a combination of
VAGs (eae-positive, stx-negative, bfp-negative) meeting criteria
for possible progenitor of human-pathogenic STEC/EHEC
(67, 68).

While there is generally a strong association between genetic
background and accessory gene content including VAGs and
BAGs in our isolate collection, their occurrence and distribution
were not solely lineage-specific: Some of the VAGs investigated
here, for instance iha, estA and estB were present in different
(Figure 1, Table 1). The EAEC associated enterotoxin EAST-1
(astA) was detected in E. coli from both feeding groups. While
it has been assumed that there is an association between this
toxin and diarrhea in humans and pigs (30, 31, 69), a further
study found higher astA rates in E. coli from healthy pigs
compared to isolates obtained from clinically ill pigs, questioning
the particular role of astA as a virulence factor in porcine E. coli
(32). In addition, the occurrence of one or a few VAGs alone does
not necessarily reflect the pathogenic potential of E. coli, unless
the strain acquires a compatible combination of VAGs able to
cause disease in a specific host species (70).

The logistic regression applied in the present study revealed
a positive association between the presence of E. coli major
diagnostic markers and the 512µg/ml ZnCl2 MIC. However,
whether these E. coli are able to cause enteral disorders in piglets
needs to be further studied. The heat stable enterotoxin I encoded
by estA, which is themost common pathogenicmarker associated
with the 512µg/ml ZnCl2 MIC, has been reported as a cause of
neonatal diarrhea in different animals. This enterotoxin seems to
be associated with ETEC causing PWD as well, but rarely as the
sole enterotoxin (5). However, none of the six porcine pathogenic
E. coli variants (aEPEC, ETEC, STEC; ETEC/STEC) included
in our study for comparative purposes exhibited the 512µg/ml
ZnCl2 MIC (Table 2), possibly suggesting that pathogenic field
strains commonly lack enhanced zinc tolerance.

Following this line of thought, it seems likely that zinc
does not only affect the overall composition of the porcine E.
coli intestinal population favoring phenotypes with enhanced
zinc tolerance (22, 71), but also reduces the abundance of
potentially harmful (field) strains. These effects possibly provide
an explanation for former observations indicating an increase in
relative abundance of intestinal Enterobacterales among piglets
fed with high amounts of zinc (72, 73), while the occurrence of
PWD and detection of pathogenic bacteria seemed to decrease
coincidentally (74).

Our findings might also indicate the presence of a zinc-
tolerant subpopulation of E. coli carrying genetic marker for

the intestinal pathotypes. In the environment of an animal
trial with high-standard hygienic conditions, this subpopulation
might not be able to proliferate well enough to cause disease,
but the presence of this subpopulation indicates the importance
of housing conditions, feed and water hygiene and prophylactic
measures like vaccinations to maintain a healthy animal
population and produce a save food product.

Since fimbriae are key features of pathogenic E. coli in pigs
(20, 30, 75–77), we were not surprised that our collection of
isolates obtained from healthy piglets lacked these particular
genes (Table 1). Notably, a former study investigating 844 E. coli
isolates from PWD-affected pig farms in Europe showed that
the prevalence of genes encoding fimbriae was low even among
PWD-associated ETEC (9% F4 fimbriae; 9% F18 fimbriae) from
Germany (19), possibly indicating that further factors might play
a role in the pathogenesis of E. coli in PWD.

Moreover, previous research has also shown that the
bacteriophage-encoded genes stx1 and stx2 are upregulated by
DNA-damage induced activation of the SOS-response (78, 79),
while zinc excess has been shown to mute the SOS-response
via inhibition of recA (80). In addition, zinc is also known
to inhibit expression of further VAGs (81), including those
promoting adherence to the gut epithelium (i.e., esp genes) (82).
In consequence, pathogenic strains might lose their ability to
harm the host, which has exemplarily been demonstrated for
STEC as well as EPEC before (82).

Since bacteriocins promote the producing bacterial cells while
competing for resources in a distinct ecological niche with
other E. coli strains and closely related bacteria, they probably
play an important role in structuring microbial communities
residing in the gut (83). In addition, activity of particular
bacteriocin-producing E. coli toward competing bacteria, e.g.,
STEC O157:H7, has been reported (84, 85). This led us to
investigate if HZG-E. coli and/or those isolates associated with
the 512µg/ml ZnCl2 MIC harbor either more BAGs or a
certain BAG pattern (Figure 1, Table 3). Yet, similar to the
results for VAGs, BAGs seem to be less common among isolates
representing the HZG and especially less common among the
group of E. coli expressing the 512µg/ml ZnCl2 MIC.

The general structural organization of the colicin encoding
operons includes at least two, usually three genes (i.e., activity
gene, gene encoding the immunity protein and gene encoding
the lysis protein), which are commonly co-located on a large
conjugative plasmid in E. coli (52, 86, 87). Colicins B and M
are among the most common colicins in porcine E. coli (12, 19,
23, 88). While most of the colicins are released by cell death
of the producing cell only, these colicins are among the few
actively secreted bacteriocins (53) and their production might
therefore be less “costly” (89). In our dataset, colicin B and
M were frequently associated with isolates belonging to the
CG, while rarely detected among isolates of the HZG (Table 3).
For most colicins, induction is assumed to be associated with
the DNA-damage induced SOS response (90). However, recent
research indicated the production of biologically significant
amounts of several colicins in the absence of such stress (91).
Furthermore, colicin M was found to be secreted despite the
absence of the SOS box believed to regulate its production
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(88). Consequently, higher detection rates of genes encoding
colicin M might be a result from its less severe “production
consequences” for the individual cell, since cell death is not
a prerequisite for its release. Interestingly, genes encoding
colicin BM were found in BAPS cluster I, II, IV and V
(Figure 1), but all these isolates lack zinc tolerance above the
mid-range 256µg/ml ZnCl2 MIC (Supplementary Table 1). The
complete absence of colicin BM genes in isolates associated
with enhanced zinc tolerance (isolates distributed within BAPS
cluster I, II, III, VI and VII) suggests that co-occurrence of
enhanced zinc tolerance with colicin BM production lacks a
beneficial outcome for intestinal E. coli in piglets fed with high
amounts of zinc. However, more investigation on this subject is
clearly needed.

Contrarily, the operon encoding microcin V was more
associated with isolates from the HZG than the CG, however
it was also rarely associated with isolates with a 512µg/ml
ZnCl2 MIC. The expression of the immunity protein (Cvi)
of this operon depends on the presence of iron [reviewed
in (53)], since the cvi promoter region is associated with a
previously identified binding site for the ferric uptake regulation
protein (Fur) (53, 92). Interestingly, zinc excess was reported
to increase the bacterial demand for iron (93), and microcin
V activation might increase the chances of bacteria to benefit
from iron released by dead competing populations. However,
more research on functional interactions of bacteria under
zinc-induced stress is needed, which left speculation only
considering the interlinkages of microcin V expression and
zinc excess.

CONCLUSION

Our analysis comprising 179 E. coli obtained from piglets
of two different feeding groups using Bayesian analysis of
the genomes showed a population structure (BAPS) which
lacked an association between a particular zinc tolerance
level and a phylogenetic cluster or even branch for both,
isolates belonging to the HZG and CG, suggesting that zinc
tolerance is not a characteristic of a particular phylogenetic
background. In addition, detection rates for genes and operons
associated with virulence (VAG) and bacteriocins (BAG)
were lower in isolates originating from the HZG (41 vs.
65% and 22 vs. 35%, p < 0.001 and p = 0.002, resp.),
indicating an effect of high-zinc supplementation of the piglets’
diet on the occurrences of these genes among intestinal
E. coli populations.

This effect seems to be more even more important
considering E. coli harboring genes defining distinct pathotypes
associated with intestinal disease, i.e., enterotoxigenic,
enteropathogenic and Shiga toxin-producing E. coli (ETEC,
EPEC and STEC), which constituted only 1% of the
isolates belonging to the HZG but 14% of those from
the CG, supporting previous observations that high zinc
supplemented diets for piglets were associated with a decrease
of PWD.
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