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The primary goal of nursery pig management is making a smooth weaning transition

to minimize weaning associated depressed growth and diseases. Weaning causes

morphological and functional changes of the small intestine of pigs, where most of the

nutrients are being digested and absorbed. While various stressors induce post-weaning

growth depression, the abrupt change frommilk to solid feed is one of the most apparent

challenges to pigs. Feeding functional feed additives may be viable solutions to promote

the growth of nursery pigs by enhancing nutrient digestion, intestinal morphology,

immune status, and by restoring intestinal balance. The aim of this review was to provide

available scientific information on the roles of functional feed additives in enhancing

intestinal health and growth during nursery phase. Among many potential functional

feed additives, the palatability of the ingredient and the optimum supplemental level are

varied, and these should be considered when applying into nursery pig diets. Considering

different stressors pigs deal with in the post-weaning period, research on nutritional

intervention using a single feed additive or a combination of different additives that

can enhance feed intake, increase weight gain, and reduce mortality and morbidity are

needed to provide viable solutions for pig producers. Further research in relation to the

feed palatability, supplemental level, as well as interactions between different ingredients

are needed.

Keywords: feed additives, intestinal health, newly weaned pigs, nutritional intervention, weaning stress

INTRODUCTION

Weaning is considered as one of the most critical periods in pig management. It is associated with
environmental, social, and dietary stress (1–3), and those various stressors result in low feed intake,
body weight loss, and a high incidence of diarrhea, which consequently, can lead to mortality (4, 5).
Even though trends for weaning ages at large commercial farms increase to 3–4 weeks of age, pigs
are naturally weaned at the age of 12–17 weeks (6, 7). Upon weaning, at typical commercial farms,
pigs deal with multiple stressors due to changes such as separation from the sow, relocation with
new littermates, and sudden dietary change from sowmilk to solid feeds (8). Inadequate feed intake
after weaning results in insufficient dietary nutrients utilization and local inflammation (9–11). As a
consequence, weaning causes profound changes in the gastrointestinal tract (GIT) of pigs. Intestine
is a major site of nutrient digestion and absorption. Intestinal disorders after weaning are caused
by alterations in architecture and functions with villus atrophy and crypt hyperplasia and increase
in intestinal permeability (12). Moreover, intestinal microbiota disruption and changes are possibly
linked to diarrhea and pathogenic infections after weaning (13–16).
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Increased research needs and interests in understanding
intestinal health in pigs are well-reflected in the number of peer
reviewed papers searchable in PubMed (using intestinal health in
pigs as keywords in the title or abstract). Since 1960 and until
2005, there have been < 10 papers searched in PubMed, which
has been 10 folds increased by 2018 and then 180 papers in 2020.
This review focuses on feed additives as nutritional strategies to
overcome weaning challenges.

WEANING ASSOCIATED FUNCTIONAL
CHANGES IN THE SMALL INTESTINE

Morphological Changes
Enterocytes are composed of villi projecting into the lumen,
and a folded cell monolayer structured into crypts in pigs
(17). Villi are mainly lined by enterocytes, goblet cells, and
enteroendocrine cells, and the crypts are the main site containing
stem cells, proliferative and undifferentiated cells, and a subset of
differentiated secretory cells (Paneth, goblet and enteroendocrine
cells) (18) as shown in Figure 1. When stem cells divide, they go
through a cell division into a new stem cell and a committed
daughter cell (19). The differentiation and maturation of each
cell type happens as the cells move either migrate up the crypt–
villus axis (enterocytes, mucous, and enteroendocrine cells) or
downwards to the bottom of the crypt (Paneth cells) (20). In
the mammalian small intestine, active enterocyte proliferation
is restricted to the crypts at the base of the villi (21). Stem cells
in the crypts undergo cell division and differentiation to form
mature absorptive enterocytes, mucus- producing goblet cells,
and enteroendocrine cells, and those cells migrate toward the
villus tip, where they are discarded into the intestinal lumen (22).

After weaning, a consistent series of intestinal alterations
occur. Architectural alterations associated with weaning reported
in previous studies are presented in Table 1. Within 24 h of
weaning, villus height was shown to reduce by 75% compared to
pre-weaning status (5). The height reduction of villi is a result of
increased cell loss and/or reduced crypt cell production (5). The
villus atrophy and the reduction in crypt cell production during
the post-weaning period result in loss of mature enterocytes,
which could cause a decrease in nutrient absorption (26, 28, 29).
Reduced activity of brush-border enzymes, such as lactase and
peptidases and nutrient transporters, have been observed to be
correlated with shortened villus height (30, 31).

Barrier Function
Tight junction proteins between epithelial cells form the barriers,
which closes the paracellular space between epithelial cells
regulating permeability through the epithelial layer (32). These
proteins consist of transmembrane proteins such as occludin
and claudins, as well as cytoplasmic proteins such as zonula
occludens (ZO) (33). As a barrier between the luminal and
basolateral compartments, tight junction proteins control the
passive diffusion of ions and other small solutes, through the
paracellular pathway (34). These tight junction proteins serving
as a filter to allow important dietary nutrients, electrolytes,
and water to translocate from the lumen of the intestine into
circulation (35–37). Increases in intestinal permeability can result

in inflammatory responses by allowing the entry of toxins,
allergenic compounds, or bacteria (38, 39). Intestinal barrier
function can be compromised by various factors, such as age, diet,
pathogens, and diseases (40, 41).

Weaning induced impaired barrier function of epithelial cells
promotes the entering of pathogenic bacteria and allergenic
compounds from the lumen into the body (12, 42). Weaning
causes compromised paracellular barrier function (2, 43). Active
absorption decreases when pigs are weaned at 3 weeks of age or
earlier as a process of natural intestinal maturation stimulated
by weaning (Table 2); however, if pigs are weaned after 3
weeks of age, the active absorption is no more affected by
weaning indicating weaning at an early age can disrupt barrier
function (43).

Mucosal Immunity at Weaning
Up to 70% of the immune cells are localized in the mucosa
and submucosa of the intestine (49, 50). The gut-associated
lymphoid tissue (GALT) consists of both isolated and aggregated
lymphoid follicles forming Peyer’s patches (PP) and mesenteric
lymph nodes (51). The induction of intestinal immune reactions
starts with antigen presentation by microfold cells (M cells)
(52). Lamina propria serves as a mucosal compartment for
the regulation of immune responses (predominantly IgA), with
few T-cells or dendritic cells, but with myeloid cells with
the characteristics of macrophages and granulocytes (53). The
production of secretory antibodies, mostly IgA and IgM, is the
major defending characteristics of the mucosal immune system.
These antibodies are actively transported by immature epithelial
cells in the crypts, and immune exclusion is carried out by
the generated in cooperation with innate non-specific defense
mechanisms (54). Two important periods of maximum exposure
to antigens occur immediately after birth and at weaning. At
weaning, the abrupt changes in the diet and environment induce
alterations in the mucosal immune response (15).

The immune system in the intestine of pigs reaches an
adult-like structure at 7-week-old age (55). Conventionally,
weaning of pigs is done in the range of 3–4 weeks old, when
cytotoxic (CD8+) T cells are primarily absent (55). Weaning
also affects the systemic development of innate and adaptive
immunity mainly as a consequence of the withdrawal of milk
(56). Up- regulated expression of pro-inflammatory cytokines is
observed in pigs at weaning (42). Recent studies have shown that
pro-inflammatory cytokines, including tumor necrosis factor-
α, interferon-γ, interleukin-1β, induce disturbance in intestinal
barrier and increase intestinal epithelial permeability (57–59).
In addition, inflammation is often associated with intestinal
oxidative stress (60, 61). Disruption of cellular redox status can
cause excess production of pro-inflammatory cytokines, which
could further impair intestinal function (62, 63). The appropriate
development of the intestinal immune system and maintaining
normal redox state are essential for optimum growth and
performance of the pigs. Controlling the intestinal inflammation
by the over expression of intestinal pro-inflammatory cytokines
may alleviate subsequent intestinal disorders induced by the
weaning stress.
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FIGURE 1 | Intestinal epithelial layer.

TABLE 1 | Morphological changes in the small intestine of pigs after weaning.

Weaning age (day) Intestinal section Results References

21 Small intestine Decreased villus height and increased crypt depth during day 11 post-weaning (5)

21 or 35 Jejunum Decreased villus height during day 3 post-weaning when weaned at 21 or 35 day (23)

14 Small intestine Decreased villus height to crypt depth ratio at day 7 post-weaning (24)

28 75% of small intestine Increased crypt depth at day 5 post-weaning (25)

26 Small intestine Decreased villus height at day 2 and 4 and decreased villus height to crypt depth ratio at day 2

and 4 post-weaning

(12)

29 Jejunum Decreased villus height from day 2 post-weaning with minimal length was observed at day 3

post-weaning and increased crypt depth at day 5 post-weaning

(26)

21 Jejunum Decreased villus height from day 2 post-weaning and increased crypt depth from day 5

post-weaning.

(27)

Intestinal Microbiota
In pigs, the hindgut is the major site of microbial fermentation,
and the microbial population in the small intestine is less
diverse than the hindgut (64). The small intestine is a
major place for nutrient absorption, and microbiota present
in the outer mucosal layer of the small intestine are more
susceptible to dietary influence (65, 66). The small intestinal
mucosa is frequently exposed to various exogenous antigens
and microbial components from feed ingredients. Changes in

mucosa-associated microbiota may have enormous effects on
host growth and development (14, 16, 67). Most of the past
studies are focused on the dietary intervention on luminal and
fecal microbiota, few studies evaluated on mucosa-associated
microbiota. Post-weaning dietary intervention showed a long
lasting effect on mucosa-associated microbiota, but not on
digesta in the small intestine (16, 66). The microbial community
within the outer layer of the mucosa is closely connected with
host tissues, mucosa-associated bacteria are in direct competition
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TABLE 2 | Impact of weaning age on intestinal healtha.

Parameter Weaning age (day) Experimental

period (day)

Early weaning impact References

Morphology 21 vs. 28 56 ND (44)

18 vs. 20 4 ↓ Villus height when challenged with ETEC (45)

15, 18 vs. 23 35 ↑ Lamina propria cell counts (46)

28 vs. 49 7 ↓ Villus height (47)

Barrier function 21 vs. 28 56 ↑ Expression of tight junction proteins in the jejunum (44)

18 vs. 20 4 ↓ TER when challenged with ETEC (45)

15, 18 vs. 23 35 ↓ TER and ↑ mucosal-to-serosal flux of mannitol and inulin (46)

28 vs. 49 7 ↑ Mucosal-to-serosal transport of horseradish peroxidase (47)

Mucosal immunity 21 vs. 28 56 ND (44)

18 vs. 20 4 ↑ Mast cell activation when challenged with ETEC in pigs weaned at day 20,

but not at 18

(45)

15, 18 vs. 23 35 ↑ Numbers of mast cells, corticotrophin-releasing factor, and cortisol levels (46)

Microbiota 14, 21, 28, vs. 42 7 ↓ Microbial diversity and richness (48)

aND, no differences were observed; ETEC, Enterotoxigenic F18 E. coli; TER, transepithelial electrical resistance.

with substrates with the host (68). Distinct microbial populations
present throughout the gastrointestinal tract due to the different
physicochemical conditions and substrate availability (69, 70).
The fecal microbiota is distinctly different from that of the
luminal of the small intestine. The similarity index of the fecal
microbiota and luminal microbiota of the large intestine was
0.75, whereas it was only 0.38 when comparing the fecal and
luminal microbiota of the small intestine (69).Mucosa-associated
microbiota of cecum was distinctively different from that of the
digesta in the cecum (64). From the outer mucosal layer into the
lumen, a rapid declining oxygen gradient exists, which generating
a distinct microenvironment between mucosal tissue and lumen
(71). Mucosa-associated microbiota provides a line of defense
against pathogens and modulates the immune status of the host
(54, 72–74). The microbiota induces production of IgA by the
mucosal immune system, which is secreted into the lumen to
limit bacterial colonization and prevent penetration of bacteria
through the epithelial layer (54, 75–77).

At weaning, the abrupt changes in the diet and environment
induce alterations in the intestinal microbiota (15, 78). During
the weaning transition, a major shift in the dominant genus
(Bacteroides to Prevotella) was observed (79). Yang et al. (80)
compared microbiota composition of healthy and diarrheic
piglets and found the diarrheic piglets had an altered competitive
relationship between Prevotella and Escherichia before weaning
and had lower relative abundances of five genera that play
key roles in nutrient metabolism (Bacteroides, Ruminococcus,
Bulleidia, and Treponema) than healthy piglets after weaning. In
a similar study (81), diarrheic pigs had a lower Bacteroidales, the
fiber-degrader family, than non-diarrheic pigs during weaning,
which was considered as a biomarker of diarrhea. Reductions in
Lactobacilli is one of the most evident change after weaning (78).
It was postulated the alterations in the composition and activity
of the GIT microbial community is correlated with pathogenic
infections after weaning (4, 82). A lower stability of the microbial
community structure was observed in the ileal digesta of weaned

pigs than that of unweaned pigs (78). The intestinal bacterial
community composition was shown to become stable at 6
months of age (69). Table 2 summarizes the impact of weaning
age on intestinal structure and function.

NUTRITIONAL INTERVENTION

To assist in overcoming the weaning-associated intestinal
dysfunction and depressed growth, effective dietary
strategies need to be explored. Feed additives including
protein hydrolysates, emulsifiers, prebiotics, probiotics, feed
enzymes, nucleotides, organic acids, phytogenic feed additives,
immunoglobulin-containing compounds, and/or mycotoxin
deactivators are commonly used in the nursery pig diets
to promote growth and intestinal health (see Table 3). The
following session reviews the effects of selected feed additives.

Protein Hydrolysates
Protein hydrolysates are produced from a variety of protein
sources by chemical, microbial or enzymatic hydrolysis to
eliminate or reduce anti-nutritional factors (127). Typical protein
hydrolysates used in animal diets are animal protein hydrolysates
(such as salmon viscera and porcine intestines) and plant
protein hydrolysates (such as soybean protein hydrolysates)
(128). Through the production of protein hydrolysates, anti-
nutritional factors are totally or partially hydrolyzed, which make
those hydrolysates a high-quality protein source for nursery pigs
(129–131). Digestion of protein is mainly completed in the small
intestine (132). After weaning, decreased enzymatic activity of
peptidases (aminopeptidase N and dipeptidylpeptidase IV) were
detected (26). Improvements in crude protein digestibility by
soy protein hydrolysates supplementation have been reported
in nursery pigs (133–135). Blood plasma is a commonly used
animal protein hydrolysate in nursery pig diets. It has been
shown to increase growth performance (136), enhance intestinal
barrier function (121), and modify intestinal immune function
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TABLE 3 | Selected feed additives targeting intestinal health of newly weaned pigs with additional references.

Feed additive Initial body

weight or age

Feeding

duration

(day)

Observations References

Fermented

soybean meal

5.5 ± 0.2 kg 28 Improved growth efficiency and reduced diarrhea (83)

35 day 30 Increased nutrient digestibility, and positively affected fecal microflora by increasing lactic acid

bacteria and decreasing Escherichia coli count

(84)

35 day 35 Increased ADG and final body weight, and reduced serum urea nitrogen, increased serum

immunoglobulin (Ig) G, IgM and IgA, and increased villus height of duodenum, jejunum, and

ileum

(85)

5.97 ± 0.14 kg 15 Modulated the expression of genes related to inflammatory response and anti-oxidant activity

leading to a reduction on serum cortisol after lipopolysaccharide challenge

(86)

Fermented

soybean protein

5.8 ± 0.9 kg 28 Improved ADG, ADFI, FCR, and increased digestibility of dry matter, gross energy, crude

protein, fat, Ca, P, and increased villus height of duodenum, jejunum, and ileum

(87)

Emulsifiers 6.0 ± 0.2 kg 14 Positively affected fat digestibility (88)

7.9 ± 1.0 kg 35 Increased ADG, digestibility of dry matter, gross energy, and crude fat, and decreased serum

triglyceride concentration

(89)

7.2 ± 0.1 kg 19 Increased villus height of duodenum and jejunum, enhanced barrier function and positively

affected fat digestibility

(90)

Probiotics 7.7 ± 1.1 kg 21 Increased feed intake, ADG, and increased digestibility of nitrogen and phosphorus (91)

7.6 ± 0.6 kg 42 Improved ADG and FCR during 14-day post-weaning, increased protein digestibility, increased

villus height of jejunum and ileum, and increased expression of tight junction proteins when

added into a low crude protein diet.

(92)

21 day 16 Modulated intestinal microbiota by increasing Firmicutes phylum in the ileum and increased

Actinobacteria phylum which includes Bifidobacteria in the colon

(93)

8.4 ± 0.2 kg 28 Microbial shifts in the porcine gut in response to diets containing E. faecalis were similar to the

response to which containing antibiotics

(67)

Prebiotics 6.3 ± 0.3 kg 28 Increased growth efficiency, increased digestibility of dry matter and affected Bifidobacteria

concentrations

(94)

6.13 ± 0.13 kg 14 Selectively stimulated the number of Lactobacilli whereas suppressed E. coli and

Sreptococcus. suis and improved intestinal barrier function

(95)

5.65 ± 0.27 kg 21 Upregulated the expression of TLR4 and calprotectin protein alleviating inflammation in the

intestine and decreased diarrhea incidence challenged with enterotoxigenic E. coli

(96)

4.72 ± 0.23 kg 21 Increased apparent digestibility of crude protein, calcium, and phosphorus, and decreased the

incidence of diarrhea, increased the fecal shedding of Lactobacillus reduced E. coli, and

improved small intestinal morphology and enhanced the growth performance

(97)

4.9 ± 0.3 kg 14 Reduced incidence of diarrhea when challenged with E. coli. K88 (98)

Synbiotics 4.8 ± 0.6 kg 24 Reduced diarrhea, and increased intestinal microbial diversity when challenged with E. coli K88 (99)

7.19 ± 0.45 kg 28 Improved ADG and FCR, increased digestibility of dry matter and crude protein, and increased

the fecal abundance of Lactobacillus spp. and reduced Enterobacteriaceae counts

(100)

8.09 ± 0.25 kg 28 Modulated the microbiota by increasing Ruminococcaceae and Lachnospiraceae and

decreasing Erysipelotrichaceae and Prevotellaceae. Enhanced intestinal fermentation by

increasing the concentration of acetate in feces

(101)

Xylanase 10.7 ± 1.2 kg 21 Increased ADG, and digestibility of dry matter and gross energy, and reduced digesta viscosity,

and reduced inflammatory response

(102)

7.2 ± 0.4 kg 24 Enhanced growth performance and gut morphology, reduced digesta viscosity, reduced

intestinal oxidative stress and the enterocyte proliferation

(103)

7.5 ± 0.1 kg 19 Increased digestibility of gross energy and total non-starch polysaccharide by increasing the

digestibility of arabinoxylan. Reduced pro-inflammatory digesta viscosity, and improved

intestinal barrier function

(104)

Phytase 28 day 42 Increased ADG, ADFI, and growth efficiency, and increased digestibility of minerals (105)

6.27 ± 0.01 kg 35 Enhanced growth performance and feed energy efficiency (106)

Protease 6.3 ± 0.5 kg 14 Improved ADG, ADFI, FCR, reduced diarrhea, increased digestibility of crude protein,

enhanced intestinal morphology, and increased nutrient transport efficiency

(107)

8.3 ± 0.63 kg 21 Improved growth performance and reduced fecal score. Improved digestibility of dry matter,

gross energy, crude protein, and phosphorus. Reduced ammonia nitrogen in cecum and colon

and total volatile fatty acid in ileum and colon. Reduced the E. coli and increased Lactobacillus

count in the colon

(108)

(Continued)
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TABLE 3 | Continued

Feed additive Initial body

weight or age

Feeding

duration

(day)

Observations References

6.42 ± 0.12 kg 42 Enhanced growth performance and digestibility of dry matter, and nitrogen. Reduced blood

creatinine and fecal NH3

(109)

Nucleotides 4.8 ± 0.4 kg 21 Improved ADFI, positively affected ADG, and positively enhanced villus structure (110)

7.3 ± 0.1 kg 28 Improved ADG and ADFI (111)

7.3 ± 0.3 kg 42 Increased final body weight, ADG, and growth efficiency, and increased digestibility of dry

mater and energy

(112)

Organic acids 7.2 ± 0.2 kg 42 Improved ADG and FCR, increased villus height, increased acetic and propionic acid

concentrations, and altered microbial community structure

(113)

6.3 ± 0.6 kg 14 Reduced inflammatory cytokines and altered microbial community composition (114)

8.63 ± 1.56 kg 28 Improved ADG and FCR. Reduced diarrhea score by reducing E. coli count in feces. Improved

digestibility of dry matter, ether extract, total carbohydrates, fiber, and phosphorus and

improved intestinal morphology

(115)

Phytogenic feed

additives

21 day 11 Reduced diarrhea and inflammation when challenged with E. coli (116)

7.4 ± 1.3 kg 35 Increased post-weaning feed intake (117)

8.4 ± 1.6 kg 35 Increased weight gain, improved fecal consistency, and increased digestibility of dry matter and

crude protein

(118)

8.2 ± 2.3 kg 22 Decreased pro-inflammatory cytokines (119)

25 day 42 Increased growth efficiency and increased nutrient digestibility (120)

Blood plasma 5.5 ± 0.1 kg 14 Reduced diarrhea and decreased pro-inflammatory cytokines (121)

6.0 ± 0.1 kg 14 Increased growth efficiency and reduced activation of the immune system (122)

6.8 ± 0.1 kg 12 Improved ADG, ADFI, and growth efficiency (10)

Mycotoxin

deactivators

8.2 ± 0.1 kg 34 Reduced oxidative stress and immune activation (123)

9.9 kg 27 Improved body weight, ADFI, and FCR (124)

6.0 ± 0.3 kg 35 Improved body weight, ADG, and ADFI (125)

9.1 ± 0.1 kg 42 Improved body weight, and ADG. Reduced TNFα, and 8-OHdG (126)

(122) when fed to newly weaned pigs (further information
see 3.9). Additionally, some peptides derived from protein
hydrolysis especially milk and soy protein possess various
biological functions including antimicrobial, antihypertensive,
and immunomodulatory activities (86, 128, 137, 138).

Soy Protein Hydrolysates
Soybean meal is one of the most commonly used ingredients
in animal feed; however, digestive disturbances are often
observed when it is fed to young animals especially newly
weaned pigs (139–141). Soybean meal contains various
anti-nutritional factors including trypsin inhibitors, lectins,
indigestible carbohydrate complexes, and soybean globulins
(130, 139, 142, 143). Trypsin inhibitors and lectins can be
inactivated by proper heat treatment and fat extraction
(140, 144). However, the presence of indigestible carbohydrate
complexes, antigenic soybean globulins, and residual trypsin
inhibitor limits its use in young pig diets (139, 144, 145). Glycinin
and β-conglycinin, antigenic proteins, are the major anti-
nutritional factors that cause allergic responses in young animals
(139, 146, 147). These proteins can cause hypersensitivity that
induce abnormal intestinal morphological change and diarrhea
when fed to young pigs (139, 148, 149). Fermented soybean meal

usingmicroorganisms such asAspergillus oryzae, Bacillus subtilis,
and L. casei and enzyme-treated soybean meal are shown to have
reduced anti-nutritional factors and increased concentrations of
CP and AA than conventional soybean meal (83, 150). Through
the microbial fermentation or enzymatic treatment of soybean
meal, the antigenic proteins are hydrolyzed into small size
peptides and the glycosidic bonds in the carbohydrate fraction
in soybean meal are broken down by enzymes produced by
fungus and bacteria, or by a mixture of enzymes (129, 151).
Fermented and enzyme-treated soybean meal have been shown
to improve growth performance and feed efficiency of nursery
pigs when partially replaced conventional soybean meal in the
diets (83, 84). Soy oligopeptides, a soy protein hydrolysate,
was shown to improve amino acid absorption compared to an
intact soy protein or corresponding amino acid mixtures in a
human study (152). Amino acid absorption in the portal blood
from a soy protein hydrolysate was more efficient than the
constituent amino acids from an amino acid mixture and those
from an intact soy protein in rats (153). In addition, enhanced
intestinal morphology was observed when fed soy protein
hydrolysates to nursery pigs (85, 87). Despite the improved
nutritional values, the bitter taste of soy hydrolysates resulting
from the hydrolysis of soy proteins has been a major problem
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in food applications (154, 155). The hydrophobic amino acids
are shown to be involved in the bitter taste of various peptides
(156). Concealed hydrophobic side chains in the interior of the
protein are released with the protein hydrolysis which elucidates
bitterness (157, 158). Therefore, the feed palatability testing may
be necessary to ascertain if soy hydrolysates can promote growth
of pigs without negatively affecting feed intake of nursery pigs.

Emulsifiers
Animal fats and vegetable oils are commonly added to meet
energy concentration in the diet. To be absorbed in the
gastrointestinal tract, dietary fat has to be emulsified by detergent
action of the endogenous emulsifiers (such as bile salts) and
hydrolyzed by lipase into fatty acids and mono- and diglycerides.
Sow’s milk contains ∼40% fat on a dry matter basis (159, 160);
whereas, typical nursery diets include fat from 3 to 6% as a
maximum level (161). Digestibility of fat from sow’s milk in
suckling pigs is over 90%; however, digestibility of fat from solid
feed in newly weaned pigs is as low as 73% (162, 163) and
increases gradually return to the preweaning level ranging from
4 to 6 weeks post-weaning (23, 164). The form of the milk fat
presents as micelles and consequently aid digestion (165) by
pancreatic lipase, whereas fat in solid diets is not in an easily
accessible form. The synthesis of hepatic bile acid is low at
weaning in pigs (166). Therefore, the emulsification process is a
rate-limiting step in the digestion of dietary fat during this period.

Lysophospholipids
Phospholipids, nature’s principal surface-active agents, performs
as an excellent emulsifying agent. The main constituents
of the phospholipid mixture are phosphatidylcholine,
phosphatidylinositol, phosphatidylethanolamine, and
phosphatidic acid (167). The majority of the phospholipid in the
small intestine is derived from bile with a smaller component
coming from the diet. Phospholipase A2, a pancreatic enzyme
secreted in bile, hydrolyzes the ester bond at the sn-2 position of
the phospholipid, yielding a free fatty acid and lysophospholipids
with a different head group, which are then incorporated
into micelles for subsequent absorption (168–170). On a
commercial scale, lysophospholipids are often produced by the
modification of soybean phospholipids (chemical or enzymatic
methods) using phospholipase A2 which yields a mixture of
lysophospholipids with different head groups depending on
the source of the phospholipids (e.g., lysophosphatidylcholine,
lysophosphatidylinositol, lysophosphatidylethanolamine, and
lysophosphatidic acid) (170, 171). Hydrophilic-lipophilic balance
(HLB) values are assigned to emulsifiers from 0 to 20, and higher
values are assigned to those are more hydrophilic. Soybean
lysophospholipids have an HLB value of 19 (172), whereas
the native soybean phospholipids have values of 5 (173). In
addition, lysophospholipids have been reported to involve in
various biological processes such as cell growth, proliferation and
differentiation mediated by specific G-protein coupled receptors
(174–176). Lysophospholipids supplemented in the diet showed
to increase crypt cell mitosis and enhance villus morphology in
broiler chickens (177). Lysophospholipids involve in epithelial
cell restitution via cytoskeletal remodeling with activation of

actin filament redistribution and stress fiber formation (178).
It showed to reduce mucosal damage and inflammation by
increasing epithelial cell restitution when induced colitis in rats
(179). In broiler chickens, lysophospholipids increased crypt cell
mitosis (180), and enhanced villus morphology (177).

Prebiotics
One of the most frequently employed product is prebiotics
(181). Prebiotics has been widely used for improving beneficial
microbial populations in the intestines. The definition of
prebiotics was first introduced by Gibson and Roberfroid (182)
as “Non-digestible food ingredient that beneficially affects the
host by selectively stimulating the growth and/or activity of
one or a limited number of bacteria in the colon, and thus
improves host health.” This concept has been refined during
the past 20 years, and the definition to date was defined
by Bindels et al. (183) as “a prebiotic is a non-digestible
compound that, through its metabolization by microorganisms
in the gut, modulates composition and/or activity of the gut
microbiota, thus conferring a beneficial physiological effect
on the host.” Bindels et al. (183) indicated the metabolic
benefits attributed to prebiotics do not require a selective
fermentation, which was mentioned in the earlier concept.
The revised definition instead focused on the concept of
ecological and functional characteristics of the microbiota to
be relevant for host physiology, such as ecosystem diversity,
and the support of broad microbial consortia. Many studies
focusing on prebiotics such as inulin, fructooligosaccharides,
galactooligosaccharides, and mannanoligosaccharides, proved
the link between prebiotics consumption and restoring
intestinal balance (184–187). Additionally, regardless of
bacterial fermentation, prebiotic oligosaccharides (such as
fructooligosaccharides and galactooligosaccharides) were shown
to exert an anti-inflammatory effect or have an anti-adhesive
activity to inhibit binding pathogens (188, 189). Studies
with fructooligosaccharides showed that supplementing with
fructooligosaccharides caused a shift in intestinal microbial
composition via modulating short-chain fatty acids production,
which provides substrates and promotes normal proliferation
and differentiation of intestinal cells (190, 191).

Fermented Rice Bran Extracts
Rice bran, a co-product obtained during rice milling process, is
rich in cell wall materials such as hemicellulose and cellulose
containing neutral detergent fiber in the range of 19–34% (192,
193). The high fiber content is a major limitation of its use in
young animal diets especially in newly weaned pigs. Defatting,
fermentation, and enzymatic treatment (193–195) have been
applied to improve the nutritional value of rice bran. Prebiotic
properties of rice bran were reported in studies with mice
(196) and pigs (94). Glucooligosaccharides, one of the emerging
prebiotics was shown to be assimilated by Bifidobacterium
species, but not by pathogenic species including Clostridium and
Salmonella (197). Rice bran oligosaccharides, mainly composed
of glucooligosaccharides, was reported to possess prebiotic
potential (193, 198). The rice bran glucooligosaccharides was
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shown to be able to promote the growth of Lactobacillus species,
which was not hydrolyzed by human intestinal conditions.

Probiotics
Probiotics is defined as “living microorganisms that, on
ingestion in sufficient numbers, exert health benefits beyond
basic nutrition” (199). Prebiotics and probiotics exert their
beneficial effects in a similar manner, through the modulations
in the intestinal microbiota. Probiotics affect the microbiota
via beneficial microorganisms, whereas prebiotics alter the
microbiota by the supply of a substrate. Cultures commonly
used in feed are lactic acid bacteria, Bacillus and yeasts (200).
The beneficial microbes play an important role in maintaining
the host health. They reduce the colonization and invasion of
pathogens, maintain epithelial integrity, and enhance immune
function (201, 202). Probiotics used in pig diets showed beneficial
effects including reduced diarrhea incidence and improved
in growth performance (13, 203). The combinational use of
prebiotics and probiotics as synbiotics beneficially affects the
microenvironment of the intestines to improve the survival
and colonization of live beneficial microorganisms in the
GIT (204–206).

Postbiotics
Postbiotics is relatively new term in animal science and
collectively refers to bioactive compounds produced by probiotic
microorganisms during a fermentation process (207, 208).
Postbiotics, in fact, has been used in animal production in
different terms including bacterial extracts and yeast culture.
Postbiotics often includes microbial cell contents and cell wall.
Fermentation products of Saccharomyces cerevisiae, also called
yeast culture, have long been used in animal feeds to enhance
appetite of lactating animals (104, 209–211), but more recently to
enhance intestinal health of nursery pigs by bioactive compounds
in fermentation products (212, 213). Yeast culture includes
residual yeast cell wall fragments, and various products from
yeast fermentation such as organic acids, nucleotides, vitamins,
and amino acids (104). Yeast cell wall fragments have also
used as postbiotics to modulate intestinal immune status and
health (2, 126, 214). Selected bioactive compounds in postbiotics
are proposed to alter microbiota composition (215). Selected
postbiotics could also be investigated for their synergistic benefits
with the use of probiotics.

Feed Enzymes
The major goal of the use of feed enzymes is to eliminate
anti-nutritional factors to better utilize nutrients in the feed
(200, 216). Carbohydrase has been widely used for their roles
in breaking down non-starch polysaccharides (NSP) present
in most vegetable ingredients (217, 218). The use of NSP
enzymes showed to improve the growth performance of nursery
pigs by enhancing intestinal health, nutrient digestibility (192,
194, 195). Chen et al. (102) evaluated supplemental effects
of xylanase fed to nursery pigs with or without 30% corn
distillers’ dried grains with solubles (DDGS) as a source of NSP.
The supplementation of 30% DDGS increased digesta viscosity,
reduced the digestibility of dry matter and gross energy, and

increased intestinal inflammation, whereas the supplementation
of xylanase alleviated the negative effects on growth performance
by feeding high-level DDGS by reducing digesta viscosity,
improving nutrient digestibility, and reducing inflammatory
response. In addition, xylo-oligosaccharides generated in the
small intestine from xylans by xylanase hydrolysis could be
potential prebiotics for lactogenic bacteria which warrants
further research.

Protease breaks down peptide bonds in protein and
polypeptides. Specific protease can target allergenic proteins
in legume seed meals, such as glycinin and β-conglycinin
causing gut inflammation, diarrhea and growth reduction (108).
Duarte et al. (103) and Chen et al. (219) showed supplemental
protease reduced gut inflammation and improvement protein
digestibility and feed efficiency in nursery pigs. Phytase catalyzes
the phytate hydrolysis and releases phosphorous and phytate-
bound nutrients (220). The use of phytase increased phosphorus
digestibility, bone characteristics, and growth performance
(105, 221). More recently elevated dose of phytase so called
superdosing of phytase (often more than 10-folds of typical dose
levels) has received attention and applied in pig production. It
is hypothesized that typical supplementation level of phytase
would not completely hydrolyze phytate in the stomach and
superdosing of phytase would provide opportunities of complete
hydrolysis of phytate in the stomach. Complete hydrolysis of
phytate not only provides available phosphates along with release
of other essential minerals but also free inositol for their potential
function in insulin sensitivity and carbohydrate metabolism.

Nucleotides
Nucleotides are bioactive molecules that play important roles
in metabolic, structural and regulatory functions (222). The
milk of sow contain large concentration of nucleotides during
28-day lactation (223) that supplies the needs of the piglets. At
weaning, the requirement of nucleotides increases for immune
response and the intestinal recovery, whereas the endogenous
synthesis is insufficient to meet the requirements (224, 225)
and the weaning diet has low concentration compared with
milk (226). Therefore, exogenous sources of nucleotides can
be used to supply this demand and alleviate the effects of
the weaning stress (110, 111, 223, 226). Sauer et al. (226)
reported that dietary nucleotides positively affect the intestinal
morphology, the immune response, the hepatic function and
the microbiota. The consumption of nucleotides can improve
the feed efficiency of nursery pigs by reducing the immune
response and the oxidative stress status, whereas increasing
the villus height and the energy digestibility (110, 111). The
effect of dietary nucleotide on modulating the immune system
and the microbiota suggested that it can be used to prevent
post-weaning diarrhea in pigs as confirmed by Wiseman (225).
According to Li et al. (112) dietary nucleotides can reduce
diarrhea caused by enterotoxigenic E. coli by modulating the
microbiota and enhancing the immune response of weaning
pigs. Some of unsolved questions include the types and profiles
of nucleotides for the effectiveness. Commercially available
nucleotide supplements are typically obtained from yeast
extracts providing combination of adenosine-5-monophosphate
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(AMP), cytidine-5-monophosphate (CMP), guanosine-5-
monophosphate (GMP), and uridine-5-monophosphate (UMP).
Some others source nucleotides from bacterial fermentation
extensively including inosine-5-monophosphate (IMP). Ideal
ratio among nucleotides and functional uniqueness of IMP
warrant future investigations.

Organic Acids and Acidifiers
Organic acids have been used in the pig diets to decrease gastric
pH (227), prevent pathogenic bacterial growth (228), improve
nutrient digestion (229), and improve growth performance
(230). Gastric pH in weaned pigs ranges between 2.6 and
5.0, whereas the optimum gastric pH for vegetable protein
digestion is in the range of 2.0–3.5. Inclusion of organic
acids such as fumaric and citric acids are shown to have
beneficial effects in newly weaned pigs (231, 232). Organic acids
can modulate the intestinal microbiota by inhibiting the pH-
sensitive microbial without affecting the lactic acid bacteria
(233, 234). According to Ren et al. (235) 1% formic and
propionic acid mixture can reduce the inflammatory response
of weaning pigs challenged with enterotoxigenic E. coli. Current
challenges with organic acids, however, are their effectiveness
affecting luminal pH at a realistic supplementation level without
affecting appetite or feed intake of nursery pigs. Recent
advances to overcome these challenges include encapsulation or
coating technologies.

Phytobiotics and Phytogenic Feed
Additives
The major biological functions of phytogenic feed additives
(PFA) include improve feed palatability, stimulation of digestive
enzyme secretions, microbiota modulation, antimicrobial, anti-
inflammatory, and antioxidant activity (116, 117, 119, 236, 237).
The PFA are reported to improve piglets’ post-weaning feed
intake and growth performance when added into sow diets. A
mixture of phytogenic compounds (anethol, cinnamaldehyde,
and eugenol) used as feed additive for sows during late
gestation and lactation showed to increase post-weaning feed
intake and growth rate of piglets (117). The three compounds
were detected in amniotic fluid and the positive effects on
post-weaning performance were attributed to the maternal
exposure to the flavor of the phytogenic compounds. Li
et al. (118) evaluated the effects of essential oil (a mixture
of thymol and cinnamaldehyde) supplemented in feeds for
nursery pigs with or without antibiotic growth promotors.
The supplementation of thymol and cinnamaldehyde increased
growth of pigs during 35-day post-weaning period, and the effect
was similar to feeding antibiotics. In the same study, improved
dry matter and crude protein digestibility were detected by
the essential oil supplementation. Similar beneficial effects of
PFA on nutrient digestibility in s nursery pigs were reported
in other studies (120). The potential mechanisms of improving
nutrient digestibility may be partially due to the stimulation
of digestive enzymes activities and stimulation of bile secretion
by phytogenic compounds (238). Beneficial effects on intestinal
morphological changes may provide further information on
promoting growth performance; however, the results obtained

from different studies have not been consistent (239) where PFA
reduced feed intake possibly due to strong aroma from oregano
extracts. Commercial products often mask the aroma from PFA
by encapsulation or coating which are practical for the feed
application of PFA.

Immunoglobulin-Containing Compounds
Under the commercial production systems, pigs are usually
weaned at 3–4 weeks of age, whereas this is early stage of their
life when the ability of pigs to produce immunoglobulins is
not fully developed (55). The addition of immunoglobulins-
containing compounds in the post-weaning diets may be
beneficial. Immunoglobulin-rich product, blood plasma, has
been shown to have beneficial effects on increasing post-
weaning feed intake and growth rate, and reducing post-weaning
diarrhea (121, 122, 240). Furthermore, in disease challenge
studies with E. coli, blood plasma is reported to maintain
intestinal barrier function, increase antibody production, and
decrease pro-inflammatory cytokine expression (241, 242). In
addition, supplementation of blood plasma is reported to
alleviate negative impact on growth performance by feeding
mycotoxin contaminated feed (10). However, despite its high
nutritional value, the availability of amino acid (especially
lysine) can be reduced with excessive heating treatment during
manufacturing process of blood plasma (240). Additionally,
increasing biosecurity concerns using blood plasma has limited
its application in swine diets (24, 25).

Mycotoxin Deactivators
Among the mycotoxins identified (∼300–400), aflatoxins,
fumonisins, ochratoxin A, trichothecenes such as deoxynivalenol
(DON), and zearalenone are some of the mycotoxins that can
significantly affect animals’ health (27, 243). Impact of major
mycotoxins on nursery pigs are summarized in Table 4. Previous
studies have shown that young pigs are especially susceptible to
trichothecenes (especially DON), and fumonisins due to their
negative effects on intestines (252, 253). Consumption of DON-
contaminated feed can decrease feed intake, impair intestinal
barrier function, and increase intestinal inflammatory response
in pigs (123, 254–256). Exposure to DON causes epithelial
injuries and compromise barrier function by decreasing tight
junction proteins expression and canmodulate immune response
by increasing the susceptibility to enteric infections (257–
259). Commonly used methods include adsorbents (binding
agents), enzymatic or microbial detoxification, purified enzymes,
and/or “bio-protection” method using substances such as plant
ingredients. Absorbents can absorb certain mycotoxins such
as aflatoxin, but it does not work at the same extent to
other mycotoxins. Murugesan et al. (27), in a study comparing
the adsorption capacity of different commercially available
mycotoxin binder products, showed that tested products
have poor adsorption for DON. Alternative strategies such
as enzymatic or microbial detoxification, where mycotoxins
are catabolized or cleaved to less or non-toxic compounds
are much more effective compared to using binding agents
(27, 260). Holanda and Kim (123) reported that yeast-based
detoxifiers with functional components can improve detoxifying
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TABLE 4 | Impact of mycotoxins on nursery pigs and regulatory limit of major mycotoxins.

Initial body

weight or

age

Mycotoxin type and contamination level Experimental

period (day)

Impact Reference

11.4 ± 0.1 kg Aflatoxins - 140 or 280 µg/kg 28 Decreased weight gain and altered humoral and cellular

immune responses

(244)

14.2 ± 3.0 kg Aflatoxins - 250 or 500 µg/kg 70 Reduced ADG and ADFI (245)

27 day Deoxynivalenol - 3.2 mg/kg 34 Reduced ADG during the last 13 day (123)

10.3 ± 0.2 kg Deoxynivalenol - 4 mg/kg 21 Reduced ADG, ADFI, and growth efficiency (246)

8.9 kg Fumonisins - 7.2, 14.7, 21.9, 32.7, or 35.1

mg/kg

28 Decreased ADG, ADFI, and growth efficiency increased the

serum sphinganine-to-sphingosine ratio

(247)

28 day Fumonisins - 3.7 mg/kg 28 Increased the serum sphinganine-to-sphingosine ratio and

altered heart and intestine morphology

(248)

12–14 kg Orchratoxin A - 800 µg/kg 84 Decreased BW and increased kidney weight (249)

21 day Zearalenone - 1 mg/kg 22 Had no effect on growth performance; however negative effect

was shown on genital organs and serum hormones in gilts

(250)

10.4 ± 1.2 kg Zearalenone - 1.1, 2.0 or 3.2 mg/kg 18 Negatively affected immune function in gilts (251)

21 day Aflatoxins - 180 ug/kg; Fumonisins - 9 mg/kg;

Deoxynivalenol - 1 mg/kg

48 Reduced BW, ADG, ADFI, and growth efficiency (2)

6.8 ± 0.1 kg Aflatoxins - 2,778 µg/kg; Fumonisins - 170

mg/kg; Zearalenone - 1 mg/kg

33 Reduced ADG (10)

Regulatory limit of major mycotoxins in finished feed of young pigs (mg/kg)a

Region Aflatoxins Deoxynivalenol Fumonisins Zearalenone Ochratoxin A

United States 0.02 1 20 Not defined Not defined

European Union 0.02 0.9 5 0.1 0.05

aUnited States regulatory limit according to the Food and Drug Administration Regulatory Guidance for Toxins and Contaminants. European Union regulatory limit according to the

European Commission Directive 2003/100/EC and the European Commission Recommendation 2006/576/EC.

properties in newly-weaned pigs fed DON contaminated feed
(3.2 mg/kg), potentially by increasing adsorption capacity,
improving immune function, and enhancing intestinal health.
Fumonisins disrupt the synthesis of sphingolipids-containing
cell membrane because they have a chemical structure that is
similar to that of the sphingoid bases deoxysphinganine (261),
key enzymes involved in sphingolipid biosynthesis (262). This
dysregulation of sphingolipid biosynthesis causes accumulation
of the sphingoid bases (sphinganine and sphingosine), and
their metabolites (261, 263). Negative impact of fumonisins
include porcine pulmonary edema, damages to gastrointestinal
structure, and reduction in growth performance (254, 264, 265).
In a study evaluated effects of different commercial products
on mitigating fumonisins negative effects during nursery phase
showed a bentonite and yeast-based product alleviated negative
impact of fumonisin (50–60 mg/kg) on growth performance
(124). Different regulations on maximum levels of mycotoxins
for young pigs have been established by different countries;
however, previous studies have shown that the contamination
levels below the regulatory limits showed negative effects
on growth performance and immune function (see Table 4).
Furthermore, information on the regulatory limits on some
of the major mycotoxins (i.e., zearalenone and ochratoxin
A) and co-contamination of multiple mycotoxins are not
available. The co-contamination with multiple mycotoxins in
feed can cause more adverse effects than a single mycotoxin
due to the additive or synergistic interaction (266). Additionally,

limited practice on mitigating chronic exposure to low-
dose mycotoxins may negatively impact production efficiency.
Understanding the prevalence of mycotoxins in the feed and
applying effective interventions are critical to ensure young
pigs’ health.

CONCLUSIONS

At weaning, pigs deal with multiple stressors such as separation
from the sow, a new environment, separation from littermates
and cohabitation with new pigs, and the abrupt change of diet
types from liquid sow milk to solid feeds. Weaning causes
morphological and functional changes of the small intestine of
pigs where most of the nutrients are being digested and absorbed.
These changes can result in severe diarrhea and even cause
mortality. In addition, due to the increasing feed safety concerns,
volatile price of specialty feedstuffs, and regulatory changes on
using certain feed additives (i.e., antibiotics and zinc oxide), some
of the commonly used feedstuffs and additives in the nursery
diets have been limited for their use. Alternative nutritional
strategies aligning with these changes have been tried to combat
the weaning challenges.

In order to minimize weaning-associated depressed growth,
the need for developing effective nutritional strategies is
critical. Functional feed additives that have a positive influence
on enhancing intestinal health will aid in amelioration of
the depressed growth and intestinal dysfunction associated
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with weaning stress. The functional feed additives such
as protein hydrolysates, emulsifiers, prebiotics, probiotics,
postbiotics, enzymes, nucleotides, organic acids, phytogenic
feed additives, immunoglobulin-containing compounds, and
mycotoxin deactivators were evaluated their roles in promoting
intestinal health and growth of nursery pigs to allow better
nutritional management during the crucial post-weaning period.
The evaluations on how these feed additives affect the intestinal
architectural structure, intestinal barrier function, mucosal

immunity, and intestinal microbial community can provide
valuable information to formulate optimized nursery diets.
Combinational uses of these feed additives as synbiotics, could
provide further benefits to nursery pigs.
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