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The sea louse (Caligus rogercresseyi) is the most relevant parasite for the farmed

salmon industry in Chile, the second largest producer worldwide. Although spatial

patterns of C. rogercresseyi have been addressed from data obtained from established

monitoring and surveillance programs, studies on its spatial ecology are limited. A wide

geographic distribution of C. rogercresseyi is presumed in Chile; however, how this

species could potentially be distributed in space is unknown. Our study presents an

analysis of the habitat suitability for C. rogercresseyi in the entire area occupied by

marine sites of salmon farms in Chile. Habitat suitability modeling was used to explore

the likelihood of species spatial occurrence based on environmental characteristics. Due

to the expanding salmon industry in southern Chile, we studied C. rogercresseyi habitat

suitability models for present (average of 2005–2010) and two future projections (2050

and 2100) under different climate change scenarios. Models were constructed with

the maxent algorithm using a large database of spatial C. rogercresseyi occurrences

from the Chilean fisheries health authority and included 23 environmental variables

obtained from the Ocean Rasters for Analysis of Climate and Environment (Bio-ORACLE).

Habitat suitability models indicated that water temperature, water salinity, and current

velocity of waters were the most important characteristics limiting C. rogercresseyi

distribution in southern Chile. Habitat suitability models for current climate indicated a

heterogeneous pattern with C. rogercresseyi being present in waters with temperature

range 12.12–7.08◦C (sd = 0.65), salinity range 33.7–25.5 pss (sd = 1.73), and current

water velocity range 0.23–0.01 m−1 (sd= 0.02). Predictions for future projections in year

2050 and year 2100 suggest new clumped dispersion of the environmental conditions

forC. rogercresseyi establishment. Our results suggest complexity and a wide dispersion
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of the biogeographic distribution of the C. rogercresseyi habitat suitability with potential

implications for control strategies and environmental issues for salmon farming in Chile.

Further investigations are required into C. rogercresseyi distribution in southern Chile

considering the possible effect of climate change.

Keywords: sea lice, copepod, ecological modeling, habitat suitability model, maximum entropy, climate change,

aquaculture, salmon farming

INTRODUCTION

The sea louse (Caligus rogercresseyi) is the most relevant parasite
of salmon farming in Chile, the second-largest salmon producer
worldwide. This marine copepod feeds on the mucus, skin, and
blood of parasitized fish, altering the osmotic barrier, reducing
appetite, decreasing food conversion, damaging the carcass, and
as a consequence producing substantial economic losses (1).
The three species of salmonids intensively farmed in Chile:
Atlantic salmon (Salmon salar), rainbow trout (Oncorhynchus
mykiss), and coho salmon (O. kisutch), are all susceptible to
C. rogercresseyi infection (2). The life cycle of this copepod species
includes eight different development stages: two nauplius and
one copepodid, four chalimus, and the adult (3). The first three
stages are planktonic, and the others are parasitic. The cost of the
salmon production unit in Chile increases USD$1.4/kg for the
treatment against C. rogercresseyi (4). In addition, the economic
impact of sea lice globally is estimated at USD$650 million per
year, considering the loss in weight gain and the predisposition
to secondary diseases (5).

A wide geographic distribution of C. rogercresseyi is presumed
according to the reports of salmon farming in southern Chile.
Since the beginning of salmon farming in the 1980s on region
X [Los Lagos], sea lice infestation has been reported with farms
producing rainbow trout (O. mykiss) particularly on the island
of Chiloé (2). With the advance of the salmon industry in
the 1990s toward the region XI [Aysén], sea lice infestations
were also confirmed in farmed Atlantic salmon (S. salar). These
two regions are considered as northern Patagonian fjords, a
complex and heterogeneous topographic and oceanographic
habitat composed of fjords, gulfs, channels, and semi-enclosed
water bodies (6). However, for the decade of 2000s, a parasitosis
prevalence of 53.4% was estimated in salmon farms in both
regions with a decreasing gradient for the farms located further
south (7). Besides, with the health crisis due to Infectious Salmon
Anemia virus (ISAV) (8), some farming companies expanded
their salmon production to more isolated, pristine, and cold
sites in the southernmost part of the country. Recently in 2017,
the presence of C. rogercresseyi was reported for the first time
in region XII [Magallanes], the southernmost sites with salmon
farming in Chile, even though these isolated farms represent
<10% of the industry (5).

Usually, the distribution patterns of C. rogercresseyi have
been approached with an epidemiological focus or considering
the effectiveness of control measures interests (7, 9–15), yet
studies of spatial ecological patterns of this parasite are rare (16).
However, how this species is distributed in space is unknown in

Chile (17). Furthermore, this ambitious question can be partially
answered by addressing C. rogercresseyi presence as a function
of environmental conditions in the area occupied by the salmon
industry. Predicting the spatial distribution of the environmental
conditions relevant to C. rogercresseyi is necessary to know
the potential geographic range where the health and economic
impacts of this parasite to salmon farming in Chile are expected.

According to the ecological niche theory, a species only
thrives within definite ranges of environmental conditions (18,
19). The habitat suitability of a species is the predictions
of presence/absence of the likelihood of occurrence based
on environmental characteristics in a statistical modeling
process (20). However, the concept of suitable habitat models
(HSMs) should be differentiated from ecological niche modeling,
considering that the latter in a function that links the fitness of
the species to their environment (21). Therefore, ecological niche
modeling is a quantitative framework that includes evolutionary
processes, interspecific relationships, migration (movement), and
other biotic and abiotic aspects for individuals (22). The HSMs
framework estimates a qualitative output (usually the presence)
considering the relationship between environmental variables of
biological relevance for the individuals.

This paper presents an analysis of the habitat suitability for
C. rogercresseyi in southern Chile. The ongoing expansion of
the salmon industry in Chile is an important characteristic of
this parasitic dynamic. Although salmon production fell from
700,000 to 500,000 tons due to the ISAV health crisis in 2008, the
industry has shown a growing recovery to 900,000 tons in 2014
(23). A central issue is a transnational and capitalistic salmon
industry supported by the idea of economic growth from the
national state. The foregoing poses health and environmental
challenges for the development of this activity in the future.
For this reason, we studied the predictions for HSMs using a
presence-onlymethod (Maxent) for the present (average of 2005–
2010) and future projections (2050 and 2100) under different
climate change scenarios. The importance of our mapping of
HSMs is to know the spatial heterogeneity that C. rogercresseyi
could exhibit under different scenarios and predict the possible
impacts of this important health issue to the salmon industry.

METHODS

Study Area
The study area covers a latitudinal extension of ∼1,500 km
of coastline waters in southern Chile (41 to 54◦S), across
three geographical regions (region X [Los Lagos], region XI
[Aysén], and region XII [Magallanes]) where salmon production
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FIGURE 1 | The study area consists of three geographical regions in Chile: region X [Los Lagos], region XI [Aysén], and region XII [Magallanes]. The locations of the

Caligus rogercresseyi spatial occurrence used for habitat suitability models are indicated by red dots. Habitat suitability maps for C. rogercresseyi (red areas) in

southern Chile at present and two future projections (2,050 and 2,100) under different climate change scenarios using a maximum entropy modeling (Maxent).

Different representative concentration pathways (RCP 2.6–8.5) represent different greenhouse gases concentrations.
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is established (Figure 1). This area covers 100% of the country’s
salmon farming activity. The average annual water temperature
is 9.1◦C (minimum of 6.6, maximum of 12.3), and the average
annual water salinity is 33.32 pps (minimum of 25.38, maximum
of 34.01).

Caligus rogercresseyi Data
The estimation of HSMs is based on a large database of spatial
occurrences of C. rogercresseyi. We obtained the data from
the monitoring program for C. rogercresseyi [Specific Sanitary
Program for the Surveillance andControl of Caligidosis—SSPSC]
maintained by The Chilean National Fisheries and Aquaculture
Service (Sernapesca) (24). The objective of the SSPSC program
is to monitor C. rogercresseyi abundance in all active salmon
farms throughout time and assess sanitary measures to control
this parasitic infestation. The trained staff at each farm takes a
random sample of 40 fish for the count total of individuals by
parasitic phases of three categories: juveniles phases (includes
chalimus I, II, III, and IV), mobile adults (males and no gravid
females), and gravid female (egg sacs strings) (25). The data
obtained of SSPSC consists of C. rogercresseyi abundance and the
geographic location (decimal latitude and longitude coordinates)
of all farms in operation from January 2012 to December 2018
on region X, XI, and XII in southern Chile. We consider
C. rogercresseyi occurrences in each report of the presence of
ovigerous female in the study area. The rationale behind this is
that the gravid female indicates that the life cycle of the copepods
is complete in a geographical site as a biological occurrence.
Besides, the gravid female phase can be identified with the naked
eye in the field as chains of eggs are visible and it is ∼5mm long
(3). A C. rogercresseyi occurrence database was generated in MS
Excel, including geographic coordinates. Duplicate occurrence
records and absolute zeros of farm abundance during uptime
were removed since it is assumed that the susceptible fish host
is present but there is no evidence of interaction with the
parasite and the design of the SSPSC program is to estimate the
infection (the presumed false absences are very uncertain) (26).
In addition, duplicate occurrences were removed because it is
advisable to avoid multiple records for the same species in the
same grid cell for the modeling process as salmon farms can
report the C. rogercresseyimore than once. A parasite prevalence
was estimated without distinction between old and new farms
infected (number of positive farms by study period/number of
active farms by study period). To determine optimal prevalence
thresholds for inclusion as an occurrence in the modeling
dataset, we created subsets based on the 100, 80, 60, 50, and 20
percentile prevalence distribution. In this case, the original data
included records from 790 active farms for the 100 percentile
(corresponding active farms by prevalence thresholds 80, 60, 50,
and 20 percentile were 632, 474, 395, and 158 farms).

Accessible Location
The HSMs require a geographic location that is accessible
to the species for a certain period (20). Thus, we defined a
boundary area given the dispersal abilities of C. rogercresseyi
based on occurrences in southern Chile. According to the
available knowledge, the planktonic and infective phases can

be dispersed 30 km around (27). Therefore, we imported the
MS Excel occurrence database into a Geographic Information
System (Quantum GIS, version 3.4) to estimate a buffer area.
A layer polygon in shapefile was generated covering an area
around 30 km from each occurrence of the database as an
accessible location for C. rogercresseyi in the area occupied by the
salmon industry.

Environmental Variables
Another important assumption of the HSMs is the identification
of the environmental conditions necessary for the subsistence
of the species. We used 23 environmental variables of the Bio-
ORACLE (ocean rasters for analysis of climate and environment)
marine surface dataset (http://www.bio-oracle.org) provided
in grids with cells equally spaced in latitude and longitude
with a spatial resolution of 5 arcmins (c. 9.2 km) (28). Bio-
ORACLE is a global dataset consisting of geophysical, biotic,
and climate variables for a present (average 2005–2010) and
two future projections (2050 and 2100) based on Representative
Concentration Pathways (RCP). The RCP projections describe
different climate futures scenarios considered possible depending
on the amount of greenhouse gases emitted in the years to
come at the following temperature thresholds: RCP 2.6 (global
temperature rise <1◦C by 2100), RCP 4.5 (>1◦C), RCP 6.0
(>2◦C), and RCP 8.5 (>3◦C). In other words, RCP 8.5 represents
the worst-case climate change scenario (29). The Bio-ORACLE
raster layers were imported into QGIS for clipping the “accessible
location” proposed for the C. rogercresseyi using the shapefile as
a mask.

To reduce the dimensionality of the 23 environmental
variables, we examined with a Principal Component Analysis
(PCA) using the PCA4cd plugin (QGIS, version 3.4). This
analysis summarizes uncorrelated variables giving significant
environmental information for HSMs (20). After reducing the
number of variables by a statistical test, biological criteria were
applied to the C. rogercresseyi life cycle, limiting the number of
variables to conditions of water temperature ◦C, water salinity
pss (practical salinity scale), and currents water velocity m−1

(3, 16, 30–32).

The Modeling
The HSMs analysis is limited to occurrence data (presence)
because the SSPCS program has a sanitary approach to establish
farms that need chemical control for the parasitic infestation.
Therefore, there are no directed efforts to estimate the strict
absence of C. rogercresseyi. We use Maxent (maximum entropy
modeling) as an algorithm that simulates pseudo-absences to
complement the dependent variable (33). In this case, Maxent
works as a Generalized Linear Model with Poisson distribution
where the number of occurrence counts is a function of
environmental variables representing a prediction of indices
as habitat suitability for C. rogercresseyi on the study area
(34). However, like any generalized prediction of environmental
conditions, these models cannot capture ecological interactions,
limiting themselves to an estimate where the species is most
likely to occur. The foregoing should be considered with caution
because these estimates do not represent quantitative estimates
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that suggest a greater or lesser occurrence of the species in the
study area.

To fit HSMs Maxent models, we used specific settings: raw
output (this feature estimates the ratio of the relative suitability
of one pixel vs. another’s pixel within the accessible location),
20% of random test (a quantity of the data is withheld every
time and used for testing), with 100 replicates (amount of k-folds
models to train), bootstrap (training data is selected by sampling
with replacement from the presence points), and deactivating
extrapolate and do clamping options (no projections outside the
limits of the training data). Then, we made a range of models
for the present using different regularization multiplier to avoid
overfitting (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0). The output
directory for these models was the environmental variables of the
present (2005–2010). For these models, we estimated the Akaike
information criterion (AIC) using the toolbox of Niche Analyst
software (Niche A, version 3.0) (35). According to the reference
framework of Multimodel Inference, under similar conditions,
the models with the lowest AIC presents better-estimated values
for a suitable habitat (36). To fit HDM Maxent models for two
future projections (2050 and 2100), we used the same specific
settings applying them to four climate change scenarios (RCP 2.6,
RCP 4.5, RCP 6.0, and RCP 8.5), and AIC values were estimated
for the range of the different regularization multiplier (0.05–
5.0) selecting the AIC smallest model. The modeling process was
developed using Maxent 3.4.1 (33).

To evaluate the models based on each prevalence threshold,
we use the Area Under the Curve (AUC) by summing the
estimates values for the Receiver Operating Characteristic
(ROC). The ROC is a graphical estimate of sensitivity against 1-
specificity for all possible thresholds of the model. The summary
statistic of AUC calculates values between 0 and 1 from ROC,
where values >0.5 suggest that our model is better than random
(37). In this case, the AUC values >0.5 and near 1 are useful
to compare the predictive strength of multiple only presence
data models using the same data (38). We selected as the best
model the prevalence threshold for which models showed the
highest AUC value. To evaluate HSM uncertainty, we detected
areas of strict extrapolation as places where environmental
conditions are non-analogous to those in areas across which
the models were calibrated (39). The mobility-oriented parity
metric (MOP nearest 5% of reference cloud) was used to
identify such extrapolative areas resulting from calibration areas,
compared with conditions under present and future climate
scenarios using “ntbox” R package (40). Then, we excluded
areas with strict extrapolation to represent only potential suitable
areas with higher levels of certainty. After establishing the best
model by AUC close to 1, we used the mean of the 100
replicates to generate a binary map (QGIS version 2.18) using
as threshold the highest value that included 95% of occurrences
(omission error 5%).

RESULTS

The original data included 68,114 records from 790 active farms
during the study period with a 92% parasitic prevalence. A total

of 728 C. rogercresseyi occurrences from salmon farms were
used to select the HSMs (Supplementary Material). Of these
occurrences, 308 were established in Region X [Los Lagos], 409
in Region XI [Aysén], and 11 in Region XII [Magallanes] during
the years 2012–2018. According to PCA analyses, only three
environmental variables are necessary to explore the variability
of the environmental conditions in the study area: mean water
temperature, mean water salinity, and mean current water
velocity. In addition, as low temperatures limit the development
of C. rogercresseyi according to the biological cycle, we added a
temperature minimum to the environmental variables set (this
characteristic present correlation <0.7). The most parsimonious
HSMs based on AIC scores included a regularization multiplier
value of 0.5 in Maxent software (default value is 1). Besides,
Maxent models performed better than random for each time
prediction and showed a good fit (AUC> 0.95). Predicted habitat
suitability for C. rogercresseyi using maximum entropy models
is shown in Figure 1. The Maxent thresholds for climate change
scenarios are shows in Figure 2.

The majority of predicted suitable habitat areas were near
the coastline of the study area, where most salmon farms are
located. However, a heterogeneous pattern is observed with a
greater C. rogercresseyi presence in the northern sites. Therefore,
the suitable habitat for C. rogercresseyi at current climate is
widely distributed in waters with temperature range 12.12–
7.08◦C (sd = 0.65), salinity range 33.7–25.5 pss (sd = 1.73),
and current water velocity range 0.23–0.01 m−1 (sd = 0.02)
across the study area. Besides, in region XII a clumped
area (54◦ S, 71◦ W) is observed with suitable environmental
conditions for C. rogercresseyi. In addition, the suitable habitat
for C. rogercresseyi is limited by water temperature minimum
<5.5◦C across the study area. Future predictions for 2050, under
RCP 2.6 estimate a slight advance of the suitable habitat near
Guamblin Island National Park (44◦ S, 74◦ W) toward the south
in region XI but without uniform distribution toward region XII
(Figure 1). Future predictions for 2050 under RCP 4.5 estimate a
loss of the suitable habitat (44◦ S, 74◦ W) and a slight advance
of new areas in River Island (45◦ S, 74◦ W) toward the south
in region XI but without uniform distribution toward region XII
(Figure 1). In the case of the 2050 predictions under RCP 6.0 and
85, a loss of the RCP 2.6 and RCP 4.5 new areas is perceived
in region XI but with an increase in suitable areas in region
XII on Mornington Island (49◦ S, 75◦ W), in sites not occupied
by salmon farms under current conditions. Future predictions
for 2100 predictions suggest greater coverage areas compared to
models for 2050, mainly in Region XII. Model predictions for
2100 under RCP 26 indicated a focus in Region XI in the north
part of Campana Island (48◦ S, 75◦ W). In addition, under RCP
45 projections the new area extends continuously to Region XII
from Merino Jarpa Island (47◦ S, 74◦ W) to the northern part
of Duke of York Island (50◦ S, 75◦ W) and an isolated area on
Rennell Island (51◦ S, 74◦ W). Future predictions 2100 under
RCP 60 indicated the contraction of the suitable habitat observed
in the RCP45 projections and a new continuous area in region XII
from the Bernardo O‘Higgins national park (50◦ S, 74◦ W) to the
south of the Alacalufes Natural Reserve (52◦ S, 73◦ W). Future
predictions for 2100 under RCP 85 suggest a partial reduction

Frontiers in Veterinary Science | www.frontiersin.org 5 February 2021 | Volume 7 | Article 615039

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Lepe-Lopez et al. Habitat Suitability of Caligus rogercresseyi

FIGURE 2 | Caligus rogercresseyi habitat suitability projections for the area occupied by salmon farms in southern Chile. The behavior for the Maxent threshold

(dashed line) of different Representative Concentration Pathways (RCP 2.6, 4.5, 6.0, and 8.5) in two different projection future scenarios (2,050 and 2,100) compared

to the present scenario 2000–2014 threshold (continuous line). The suitable conditions predicted for future scenarios (threshold) are similar to the present conditions,

but they differ because different feature types allow different possible shapes of response curves.
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of the areas, maintaining favorable conditions in Puerto Natales
(47◦ S, 74◦ W) and new areas appearing to the south between
the Recalada island (53◦ S, 74◦ W) and the Carlos island (54◦

S, 73◦ W) in region XII. The MOP results showed areas of
strict extrapolation as uncertainty predictions when looking at
results for calibration areas agreement among them, mainly in
Region XI (46◦ S, 74◦ W) near Laguna San Rafael National
Park, and in Region XII (52◦ S, 69◦ W) near San Gregorio
Village (Figure 1).

DISCUSSION

We used presence-only maximum entropymodeling to represent
the habitat suitability of C. rogercresseyi in southern Chile at
present and projected for 2050 and 2100. Mapping outputs of
HSMs suggest that habitat suitability almost entirely covers the
area occupied by the salmon industry overpass Los Lagos to
Aysén regions. Besides, future predictions for the years 2050 and
2100 suggest growing suitable habitat contiguous to the Aysén
region with an isolated and delimited new area of favorable
environmental conditions for C. rogercresseyi in the Magallanes
region. We cautiously suggest avoiding farming use of these
newly suitable areas shown in future predictions (Figure 1).
The parasite dynamics would be similar in these new areas to
that observed in northern areas, which would be added to the
costs of maintaining salmon production and control measures
in more remote sites (41). This heterogeneous pattern and
the environmental variables detected involved have potential
implications in C. rogercresseyi biogeography, environmental
issues, and control strategies.

Using the maxent algorithm to project probable future
scenarios based on current data entails uncertainty. Other
statistical methods as generalized linear models or generalized
additive models consider strict species absence reducing
uncertainty (42). A fundamental limitation of presence-only
data using maxent is that some sites in the study area are
sampled more intensively than others (38). For our data, it is
relevant to consider that C. rogercresseyi infection requires a
susceptible host density at existing farms (43, 44). Therefore,
we obtained models that combine the C. rogercresseyi habitat
suitability distribution with the distribution of salmon farms.
On the other hand, MOP results identify high uncertainty areas
with strict extrapolation risks as a key approach in this regard,
suggesting prediction variation depending on the environmental
data used to create models.

Temperature is the most important environmental
characteristic to predict the C. rogercresseyi habitat suitability,
with less cold waters within the study area favoring its
occurrence. Development rates of parasitic copepods are
dependent on temperature, altering their geographic distribution
and increasing infestations in farms at higher temperatures (45).
Besides, it is known that the development time of the different
phases of C. rogercresseyi is affected by temperature (3). The
complete life cycle can take 45 days at a mean temperature
of 10.3◦C. However, the life cycle can be completed in just

18 days at a temperature of 16.7◦C. This is in agreement
with our results in which we found more suitable habitats for
C. rogercresseyi in Los Lagos and Aysén regions due to warmer
waters compared to Magallanes region. On the other hand,
predictions based on future climate change scenarios suggest
that habitat suitability can be expanded in a specific area of
Magallanes region. Moreover, this should be taken with caution
because increasing the mean temperature could potentially
reduce the development time of the parasitic phases or could
also cause distress in the copepod dynamic (e.g., patterns
prediction for 2100 in scenarios RCP 4.5, 6.0, and 8.5; Figure 1)
(46, 47).

Minimum temperature defines the environmental limit of
the geographic range for C. rogercresseyi in our models.
The temperature threshold of <4.2◦C not only stops the
development of all phases but also causes the death of this
species of copepod (3). This threshold is only observed for
the southernmost sites in our study area where there are no
occurrences of the species. However, the increase in the mean
temperature expected with climate change projections would
modify the minimum temperature threshold, expanding the
habitat suitability for C. rogercresseyi in Chile (29). This implies
the need to understand how the salmon farming in Chile interacts
with the environment, mainly the conflicts over marine space
with other aquaculture activities and whether a more sustainable
industry is possible (23).

Salinity and current velocity are the variables with the least
importance in our models. In other species of sea lice in the
northern hemisphere (Lepeophtheirus salmonis andC. elongatus),
low salinities<30 pss have been observed to decline reproductive
and survival rates (48). For the species C. rogercresseyi, a
variable tolerance and sensitivity to salinities <20 pss have been
described (31). Experimental studies show variations between
0, 15–100, 45–100, and 100% C. rogercresseyi survival rate at
salinity concentrations of 0, 10, 20, and 30 pss, respectively.
However, the slight salinity effect observed in our models
may be because the low concentration is associated with
specific geographical sites, such as estuaries and brackish waters.
Concerning velocity current, it is understood that current can
flush the planktonic phases and the infective phase toward
neighboring farms (27). Nonetheless, this effect could be limited
on a large scale, since it has been reported that for L. salmonis
the current can transport the phases only between around
7.3 and 10 km (49). In addition, information is still lacking
on the role of current velocity in the transport of planktonic
phases of C. rogercresseyi in the complex fjord systems of
southern Chile.

The pattern predicted by our models is consistent with
previous reports of this species of copepod in Chile. The first
spatial and temporal description of C. rogercresseyi proposes a
cluster pattern according to the number of farms in operation
during 1999–2000 (50). Subsequent analyses with data from
2007 identified a decreasing pattern from north to south on
the abundance of C. rogercresseyi in salmon farms (7, 51).
However, our study shows a clumped advance of the suitability
conditions under the assumptions of climate change, aggravating
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sea lice infestations, and their economic and environmental
consequences in the medium-term future for Chile. Besides,
according to our results, a latitudinal gradient is observed in
the suitable habitat of C. rogercresseyi, where its likelihood of
occurrence increases toward the north in our study area. It
is necessary to expand the biogeographic knowledge of the
C. rogercresseyi due to the trend of expansion of aquaculture in
the face of the reduction of the global capture fisheries. Besides,
there are hypotheses about a wider distribution range of the
C. rogercresseyi from Peru to Argentina (passing through Chile),
complicating the control strategies by the natural sources of the
parasite (17, 52).

The habitat suitability distribution proposed by our models
reflects a challenge for sea lice control strategies in Chile.
The environmental conditions of less cold temperature >10◦C,
salinities > 25 pss, and low velocity of currents will guarantee
the thrive of the C. rogercresseyi in Los Lagos and Aysén regions
for the next 80 years. Consequently, the loss of sensitivity
of sea lice to chemical control can be repeated in future
scenarios in southern Chile. Before 2007, emamectin benzoate
was exclusively used to control C. rogercresseyi infestations,
causing loss of sensitivity to this antiparasitic drug (53). After
2007, the health authority approved the use of deltamethrin,
followed by diflubenzuron in 2009, cypermethrin in 2010, and
azamethiphos in 2013 (14). The implementation of azamethiphos
as a new alternative of chemical control in 2013 coincides with
an increase of C. rogercresseyi abundance at salmon farms in
region X [Los Lagos] (54). Although up to now the use of
azamethiphos maintains limited parasitic loads, it is necessary
to improve the proper management of chemicals and propose
non-chemical options due to the expansion and emergence of
antiparasitic-resistant C. rogercresseyi.

In addition, the impacts of C. rogercresseyi chemical control
on non-target aquatic organisms is an environmental concern
of relevance under the projections of geographic expansion
for this copepod in future scenarios. Emamectin benzoate,
diflubenzuron, deltamethrin, cypermethrin, and hydrogen
peroxide at the recommended dose reduce the feeding and
mobility, producing paralysis and dead in copepods and causing
>95% mortality in another zooplankton and phytoplankton
organisms under laboratory conditions (55, 56). Otherwise,
cypermethrin and deltamethrin in high doses cause 100%
mortality in the marine amphipods Monocorophium insidiosum
(57). Furthermore, the synergistic effect of cypermethrin and
deltamethrin combination on crustacean Daphnia magna has
been described to cause superior toxicity to the half-maximum
effective concentration [EC50; (58)]. In larger crustaceans,
specifically the stage IV lobsters (Homarus americanus), a high
concentration of azamethiphos produces agitation, relaxing
erratically, and aggressiveness and causes 40% mortality in 4 h
of experimental continuous exposure (59). Emamectin benzoate
lacks these toxic effects in H. americanus (60). However, it
is alarming that the pelagic marine ecosystem of Chile is
characterized by high endemism of copepods (61–63), marine
organisms very sensitive to toxicity effects of chemical control
used against C. rogercresseyi.

Other impacts of C. rogercresseyi include their interaction
with native fish, where low abundances are observed for native
fish Rock cod (Eleginnops maclovinus) and Chilean silverside
(Odontesthes regia) (2). However, C. rogercresseyi parasitism
on salmonid production species shows high abundances and
infestations in Atlantic salmon (S. salar) and rainbow trout
(Oncorhynchus mykiss), while low abundances are shown in
coho salmon (O. kisutch) due to a better immune response
mediated by macrophages (64). Besides, stocking density
(>22 kg m−3), the season of the year (autumn), depth of
water at the farm and cage location (>50m), and chemical
control (>1 week later) are all factors associated with higher
C. rogercresseyi infestation rates (16, 51). Furthermore, the
growing trend of salmon farming worldwide expects a growing
host density, causing negative feedback for this host–parasitic
dynamics (44).

The maps from HSMs provide a useful guide to hypothesize
the occurrence of C. rogercresseyi in different climate change
scenarios, mainly for the Magallanes region. However, these
models are limited by only-presence data of salmon farms in
Chile. We lack interpretation to establish the limited dispersal
and potential distribution for using pseudo-absences. In addition,
our study area could be small for the spatial distribution
of this species by ignoring biotic interactions (competition,
commensalism, multi-species studies) and the migration process
(20). In this respect, we limit our predictions to the area of
calibration of the models, with utility only for the area occupied
by the salmon industry in Chile. Interpolation is acceptable and
necessary because we used the largest database of C. rogercresseyi
occurrence that is available. Our results suggest complexity
and a wide dispersion of the biogeographic behavior of the
C. rogercresseyi in the south of Chile; further investigations are
required in these areas.
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