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Analysis of volatile organic compounds (VOCs) is a novel approach to accelerate

bacterial culture diagnostics of Mycobacterium avium subsp. paratuberculosis (MAP).

In the present study, cultures of fecal and tissue samples from MAP-infected and

non-suspect dairy cattle and goats were explored to elucidate the effects of sample

matrix and of animal species on VOC emissions during bacterial cultivation and to

identify early markers for bacterial growth. The samples were processed following

standard laboratory procedures, culture tubes were incubated for different time periods.

Headspace volume of the tubes was sampled by needle trap-micro-extraction, and

analyzed by gas chromatography-mass spectrometry. Analysis of MAP-specific VOC

emissions considered potential characteristic VOC patterns. To address variation of the

patterns, a flexible and robust machine learning workflow was set up, based on random

forest classifiers, and comprising three steps: variable selection, parameter optimization,

and classification. Only a few substances originated either from a certain matrix or could

be assigned to one animal species. These additional emissions were not considered

informative by the variable selection procedure. Classification accuracy of MAP-positive

and negative cultures of bovine feces was 0.98 and of caprine feces 0.88, respectively.

Six compounds indicating MAP presence were selected in all four settings (cattle vs.

goat, feces vs. tissue): 2-Methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol,

heptanal, isoprene, and 2-heptanone. Classification accuracies for MAP growth-scores

ranged from 0.82 for goat tissue to 0.89 for cattle feces. Misclassification occurred

predominantly between related scores. Seventeen compounds indicating MAP growth

were selected in all four settings, including the 6 compounds indicating MAP

presence. The concentration levels of 2,3,5-trimethylfuran, 2-pentylfuran, 1-propanol,

and 1-hexanol were indicative for MAP cultures before visible growth was apparent. Thus,
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very accurate classification of the VOC samples was achieved and the potential of VOC

analysis to detect bacterial growth before colonies become visible was confirmed. These

results indicate that diagnosis of paratuberculosis can be optimized by monitoring VOC

emissions of bacterial cultures. Further validation studies are needed to increase the

robustness of indicative VOC patterns for early MAP growth as a pre-requisite for the

development of VOC-based diagnostic analysis systems.

Keywords: bacterial culture, diagnostics, machine learning, Mycobacterium avium ssp. paratuberculosis,

paratuberculosis, random forests, variable selection, volatile organic compound

INTRODUCTION

Detection of volatile organic compounds (VOCs) derived

from bacterial metabolism has been proposed as a novel
approach in diagnostic microbiology. VOCs originate from

metabolic processes of the bacteria. Due to their physicochemical
properties, they transform into gaseous state already at low

temperatures. Appearing in very low concentrations (nmol/L—
pmol/L or ppbV—pptV) they belong to all classes of organic

substances (1). Technologies in use for the analysis of volatiles

include (high-resolution) mass spectrometry (MS) approaches,
including soft chemical ionizationmass spectrometry (SCIMS) or

gas chromatography-mass spectrometry (GC-MS), spectroscopic
techniques, and sensors. Analyzers can be allocated to two

categories, namely offline systems, which require sample

workup such as pre-concentration prior to analysis, and
online instrumentation, which can analyze samples directly

without manipulation (2). Online monitoring of bacteria-specific
VOC-profiles during cultivation would enable direct species
identification without further processing of samples, and would
thus reduce labor and costs. In addition, highly sensitive
detection of VOCs released by growing bacteria could allow
detection of bacterial growth earlier than currently possible.
This is of special interest for slow-growing bacteria, such as
Mycobacterium avium ssp. paratuberculosis (MAP).

Bacterial culture on solid or liquid media with subsequent
species confirmation via polymerase chain reaction (PCR) is still
considered the most sensitive and robust diagnostic method for
the detection of MAP in different types of samples (3). This
labor-intensive and time-consuming procedure takes weeks to
months until reliable results are available (4). Automated liquid
culture systems, which were adopted recently for MAP, resulted
in reduced cultivation times, but still demand further processing
of the samples for species identification (5, 6). In an attempt
to reduce time to result, (real-time) PCR based techniques have
been established and introduced in routine diagnostics (7–9).
The performance of PCR based methods depends largely on
the efficacy of the protocol used for nucleic acid extraction
from clinical samples (10, 11). The detection rate is reduced
when samples with low bacterial load are tested (12, 13). On
the other hand, due to their high analytic sensitivity, these
methods are prone to sample misclassification by false positive
results because of cross contaminations (own unpublished
results). The main advantage of PCR techniques compared to
bacterial culture is the short time necessary until results are

available. A diagnostic approach combining the advantages of
both techniques without increased risk of misclassification is
highly desirable.

Recent studies have shown that it is possible to detect
growth of MAP by measuring volatile organic compounds
in the headspace of bacterial cultures (14, 15), even before
colonies become visually apparent (16). Instead of individual
indicative substances, these studies recorded a selection of several
VOCs (i.e., a “VOC profile”) in order to differentiate growing
MAP cultures from control vials and from cultures of other
mycobacterial species. The composition of the VOC profiles
varied to some extent depending on MAP strain (14, 15),
culture medium (15), bacterial density (14, 15), and duration
of incubation (15). However, it was possible to define a core
profile of 28 VOCs related to growth of MAP cultures by a
meta-analysis (17).

As a common feature of these studies, pure bacterial cultures
were grown using laboratory strains of different field isolates.
In practical diagnostics, however, MAP is being isolated from
different matrices, such as feces and tissue samples of variable
animal species, solid or liquid manure and even dust from
the housing environment of the animals. These matrices may
emit additional VOCs during cultivation, which might possibly
interfere with the MAP-specific VOC profile. This problem has
not been addressed so far (17).

Matrix-related VOC emissions were investigated in this study
as a necessary step toward practical application. Cultures of
native diagnostic samples from MAP infected and non-suspect
cattle and goats were examined to elucidate the effects of the
sample matrix (feces or tissue) and of the animal species on
VOC emissions during cultivation. On this basis, the applicability
of the MAP-specific core-profile to diagnose MAP cultures
was reviewed.

Previous studies showed that VOC concentrations above
MAP cultures varied in relation to bacterial density (14, 15).
The majority of substances increased with increasing bacterial
counts, others decreased, or they decreased after an initial
increase (15). Therefore, a data analysis workflow based on
random forests was developed to capture those varying VOC
patterns in a multivariate fashion. The workflow comprises also
a random forest-based variable selection procedure to pick all
relevant VOCs from the full panel of volatile compounds that
were detected in the headspace volume of the bacterial cultures.
Repeated cross-validation was deployed to robustify the results of
the workflow.
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We analyzed the data, on the one hand, focusing on MAP
presence and, on the other hand, focusing on different stages
of MAP growth in native samples, taking into account varying
patterns of VOC emission in relation to bacterial growth. Thus,
by using a tailored machine learning workflow, we aimed
at identifying MAP-specific VOC profiles that allow sample
classification already after short periods of cultural incubation.

MATERIALS AND METHODS

Samples
Fecal and tissue samples (n = 80) with culturally pre-defined
MAP status were derived from the sample collection of the
German National Reference Laboratory for paratuberculosis at
the Friedrich-Loeffler-Institut. Fecal samples from cattle and
goats originated from different animals and herds enrolled
in a field study performed in 2016 and 2017. The study
protocol was approved by the responsible authority, the
Animal Health and Welfare Unit of the “Thüringer Landesamt
für Verbraucherschutz” (permit number 04-102/16, date of
permission: 20.04.2016). Goat tissue samples (mesenteric lymph
nodes, tissue from ileum or jejunum) were obtained from
different goats necropsied in the course of an experimental
infection trial in 2011 and 2012. The animal experiment was
approved by the responsible authority (see above, permit number
04-001/11, date of permission: 03.03.2011). Cattle tissue samples
were collected after slaughter from different cattle during a
slaughterhouse survey in 2007 (18). Presence or absence of MAP
was originally examined after admission to the laboratory by
cultural isolation following standard laboratory procedures. After
first processing, the samples were stored at −20◦C (cattle and
goat feces, goat tissue) and−80◦C (cattle tissue) until preparation
for the present study. An overview of the samples is given in
Table 1. The MAP isolates obtained from cattle and goat feces
and from cattle tissue represent eight different MAP genotypes
(see Supplementary Table 1). The MAP isolates from goat tissue
were all derived from MAP strain JII-1961 (19), which was used
for inoculation of the animals in the experimental infection trial.

Sample Preparation
The procedures followed in this study conform to protocols
established in previous studies (15, 17) in order to
enable comparability.

To prepare the test tubes for a fecal sample, 3 g of feces
were decontaminated in 30mL of 0.75% hexadecylpyridinium
chloride (HPC, Merck, Darmstadt, Germany) for 48 h in order
to eliminate non-MAP flora (20). The supernatant was discarded
and the sediment (1–2mL) was further processed as described
below. The tissue samples originated from different parts of
ileum, jejunum, or mesenteric lymph nodes. After separating
tissue and fat, approximately 1 g of tissue from different parts of
the sample were gathered. Decontamination was performed with
0.9% HPC for 24 h at room temperature. The tissue samples were
centrifuged and the sediment resuspended with 1mL of sterile
phosphate buffered saline (PBS) to maintain a physiological
pH (20).

For both fecal samples as well as tissue samples, nine tubes
of slanted Herrold’s Egg Yolk Medium with Mycobactin J and
Amphotericin, Nalidixic Acid and Vancomycin (HEYM, Becton
Dickinson, Heidelberg, Germany) were inoculated with 200
µL of the resulting sediments. After spreading the inoculum
evenly over the surface of the solid medium, the tubes were
incubated at about 37◦C under aerobic conditions. For each set
of samples (goat or cattle, negative or MAP-positive), inoculation
was performed at a separate day to eliminate carry-over effects.
Parallel to these samples, 30 control tubes were prepared for each
set either with 200 µL of 0.75% HPC (for feces) or with 200 µL
of a 1:1 mixture of PBS and 0.9% HPC (for tissue) without fecal
or tissue matter. The control tubes were treated and incubated
under the same conditions as the test tubes.

Colony growth was assessed regularly by visual inspection,
colony counts up to 50 colonies were counted, higher
colony counts were estimated following a standard laboratory
procedure. Growth was scored at the end of the pre-determined
incubation period in the following way: score 0—no growth
visible, score 0.5—one to 20 colonies, score 1−21 to 50 colonies,
score 2−51 to 100 colonies, score 3—loose layer, score 4—
dense layer. The duration of culture incubation was defined
depending on the expected growth characteristics of the MAP
isolates in order to cover different growth stages of the individual
samples. Of the nine test tubes per original sample, three were
randomly selected at the pre-determined end of the incubation
period after 4, 6, and 8 weeks for cattle feces and tissue and
goat tissue, and after 16, 18, or 20 weeks for goat feces. An
exception had to be made for MAP cultures from goat feces: The
cultures of two samples grew unexpectedly fast. Incubation of
three randomly selected culture tubes was therefore interrupted
after 4, 6, and 8 weeks and the tubes were moved to a
refrigerator to limit further growth. Before GC-MSmeasurement,
these tubes were again incubated for 7 days at 37◦C. Finally,
they were measured 16–20 weeks after inoculation. The test
tubes of the other MAP-positive and negative samples and the
control tubes were incubated for the pre-determined period
of 16, 18, or 20 weeks. The final sample sizes can be seen
in Table 2.

VOC Analysis
The headspace volume of the tubes was sampled by means of
needle trap microextraction (NTME) and analyzed by GC-MS
as described elsewhere (14, 15). The GC-MS system consisted of
an Agilent 7890A gas chromatograph and an Agilent 5975C inert
XLMSDmass spectrometer. In order to identify unknown VOCs
from the mass spectra, first, a mass spectral library search (NIST
2005 Gatesburg, PA, USA) was carried out and, subsequently,
compounds were verified and quantified by measurements of
pure reference substances. Altogether, more than 100 volatile
substances were detected in the headspace volumes. VOCs
which could not be identified unequivocally, which could not
be quantified or which were assigned to contamination from
room air were excluded from the VOC panel in a pre-processing
screening of the GC-MS spectra.
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TABLE 1 | Overview of the samples included in the study.

MAP-negative MAP-positive

Matrix Species Number of Herds/

Animals/Samples

Number of Herds/

Animals/Samples/

MAP genotypes

Feces Cattle 5/10/10 4/10/10/3

Goat 3/10/10 3/7/10/2

Tissue Cattle 1/2/10 5/5/10/6

Goat 1/5/10 1/5/10/1

Numbers represent the number of herds, number of animals, number of samples and

number of MAP genotypes, respectively, for each set of samples (for details on the

genotypes see Supplementary Table 1).

TABLE 2 | Sample sizes for VOC analysis per species and matrix with regard to

incubation periods in accordance with the study design (4/6/8 weeks in general

and 16/18/20 weeks for goat feces, respectively).

Matrix Species Control vials MAP-negative MAP-positive

Feces Cattle 20/20/20 20/20/20 18/20/20

Goat 20/18/20 20/20/20 20/20/20

Tissue Cattle 20/20/20 20/20/20 20/20/20

Goat 20/20/20 20/20/20 20/20/20

Data Analysis
Exploratory data analysis included heat maps to visualize
normalized concentrations of each VOC in the individual
samples, and principal component analysis (PCA) to assess if
differentiation of MAP-positive and negative samples is possible
in general. Basic graphical representations of the data (e.g., box-
whisker plots, scatterplots) were explored interactively by means
of a specially tailored R Shiny app. A correlation analysis using
Spearman’s rank correlation coefficient was performed for VOC
measurements of bacterial cultures with visible growth to detect
clusters of compounds with similar or opposite trends which
might be related to MAP growth.

VOC emissions of control vials were considered baselines
and used for quality assessment. Effects of the extended
incubation period of 16–20 weeks in comparison to 2–8 weeks
on VOC concentration in the headspace volume above pure
media was assessed using two-sidedMann–Whitney-U-tests with
Bonferroni p-value correction. A tentative screening for potential
influences from exogenous sources was performed by assessing
variations of control vials between different days of inoculation
(using Kruskal–Wallis tests with Bonferroni p-value correction)
and comparing concentration levels of control vials with those
of actual samples (using two-sided Mann–Whitney-U-tests with
Bonferroni correction; details in Supplementary Table 4).

In order to assess which VOCs might originate from traces of
original sample material, feces or tissue, VOC concentration of
MAP-negative test tubes was compared to control vials prepared
at the same day using one-sided Mann–Whitney-U-tests with
Benjamini–Hochberg p-value correction. We deployed a one-
sided test to capture only VOCs with higher concentration values
above MAP-negative test tubes compared to control vials.

Identification of MAP-specific VOC emissions was tackled
using machine learning tools: Since the absence or presence of
MAP was known for each sample and MAP growth had been
scored for each VOCmeasurement, both could be used as targets
for a supervised learning task. The objective of our workflow was
to classify samples based on their VOC measurements with high
accuracy and to identify VOCs supporting the classification. We
decided to base our approach on random forests to be able to
consider arbitrary patterns of multiple VOCs in combination.
Random forests are completely data-driven and do not assume
a specific underlying distribution of the data. In brief, a random
forest classifier consists of a large number (typically several
hundreds) of decision trees (21–23). Hence, their results are
always aggregated across their decision trees, as an inspection of
individual trees is not insightful. One result that can be drawn
from random forests is a ranking of variable importance. The
importance of a variable is determined for each decision tree
using the observations that had not been used to construct the
respective tree and scored by the loss of classification accuracy
after resampling themeasurements of the variable. This approach
is based on the idea that an informative variable contributes
considerably to the classification accuracy of a decision tree and
thus resampling of an informative variable will lead to a high loss
in accuracy, whereas resampling of a non-informative variable
will hardly affect the classification accuracy. The loss of accuracy
for each variable is reported as average across all decision trees of
the random forest.

The variable selection algorithm Boruta (24) was used to
reduce the set of VOCs to those that show variations related to
MAP presence or growth. The Boruta algorithm uses random
forest variable importance measures to compare variables with
randomly permuted copies of themselves. Only if an original
variable outperforms the best among all copies it is considered
important and used further.

Using the methods described above a robust machine learning
workflow was set up as follows (Figure 1):

Step 1: Variable selection with Boruta. To decrease variance
of the decision, the algorithm was applied 30 times and only
variables found important in more than 27 of the iterations were
used further.

Step 2: Parameter optimization for random forest.
We optimized the number of variables considered for
a split in a decision tree (parameter mtry) to maximize
classification accuracy.

Step 3: Classification using random forest. A random forest
classifier consisting of 500 decision trees using the variables
selected in step 1 and the optimized parameter from step 2 was
trained and the results averaged over 10 repeats of 10-fold cross-
validation. For each VOC used in classification the importance
measure is the mean decrease in accuracy when randomizing the
values of that VOC.

The caret package (25) was used to streamline steps 2 and
3 such that the parameter optimization used the same cross-
validation sets as the final classification. As the Boruta algorithm
is not yet implemented in the caret package, the variable
selection process is based on the complete data set outside
of cross-validation.
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FIGURE 1 | Machine learning workflow.

This workflow was applied to address the two central
objectives of the study, first, classification of MAP-positive vs.
negative samples to find VOCs specific to MAP presence, and
second, differentiation between the different stages of growth
(scores from 0 to 4 as described above) and negative samples to
find VOCs indicative of the stages of bacterial growth and thus
possible candidates enabling accelerated cultural detection.

These analyses were performed for both species and both
sample matrices separately. For the growth classifiers, the data
was distributed unevenly over different growth stages and
upsampling was applied for balancing, except for growth scores
that were not observed for a set of samples. To summarize the
results, we report the number of selected variables (step 1), the
optimized number of variables considered for each new split (step
2) and the averaged classification accuracy of the final model
(step 3).

The workflow was implemented in R v3.6.2. (26) with
packages Boruta v6.0.0 (24) and caret v6.0-86 (25), which
depends on the package randomForest (27). Packages used for
data manipulation were dplyr (28) and tidyr (29), and packages
used for data visualization were ggplot2 (30), pheatmap (31),
factoextra (32), corrplot (33), ggridges (34), ggstance (35), plotly
(36), and shiny (37).

RESULTS

VOC Panel
VOC analyses resulted in a panel of 62 volatile substances
(Supplementary Tables 2, 3). They belong to the classes of
hydrocarbons including acyclic hydrocarbons, alcohols, ketones,
aldehydes, furans, nitriles, organosulfur compounds, halogenated
hydrocarbons, and ethers. Visual data exploration revealed
that some of these compounds showed distinctive differences
in concentration for MAP-positive samples in comparison to
negative samples and control vials. This became evident in
the heat map including all VOCs and all samples (Figure 2)

and also in the visualization based on principal component
analysis (PCA, Supplementary Figure 1). Not only increased,
but also decreased concentrations above MAP-positive cultures
were observed (Figure 2). Some of the MAP-positive goat
feces samples did not show any bacterial growth, even after
20 weeks of incubation, which is very likely the reason why
their VOC composition resembles negative samples in these
visualizations. Correlation analysis revealed clusters of highly
correlated compounds in the headspace of bacterial cultures with
visible growth (Supplementary Figure 2).

The extended incubation period of 16–20 weeks affected most
of the compounds (both increase and decrease in concentration,
Supplementary Table 4). Tentative screening for VOCs from
exogenous sources captured a single compound: Ethyl tert-
butyl ether (ETBE) showed increased levels on 3 consecutive
days for both control vials and test tubes irrespective of
the content of the test tube (Supplementary Figure 3 and
Supplementary Table 4). This compound is a fuel additive and
therefore most likely contamination from laboratory room air.
Thus, ETBE was excluded from the VOC panel as it introduced a
systematic bias.

VOCs Originating From Feces or Tissue
VOC emissions from sample material were analyzed by
comparing measurements of negative samples with control
vials (see Supplementary Table 5). Fecal samples showed
significantly higher concentrations of cyclohexane than control
vials, whereas tissue samples showed significantly higher
concentrations of acetaldehyde and 1-propanol. Cattle samples
were characterized by higher levels of ethanol, propanal, 2-
methylpropanal and acetone. In addition, cattle feces samples
showed increased concentration levels of 2-propanol, and cattle
tissue samples exhibited higher levels of furan, chloroform and
2-methylpropanenitrile. The latter was also elevated in goat
feces samples, whereas goat tissue samples were characterized
by 4-methylheptane, 2,3-butanedione, 2-methyl-1-butanol and
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FIGURE 2 | Heat map including all 62 VOCs and all samples. Concentration values are normalized via log(1+x)-transformation for better visualization.

3-methyl-1-butanol. The last two compounds were detected
above LOQ only in goat tissue samples, apart from MAP-
positive samples.

VOCs Indicating MAP Presence
By comparing headspace VOC compositions of MAP-positive
and negative samples by our random forest-based workflow,
44 of 61 VOCs were found to show indicative variations
between these two groups in at least one of the four settings.
The number of selected VOCs ranges from 18 VOCs for goat
tissue to 30 VOCs for cattle feces (see Supplementary Table 6).
Six compounds were selected in all four settings (Figure 3):
2-Methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-
butanol, heptanal, isoprene, and 2-heptanone. Further, 14
compounds were selected in three settings, comprising six
aldehydes (propanal, 2-methylpropanal, 3-methylbutanal,
hexanal, benzaldehyde, octanal), three alcohols (1-propanol,
1-pentanol, 1-octen-3-ol), two hydrocarbons (pentane,
octane), two furans (2-methylfuran, 3-methylfuran), and one
ketone (3-pentanone).

We observed that 3-methyl-1-butanol exhibited the
maximum variable importance in two of four settings (for
fecal samples). However, the relative variable importance

values of the compounds varied considerably between the
four settings (Supplementary Figure 4). While, three settings
yielded a rather steep decline in variable importance from
the top compound to the least informative compound of the
selection, the results for cattle tissue samples showed that a
large proportion of compounds reached comparatively high
variable importance values. Ranking compounds by their
respective importance value reflects the high variance in variable
importance between different settings: Only 2-methylbutanal,
pentanal and heptanal were consistently ranked among the top
ten variables and selected in at least two settings. However,
for all four settings, the random forest classifiers reached high
accuracies in discriminating between negative and MAP-positive
samples (cross-validated accuracy between 0.89 for goat feces
and 1.00 for cattle tissue, Supplementary Table 6).

VOCs Related to MAP Growth
The refined analysis targeting the varying bacterial growth
densities resulted in a similar selection of VOCs as before: 42
of the 44 VOCs that had been considered before were also
selected to differentiate between levels of MAP growth in at
least one of the four settings (Figure 4). Four VOCs were found
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FIGURE 3 | Comparison of the selection of VOCs indicating MAP presence for each set of samples (left: Venn diagram, right: table with details on the intersections

of at least three sets). Set A represents the set of VOCs that were selected in all four settings, whereas sets B, C, and D represent sets of VOCs that were selected in

three of four settings.

FIGURE 4 | Comparison of the selection of VOCs related to MAP growth for each set of samples (left: Venn diagram, right: table with details on the intersections of

at least three sets; see also Figure 3).

to be related to MAP growth additionally. One of them, 2-
pentylfuran, was selected in three of the four settings, whereas the
other three compounds (2-pentanone, bromodichloromethane,
2-methylbutanenitrile) had been selected only once.

For each of the four settings, the number of selected
compounds increased by four to eight compounds in the
refined analysis (Supplementary Table 6). Thus, some VOCs
were in total selected more often than in the previous analysis.
2-Hexanone and pentanal, which had previously passed the
selection criteria only in one and two settings, respectively,
were now included in all four settings. Acetaldehyde and
octanal were excluded for the refined analysis regarding
cattle tissue samples, while they had been selected for this
setting in the previous analysis. However, both were selected
in another setting (cattle feces and goat feces, respectively),
for which they had not been considered in the previous
analysis. Apart from these four compounds, the remaining 40
compounds of the previous analysis differed only in regard to a
single setting.

An overview of the relative importance of selected VOCs
per setting is given in Supplementary Figure 4. Due to different
selections of VOCs and the redefined target of classification,

relative importance values for the refined analysis deviate from
those of the previous analysis. It should be noted that an
increase in importance does not necessarily correspond to
an increase in concentration and vice versa, as pictured in
Supplementary Figure 5. Instead, the importance of a single
compound for a specific level of bacterial growth should be
considered in relation to the importance of other compounds in
the same setting.

Cross-validated classification accuracies ranged from 0.82
for goat tissue samples to 0.89 for cattle feces samples
(Supplementary Table 6). Misclassifications mainly occurred
between related classes (e.g., between “MAP-negative” and
“score 0,” but not between “MAP-negative” and “score 4,”
Supplementary Tables 7–10).

Regarding VOCs which were included in at least two settings
for classifying growth scores, compounds of some substance
classes showed variable tendencies: Alcohols and ketones with up
to five carbon molecules (except for 1-propanol and 1-pentanol)
increased above growing MAP cultures, while substances of the
same classes with higher carbon numbers (up to C8) decreased in
concentration (Figure 5). The concentrations of hydrocarbons,
including isoprene, but except for styrene, increased in the
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FIGURE 5 | VOCs showed varying trends with increasing bacterial density. The figure combines box-whisker plots and smoothed histograms (filled: incubation period

of 4, 6, and 8 weeks, transparent: incubation period of 16, 18, and 20 weeks). The x-axis indicates log(1+x)-transformed concentration values, and the y-axis

indicates observed frequencies of the respective concentration values grouped by MAP status and growth scores (see section Sample Preparation). (A) VOCs with an

increase in concentration in relation to MAP growth, (B) VOCs with a decrease for early bacterial growth and increase for higher bacterial densities, (C) VOCs with an

increase for early bacterial growth and decrease for higher bacterial densities, (D) VOCs with a decrease in concentration in relation to MAP growth. Goat feces

samples that did not show any bacterial growth after 20 weeks of incubation were excluded for this visualization. For further VOCs see Supplementary Figures 6–8.

headspace of MAP cultures in comparison to control vials. All
aldehydes showed a decrease in concentration with growing
MAP cultures.

Furan concentrations did not differ markedly between
negative andMAP-positive cultures and tended to be lower in the
headspace of positive cultures. As an exception, concentrations
of 2,3,5-trimethylfuran and 2-pentylfuran decreased above MAP
cultures without visible growth or with few colonies (score 0–
0.5) and slightly increased again for higher bacterial densities
(score 1–4). Conversely, 1-propanol and 1-hexanol tended to
increase above MAP cultures with score 0–0.5 and decreased
with score 1–4. While, these changes were less pronounced for
1-propanol, 1-hexanol showed a steep decline below the limit
of quantification from early phases of bacterial growth to higher
bacterial densities (Figure 5).

VOCs that have been selected in at least two settings for
classifying growth scores have also been selected in at least
two settings for classifying MAP presence, due to the higher
selection frequency in the refined analysis. Thus, we consider the
selection of VOCs presented in Supplementary Figures 6–8 as
a final set of VOCs indicating growth of MAP cultures in the
present study. This selection represents all relevant compounds
for the present study, not a minimum selection. Indeed, stages of

bacterial growth could be discriminated with few compounds, as
pictured in Figure 6.

DISCUSSION

VOC measurements of biological samples are typically
characterized by a high naturally occurring variance. In
our analysis, we considered effects from the sample material
and from pre-processing steps on VOC emissions of bacterial
cultures, and also confounding effects by different inoculation
days, incubation periods and varying bacterial densities for
each set of samples. Nevertheless, a common set of VOCs
related to the growth of MAP cultures was detected. They were
assembled based on random forest classifiers, which reached
high classification accuracies for their respective set of samples.
Thus, we conclude that these VOCs allow to discriminate MAP-
positive and negative samples despite of additional emissions
from sample material. More precisely, identification of marker
substances relied on three different categories of samples, (i)
culture tubes containing only plain medium which were treated
with either HPC or HPC/PBS, respectively, at the beginning of
the cultivation period (controls), (ii) culture tubes inoculated
with MAP-negative tissue or feces, and (iii) culture tubes
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FIGURE 6 | 3D scatter plots for concentrations of 2-methyl-1-propanol, pentanal, and isoprene for (A) fecal samples and (B) tissue samples (left: cattle, right: goat).

Colors represent levels of bacterial growth and drop down lines aid spatial visualization.

inoculated with MAP-positive tissue or feces. The control tubes
were measured concurrently to the test tubes at all time points to
unveil VOCs originating from laboratory air and to elucidate the
effects of sample preparation and of aging of the medium during
the cultivation time of up to 20 weeks. Inclusion of control tubes
enabled identification of ETBE as contaminant of laboratory air,
because it was elevated in all three categories of samples only
at specific dates of sample preparation. Thus, measurements of
control tubes were a crucial point of our study design to identify
true marker substances. If parallel measurement of control
tubes will be necessary also during practical application of VOC
diagnostics remains to be elucidated in further analyses.

The study design included two animal species and two
matrices to exemplify the variety of settings in practical
diagnostics. The MAP isolates considered in this study represent
eight different genotypes of MAP type II, the most frequently
observed MAP type in samples of cattle and goat (details
in Supplementary Table 1). Thus, differences in VOC profiles
related to different MAP strains, as reported earlier for pure

bacterial cultures (14), were taken into account. Although the
effects of the different MAP strains included in this study
were not analyzed separately, they are expected to be negligible
for the aims of the present study. For example, while cattle
tissue samples exhibited the highest variance of MAP types (six
different strains), they could still be classified with high accuracy,
in both analyses, with a moderate number of selected VOCs.

A few VOCs related to animal species and matrix were
identified. Since these effects are expected to be similar for MAP-
positive and negative samples, they would not be considered
informative by the variable selection procedure. Thus, the
inclusion of MAP-negative diagnostic samples was crucial to
identify truly MAP-related VOC emissions.

As discussed in previous studies (17, 38), random forests’
ability to consider multiple compounds simultaneously makes it
suitable for analysis of patterns in VOC data. Random forests
have been applied before to analyze VOC patterns for other
settings [see e.g., (39–43)], and the random forest-based variable
selection algorithm Boruta has been deployed in other VOC
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studies too to select relevant compounds (44–48). In the present
study, the Boruta algorithm was favored over other variable
selection methods to reduce the number of VOCs to a set
of potential MAP marker compounds because of its proven
performance in the context of random forest classifiers (49).
The number of repeated Boruta applications we chose for this
analysis does not need to be as high as 30, as the algorithm is
computationally expensive and a lower number would not have
changed the outcome in a major way, as long as the cutoff point
is similar. The averaged accuracy of the random forest classifiers
is potentially biased, since Boruta was applied out of the cross-
validation scheme (50). This resulted as a drawback from our
decision to base our workflow on the R package caret, which
enables to create reproducible workflows by using the available
built-in functions, but does not yet include the Boruta algorithm.

While, random forests are straightforward to apply, as they
do not require pre-processing and use only a small number of
parameters, there are also some disadvantages. As random forest
classifiers consist of hundreds of decision trees summarizing
myriads of decision rules, it is hardly feasible to pin down
the complex interplay of variables in the classifier to simple
statements. Instead, we investigated variable importance values
to gain insight into the results of the random forest analyses.
These values are measurements of predictive power of VOCs
for the particular classification task on a specific class of
samples and should only be compared within the same class.
Their relative rankings can be unstable (51, 52), e.g., correlated
variables can produce similar importance values and also lead
to underestimated importance values (53). Thus, for a cluster
of variables with similar importance values, small changes in
absolute importance may be associated with a large (but not
meaningful) skip in ranks.

Moreover, the top compounds according to random forests’
variable importance measure are not necessarily the best choice
for diagnostic use. Random forests do not discriminate between
VOCs with low and high concentration ranges, but screen for
variables which allow to single out samples of the same class
by simple decision rules. Therefore, also top VOCs with high
variable importance values may not be applicable for diagnostic
use, if their concentration values are too close to LOQ.

With our workflow, we analyzed the data sets two-fold: We
targeted the classification procedure on (i) MAP presence and
(ii) MAP growth scores, as we think of the two analyses as
complementary to each other. While, the analyses targeting
MAP presence are directly motivated from the study design and
might profit from balanced classes, the second group of analyses
targeting MAP growth scores gives additional insight into the
relation of VOCs to bacterial density.

Furthermore, the different sets of samples had to be analyzed
separately (goat or cattle and tissue or feces) in order to
detect variations specific for the respective sample material.
Comparative analyses finally showed similarities between the
VOC selections for the different set of samples, especially
considering MAP growth. However, since the different classes
of samples were analyzed separately, quantitative differences in
concentration values between these sets were not considered
and consistency across the different sets of samples could not

be inferred directly from our workflow, but explorative analysis
showed comparable trends.

As a novelty, the present study described VOC profiles
for MAP cultures derived from original sample material.
Nevertheless, some VOCs of our final selection had also
been included in the VOC profile for pure MAP cultures
(17) and showed a consistent tendency with the previously
described trend above growing MAP cultures (pentane,
octane, 2-methyl-1-butanol, 3-methyl-1-butanol, acetone, 2-
butanone, 2,3-butanedione, 3-pentanone, hexanal, heptanal, and
benzaldehyde). In addition, further VOCs conformed to results
of previous studies on VOC emissions of pure MAP cultures
(15, 16), but had not been included in the VOC profile because
they were described only in a single study (2-methyl-1-propanol,
1-pentanol, 1-octen-3-ol, acetaldehyde, propanal, and pentanal).
However, while furans included in the published MAP core
profile had consistently shown an increase in concentration
above MAP, for our samples furans tended to decrease with
increasing bacterial density or exhibited a varying pattern. For
example, 2-pentylfuran was reported to be an important marker
compound among the VOCs of the MAP core profile (17) and
had been detected in high concentration ranges above MAP
cultures (14), but for the present samples 2-pentylfuran showed
only slight variations with respect to bacterial growth densities
and did not indicate MAP presence in general. Other VOCs have
been investigated before as potential MAP markers but showed
differing tendencies aboveMAP cultures (17) (2-methylpropanal,
2-methylbutanal, 3-methylbutanal, 2-heptanone). Furthermore,
some VOCs have not been described in any of the previous
studies on MAP cultures (2-hexanone, 2-octanone, octanal,
and nonanal).

Remarkably, the majority of MAP-positive samples without
visible bacterial growth could be distinguished from negative
samples by our workflow (as indicated by the confusion matrices,
Supplementary Tables 6–9), apart from goat tissue samples. This
underlines the potential of an early in vitro MAP diagnosis
using VOC analysis. Compounds with a considerable difference
in concentration above MAP cultures with none or scant
visible bacterial growth (score 0 and 0.5) in comparison to
negative samples and control vials are alcohols such as 2-methyl-
1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 1-
octen-3-ol, aldehydes such as 2-methylbutanal, 3-methylbutanal,
pentanal, hexanal, benzaldehyde, heptanal, and octanal, and
furans such as 2-methylfuran, 2-ethylfuran, and 2-butylfuran (see
Figure 5). Aldehydes have been described before as potential
marker substances of early MAP growth (15, 16). However, these
studies identified an increase in concentration of some aldehydes
before MAP growth was visually apparent and a decrease with
increasing bacterial density. In the present study, an increase of
aldehydes could not be confirmed, which may be due to the fact
that the previous study also analyzed samples after only 2 weeks
of incubation.

Microorganisms can produce a wide variety of volatiles.
The reasons why they produce volatiles is unclear, but
several functions such as communication (54) and defense
have been suggested (55). The VOCs of bacteria (pathogenic
and non-pathogenic) have been studied extensively (1, 55).
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A variety of VOCs has been identified over mycobacterial
cultures, especially M. tuberculosis (Mtb) and M. bovis strains.
Most of the substances described in our study were already
reported previously (56). However, the knowledge about the
origin and fate of VOCs within the metabolism of MAP is
still limited. Therefore, conclusions have to be drawn from
other (myco)bacteria.

The majority of the substances considered important for the
classification of MAP-positive samples most likely originate from
carbon and fatty acid metabolism of MAP. Carbon catabolism
provides the bacterial cell with energy and essential biosynthetic
precursors (57). In contrast to other bacterial genera, which use
catabolite repression as a regulatory mechanism to maximize
growth by consuming individual carbon substrates in a preferred
sequence, Mtb is able to catabolize multiple carbon sources
simultaneously to augment growth (58). Consequentially, a
whole range of intermediates is to be expected. The same can be
assumed for MAP, although it was not demonstrated so far.

Herrold’s Egg Yolk Medium, which was used for cultivation in
this study, provides several carbon sources, e.g., polysaccharides
of the agar, egg yolk derived cholesterol, the fatty acids oleic acid
and linoleic acid, sodium pyruvate, and glycerol.

Emerging evidence, predominantly originating from studies
with Mtb, suggests that fatty acids, rather than carbohydrates,
might be the dominant carbon substrate utilized during infection.
Fatty acids, cholesterol, glycerol as well as pyruvate are degraded
to acetyl-CoA. Acetyl-CoA is further oxidized to CO2 by the citric
acid cycle, which provides reducing equivalents for respiration-
mediated ATP synthesis and essential precursors for multiple
biosynthetic pathways, such as glucose-6-phosphate, acetyl-CoA
and others (57). However, the actual metabolic origin of most
VOCs found in the present study remains unknown.

Isoprene was produced by MAP-positive cultures and
increased in concentration with increasing growth rate. It
was considered highly important as indicator for the presence
of MAP and for MAP growth by random forest analysis.
In general, it is an important atmospheric hydrocarbon
that is emitted to the atmosphere from terrestrial plants,
phytoplankton sources and soil bacteria (59). Various bacterial
species, both Gram-positive and Gram-negative, were found
to produce it (60). One major source of isoprene is the
bacterial methylerythritol phosphate pathway (61, 62), which
is also utilized by Mtb for the biosynthesis of five-carbon
building blocks of isoprenoids. Isoprenoids are crucial for
survival of Mtb and other microorganisms. They are the
parent compounds of many secondary metabolites involved in
membrane function, respiratory electron transport and bacterial
cell wall synthesis (63).

As far as alcohols and ketones are concerned, it is noticeable
that, in the present study, substances with up to 5 carbons
are rising in concentrations in the headspace of MAP-positive
tubes in relation to growth, while at the same time, substances
with more than 5 carbons are decreasing in concentration. It
seems that the former compounds result from catabolic processes
while the latter may be consumed within biosynthetic pathways.
This is feasible because hydrocarbons, aliphatic alcohols and
ketones presumably are formed by modification of products of

the fatty acid biosynthetic pathway (55). Reverse reactions with
similar intermediates take place during degradation of fatty acids
through the β-oxidation pathway. Every single intermediate can
potentially be the precursor of volatile compounds emitted by the
bacteria (64).

For the classification of MAP and for MAP growth, 3-
methyl-1-butanol, 2-methyl-1-propanol, 2-methyl-butanol and
2-heptanone were considered most important in all eight
and 3-pentanone in 4 and 3 classifiers, respectively. The
best discrimination was achieved by 2-methyl-propanol and
3-pentanone. McNerney et al. (65) identified seven potential
markers of M. bovis BCG above cultures on Loewenstein-
Jensen medium, a whole egg medium, among them 2-methyl-
1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-
butanone, which were indicative for MAP-positive cultures in the
present study. These compounds are not unique to mycobacteria.
Identical methyl alcohols were identified in the headspace above
fungal and other bacteria species (66, 67). This underlines that
the compounds are of limited value as individual markers for
detecting specific bacteria, but that their value may increase
if used in combination as components of a VOC profile or
“fingerprint” (65).

Methyl ketones derive from two principlemetabolic pathways.
First, they are formed from alkanes by alpha-oxidation with
no change in the carbon skeleton. In some hydrocarbon-
oxidizing bacteria of the genus Mycobacterium, for example, the
pathway of propane metabolism involves an initial hydroxylation
reaction producing isopropanol, which is oxidized subsequently
to acetone (68). This may be the way of acetone formation
during cultural growth of MAP. Second, methyl ketones with an
odd number of carbon atoms (acetone to pentadecan-2-one) are
derived from even-numbered β-keto acids by decarboxylation,
and occur in many bacteria (55). 2-Butanone, 2-pentanone, 2-
heptanone, and others were detected in the VOCs released by
Lactobacillus casei (69). 2-Heptanone is produced by endophytic
bacteria in plants such as Bacillus (B.) pumilus and B. safensis, and
is one of several compounds with antifungal activities (70).

Mycobacteria are not only able to produce, but have also an
affinity for growing on a variety of methyl ketones (71). Different
rapid growing mycobacteria were shown to utilize acetone, 2-
butanone, 2-pentanone, 2-tridecanone or octadecanone. The
short-chain ketones supported more rapid and abundant growth
than the long-chain ketones (68).

Interestingly, the concentrations of aldehydes with two to
eight carbon molecules tend to decrease or are significantly
lower above the MAP-positive cultures compared to negative
cultures or control tubes. Different sources of these compounds
have to be considered. Obviously, the culture medium is itself
a source of volatiles, particularly as the autoclaving process
forms several VOCs (55). Emission of aldehydes by control tubes
containing HEYM was demonstrated in a previous study (15).
Otherwise, aldehydes were produced by MAP cultures with a
characteristic dynamic pattern, as the headspace of MAP cultures
with low bacterial density contained higher concentrations of
these compounds than control tubes and then cultures with
higher bacterial density (15). In Mtb, aldehydes proved to be
toxic metabolites of the cholesterol degradation pathway (72).
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In contrast to our results, the headspace of BCG cultures
contained significantly more acetaldehyde than was present in
the headspace of the controls (65). On the other hand, aldehydes
seem to be intermediates in the biosynthesis of the lipids
composing the mycobacterial cell envelope (73). Benzaldehyde
and octanal, among others, are substrates of the M. bovis BCG
alcohol dehydrogenase, which seems to play a role in this pathway
(74). Furthermore, aldehydes as well as ketones could result
from enzymatic or thermic degradation of mycolic acids of the
mycobacterial cell wall (75, 76).

As mentioned above, furans tended to decrease above MAP-
positive cultures or showed variable tendencies. Their impact
on classification of cultures from diagnostic samples was not as
pronounced as shown previously on pure MAP cultures (14).
Similar to aldehydes, furan derivatives seem to be involved
in mycobacterial cell wall formation and degradation, since
mycobacterial surface glycolipids contain D-galactofuran and
arabinofuranosyl-residues (77, 78). The balance between these
processes may determine the kind of substances and their
concentrations in the cultures. 2-Pentylfuran was suggested as
marker of Aspergillus infection in humans (79, 80).

Dimethyl disulfide, an organosulfur compound and
intermediate of methionine and cysteine degradation, was
identified in varying concentrations above pure HEYM, MAP-
negative and MAP-positive culture tubes. Interestingly, the
lowest concentrations occurred above MAP-positive tubes with
growth score 2–4. This is most likely due to consumption of the
substance by replicating MAP. Recent findings that members
of the Actinobacteria in bio-filters assimilate dimethyl disulfide
contained in air emissions from livestock facilities support this
assumption (81).

The results of previous (14–17) and the present study provide
proof of principle that detection ofMAP presence and replication
is possible by analysis of VOCs in the headspace of culture tubes
already at very low bacterial density and before colony growth
becomes visible. Sampling was done at discrete time points
during the cultivation process by pre-concentration of VOCs
using different micro-extraction techniques. Volatiles were
identified later offline by GC-MS. This enabled the detection of
VOCs in very low concentrations in the ppbV—pptV range (see
also Supplementary Tables 2, 3). Utilization of VOC analysis
in practical diagnosis would demand a different approach.
VOC emission has to be measured continuously to enable
monitoring of the concentration dynamics of individual marker
substances. Analytical platforms that allow online analysis of
VOC emissions, such as ion mobility spectrometry (IMS), ion
flow tube-mass spectrometry (SIFT-MS) or proton transfer
reaction-mass spectrometry (PTR-MS), respectively, are available
and could be adapted for this purpose. The incubation time of
cultures minimally necessary for correct classification of samples
has to be defined. A broader knowledge about the sources of
the potential marker compounds and an assessment of their
robustness in respect to further matrices and increased sample
sizes is needed. Finally, the discriminatory performance of the
adapted analysis systems compared to established diagnostic
methods, in particular to direct PCR against the same samples,
has to be evaluated.

CONCLUSION

The present paper described VOC profiles of MAP cultures
from native samples for the first time. MAP-related changes in
headspace VOC composition were clearly detectable and not
masked by emissions from original sample material. Most VOCs
highlighted in this paper have been described for pure MAP
cultures before, and some of themwere included in theMAP core
profile (17) showing a consistent tendency above MAP cultures
in comparison to control vials. In contradiction to the published
core profile, furans exhibited a decrease in concentration above
MAP cultures in the present study. The reasons for this reversal
remain unclear. However, the potential of VOC analysis to
detect bacterial growth before colonies become visible could
still be confirmed. Thus, cultural diagnosis of paratuberculosis
could eventually be accelerated by monitoring VOC emissions
of growing MAP bacteria. In order to develop a VOC-based
diagnostic test, further validation studies are needed to increase
the robustness of indicative VOC patterns for early MAP growth.

The techniques presented in this paper are not restricted
to MAP, but could be applied to other bacterial cultures as
well. However, influencing parameters must be taken into
consideration, such as medium composition and measuring
technique (pre-concentration, detection, and quantification of
VOCs), which will affect the resulting VOC panel. Defined
framework conditions are a prerequisite to assess a reliable
VOC profile. For a first screening for putative VOC markers,
the selected technique should cover a wide range of substance
classes. Indicative compounds can be extracted from the full
panel by random forest-based approaches, as presented here,
which facilitate the consideration of multivariate VOC patterns
and return a ranking of the compounds with few preconditions
on the VOC data.
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