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This review provides an update of ecologically relevant phytochemicals for ruminant

production, focusing on their contribution to advancing nutrition. Phytochemicals

embody a broad spectrum of chemical components that influence resource competence

and biological advantage in determining plant species’ distribution and density in different

ecosystems. These natural compounds also often act as plant defensive chemicals

against predatorial microbes, insects, and herbivores. They may modulate or exacerbate

microbial transactions in the gastrointestinal tract and physiological responses

in ruminant microbiomes. To harness their production-enhancing characteristics,

phytochemicals have been actively researched as feed additives to manipulate ruminal

fermentation and establish other phytochemoprophylactic (prevent animal diseases)

and phytochemotherapeutic (treat animal diseases) roles. However, phytochemical-host

interactions, the exact mechanism of action, and their effects require more profound

elucidation to provide definitive recommendations for ruminant production. The

majority of phytochemicals of nutritional and pharmacological interest are typically

classified as flavonoids (9%), terpenoids (55%), and alkaloids (36%). Within flavonoids,

polyphenolics (e.g., hydrolyzable and condensed tannins) have many benefits to

ruminants, including reducing methane (CH4) emission, gastrointestinal nematode

parasitism, and ruminal proteolysis. Within terpenoids, saponins and essential oils also

mitigate CH4 emission, but triterpenoid saponins have rich biochemical structures

with many clinical benefits in humans. The anti-methanogenic property in ruminants

is variable because of the simultaneous targeting of several physiological pathways.

This may explain saponin-containing forages’ relative safety for long-term use and

describe associated molecular interactions on all ruminant metabolism phases. Alkaloids

are N-containing compounds with vast pharmacological properties currently used to

treat humans, but their phytochemical usage as feed additives in ruminants has yet

to be exploited as they may act as ghost compounds alongside other phytochemicals

of known importance. We discussed strategic recommendations for phytochemicals

to support sustainable ruminant production, such as replacements for antibiotics and

anthelmintics. Topics that merit further examination are discussed and include the role
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of fresh forages vis-à-vis processed feeds in confined ruminant operations. Applications

and benefits of phytochemicals to humankind are yet to be fully understood or utilized.

Scientific explorations have provided promising results, pending thorough vetting before

primetime use, such that academic and commercial interests in the technology are

fully adopted.

Keywords: feed additive, methods, nutrition, rumen modifiers, ruminants, antinutritive factor

INTRODUCTION

Ideal anaerobic fermentation in the rumen relies on a steady
supply of substrate (i.e., quantity and frequency), preservation
of a favorable condition for microbial growth (e.g., temperature,
pH, substrate mixing), and constant removal of undesirable
substances (e.g., bacterial toxins, hydrogen), so that the profile
and amount of volatile fatty acids (VFA) produced and
microbial protein leaving the rumen meets the ruminant’s
daily requirements for energy and protein without having
deleterious impacts in the rumen health and functionality (e.g.,
rumenitis) (1, 2). Although the rumen can function adequately
if these conditions are met, it may not be operating at its
maximum anaerobic efficiency. Thus, some dietary tweaking
might achieve maximum anaerobic efficiency or maintain a
healthy operational rumen.

This is where feed additives, also known as rumen modifiers,
come into play. If the feed additive is of plant origin, i.e.,
phytogenic, they are collectively referred to as phytochemicals.
Some usually refer to them as plant secondary metabolites
because they are not associated with essential roles in the
plant, such as photosynthesis, respiration, and growth and
development (3). However, the distinction between primary and
secondary metabolites is obscure and relative to the plant’s
physiological needs. For instance, environmental conditions and
ecological niches drive the synthesis of different phenolics that
are entrenched in the plant’s genome based on their evolutionary
strategies, but the reasons for evolutionary demands, however,
are unclear (4).

Phytochemicals of nutritional and pharmacological interest,
such as those to prevent (phytochemoprophylaxis) or treat
(phytochemotherapeutic) animal diseases, are typically classified
as flavonoids (e.g., polyphenolics), terpenoids (e.g., terpenes),
and alkaloids (3). Not all phytochemicals have known beneficial
properties to ruminants, but those that do so are often grouped
as polyphenolics (e.g., hydrolyzable—HT—and condensed—
CT—tannins), terpenes (e.g., saponins), vitamins, and essential
oils (EO). In part, the immense variability in phytochemical
biological properties makes it very difficult to catalog them and
study their effects on animals of economic relevance.

Flavonoids are polyphenolic compounds comprising fifteen
carbons, with two aromatic rings (AC and B) connected
by a three-carbon bridge, called flavan (Figure 1). About

Abbreviations: AMR, antimicrobial resistance; BW, body weight; CPP, ciliate
protozoa population; CT, condensed tannins; DM, dry matter; DMI, dry matter
intake; EO, essential oils; GIN, gastrointestinal nematode; HT, hydrolyzable tannin;
TPS, triterpenoid saponins; and VFA, volatile fatty acids.

5,000 flavonoids have been isolated (6), and the important
ones are assigned to 12 subclasses, including anthocyanidins,
aurone, chalcone, coumarin, dihydrochalcone, dihydroflavonol,
flavan-3,4-diol, flavan-3-ol, flavanones, flavones, flavonols, and
isoflavones (5, 7). Polyphenolics (e.g., tannins) comprise a
significant subclass of flavonoids (Figure 1). Condensed tannins
have been extensively used in ruminants because of their
ability to reduce methane (CH4) emissions (8, 9); shift protein
digestion from the rumen to the small intestine (10, 11);
improve the maternal environment and reproductive efficiency
(i.e., ovulation, scanning, pregnancy, and fecundity rates) (12);
support early embryonic survival (13); enhance embryo and fetal
development, lambing rates, and lamb survival from birth to
weaning (12); and trigger blood cell counts and the immune
system response (14), among many other applications (1, 15, 16).
Given the broad and sometimes incomplete understanding of
CT’s impact on the rumen’s fermentation dynamics, interest has
intensified in their ability to alter animal products’ nutritional
and organoleptic characteristics. The modulation of ruminal
biohydrogenation with consequent alteration of the fatty acid
composition of milk and meat is perceived as beneficial to
humans because of the relative increase of omega-3, trans-11,
and conjugated linoleic and linolenic fatty acids (17). Similarly,
of particular interest is the ability of CT to reduce gastrointestinal
parasite burdens (14, 18–20) given growing concerns of
pharmaceutical antiparasitic resistance in grazing ruminants (21)
due to their continuous, and sometimes unnecessary, treatment
with ivermectin, a macrocyclic lactone.

Approximately 30,000 terpenoids compounds have been
identified (6). Among these, saponins are classified into
triterpene or steroidal glycosides, having many different bio-
physicochemical properties. Most studies in ruminants have
focused only on saponins’ nutritional aspects to prevent digestive
disorders when used as feed additives (22). Plant extract is
the typical form adopted to achieve the desired phytochemical
compound, and five saponin-rich plants have been consistently
examined: Camellia sinensis L. (23, 24), Quillaja saponaria (25,
26), and Sapindus rarak DC.—lerak (27, 28) and Sapindus
saponaria L.—soapberry (29, 30) with a triterpenoid structure;
and Yucca schidigera (31, 32) with a steroidal nucleus.

In the last 15 years, some advancements in phytochemical
research have been motivated by governmental regulations
focusing on public health interests, especially those related to
antimicrobial resistance (AMR) due to the broad and unbridled
use of antibiotics in animal production as well as poorly
controlled use for treating humans (16). Therefore, effective
antibiotics replacements, including EO (33), such as allicin (garlic
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FIGURE 1 | Flavonoid nomenclature. The main subclasses of flavonoids are shown in red arrows, including anthocyanidins, flavan-3-ol, flavanones, flavones,

flavonols, and isoflavones. The minor flavonoids are shown in gray arrows, including aurone, chalcone, coumarin, dihydrochalcone, dihydroflavonol, and

flavan-3,4-diol. Isoflavones are characterized by having the B-ring attached at C3 rather than the C2 position, and coumarins follow the same structure of isoflavones,

except for the double-bond oxygen that is located in C3, not in C4. Based on Hahlbrock (5) and Crozier et al. (3).

extract), carvacrol (oregano extract), cinnamaldehyde (cinnamon
extract), and thymol (thyme extract), have been extensively
investigated in broilers, pigs, and aquaculture (34, 35) due to their
bacteriostatic and bactericidal properties. However, ruminant
studies, including volatile terpenoids as EO constituents, have
yielded mixed results (34, 36).

Alkaloids are nitrogen-based chemical compounds
synthesized by plants for defensive purposes against predation
by an offending organism, such as microorganisms, insects,
herbivores, and sometimes, even other plants. Besides the
deterrence of predation, there is growing evidence that
alkaloids are also produced to harm the offending organism’s
growth and development through allelopathic action (37).
Their toxic effect depends on their type and the amount
consumed by the animal, but its primary purpose is to repel
feeding via visual or olfactory signals (38). After ingestion and

absorption, alkaloids can cause physiological and metabolic
changes in the offending organism. Alkaloids can also
be produced by animals, insects, and marine vertebrates,
although plant extracts are the primary source that has been
extensively studied (39). Most studies with alkaloids are related
to their toxicological effect on animals rather than their
phytochemical feed additive properties. Research on alkaloid
pharmaceutical properties in humans was initiated in the
1980s (40). By the early 1990s, about 10,000 alkaloids were
cataloged (41), including aconitine (anti-rheumatism), atropine
(antispasmodic), caffeine (a stimulant), codeine (analgesic),
ephedrine (decongestant), ergotamine (migraine), hydrastine
(lower gastrointestinal disorders), and morphine (pain killer)
to list a few (42). To date, more than 20,000 alkaloids have
been isolated (6). However, few studies were conducted with
domesticated animals to improve their production performance,
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or alkaloids have acted as ghost phytochemicals with unknown
biological importance.

This review aims to discuss important nutritional and
methodological aspects of major phytochemicals relevant to
ruminant production, including flavonoids (e.g., polyphenolics),
which comprise 9% of phytochemicals (5,000 in 55,000),
terpenoids (e.g., saponins, EO, and fat-soluble vitamins), which
contain 55% of phytochemicals (30,000 in 55,000), and alkaloids,
which comprise 36% of phytochemicals (20,000 in 55,000).

POLYPHENOLICS

Classification and Definitions
Polyphenolic plant secondary metabolites are ubiquitous
throughout the plant kingdom. Tannins are a subclass in
terrestrial plants broadly categorized into two major compounds:
CT and HT. Hydrolyzable tannins are esters of gallic acid
with a polyol core molecule, commonly glucose, and might
be further categorized into ellagitannin, gallotannin, and
galloglucose subclasses. Condensed tannins are polymers of
flavan-3-ol (Figure 1) with subunits categorized as catechin,
epicatechin, gallocatechin, or epigallocatechin. The diversity of
the chemical structures of CT is vast. When considering the
multiple subunit and bond types, a simple trimer could represent
1 of nearly 600 different isomers (43). Both CT and HT bind
and precipitate protein via hydrogen bonding and hydrophobic
interactions (44), a defining characteristic in tannin-ruminant
animal interactions.

Nutritional Importance
The chemical properties of tannins contribute to nutritional
and antinutritional effects on ruminant animals. The nutritional
importance of tannins largely depends on their ability to bind to
macromolecules and mineral nutrients. Condensed tannins and
HT readily bind to dietary proteins in ruminants (45, 46) and
interact with dietary lipids (47), polysaccharides (48), and metal
ions (49). Tannins also alter microbiomes and inhibit microbial
and enzymatic activity in the rumen (50, 51) and during the
ensiling process (52).

Hydrolyzable tannins have often been regarded as potentially
toxic, antinutritional plant secondary metabolites due to their
tendency to be degraded in the rumen and absorbed by
ruminants (53). More recently, however, potential benefits of
HT on ruminant animal production systems have been reported
(54–56). Unlike HT, CT have generally been considered as non-
degradable by rumen microbes (57). However, possible ruminal
degradation and total tract disappearance of CT have been
reported. Robbins et al. (58) reported only 75% of CT consumed
was recovered in feces of domestic sheep compared to >90%
recovery in mule deer. More recently, and using much more
sophisticatedmeasuring systems, Kronberg et al. (59) determined
that more than 90% of the CT consumed by sheep were
degraded. Conversely, Desrues et al. (60) recovered all CT from
sainfoin following total tract passage through cattle. Like many
biological activities driven by CT, degradation in the ruminant
digestive tract is likely dependent upon plant species, tannin
type, and chemical structure. The variation in the survival of CT

through the digestive tract point to the need for the strategical
application of CT (i.e., nutritional vs. antiparasitic effects, rumen
vs. post-rumen activity, CH4 abatement vs. rumen protected N)
rather than the commonly used “shotgun” approach. The fate of
CT in ruminants and associated nutritional implications should
continue to be a future focus of research on physiological and
modeling research (15).

Ruminal Fermentation
Polyphenolic phytochemicals potentially offer numerous benefits
to ruminant animal production. The most notable of those
benefits is rumen microbiome modifiers (61) to alter gaseous
emissions (62) and improve animal production (63). Much of
the recent research on tannins has focused on the topic of rumen
modification to mitigate greenhouse gas emissions and improve
the N-use efficiency of ruminant livestock. The majority of this
research has focused on the application of CT, but increased
research interest in HT is becoming more evident.

Our knowledge and potential application of tannins in
production scenarios are hindered due to a lack of understanding
of how tannins interact with substrate and microbes in the
rumen. Currently, CT are believed to reduce CH4 production in
the rumen by combining three possible mechanisms (43): (1) the
formation of CT complexes with fermentable macromolecules
and microbial enzymes, reducing the availability of substrates
to microbial degradation, (2) the direct interaction between
microbes and CT, resultant of CT binding to microbial
lipopolysaccharide, and (3) CT subunits degrade in the rumen
and become hydrogen sinks, reducing the hydrogen available
to form CH4 gas. The hydrogen-sink hypothesis has been
demonstrated with catechin monomer subunits in vitro by
Becker et al. (64). However, tannin scientists have yet to reveal the
possibility that CT polymers undergo the necessary degradation
in the rumen to become hydrogen sinks. Similar to CT, HT
is thought to reduce enteric CH4 by directly interacting with
microbes or acting as a hydrogen sink (65). However, it is
not believed that HT reduce CH4 by decreasing substrate
availability as a concomitant decrease in CH4, and fiber digestion
is typically not observed (66). However, our assumptions of
how tannins behave in the rumen are continually evolving and
require technological advancements and modeling techniques to
understand the dynamic relationship better.

Recent research has focused on the application of
respirometry methodologies to increase our understanding
of the effects tannins have on CH4 emissions in vivo. However,
in vivo research has been inconsistent, with discrepancies among
CT and HT studies being indicative of complex associations.
For example, the use of quebracho CT extract has resulted in
reports of reduced CH4 emissions (62, 67) and no effect (68).
Of these studies, beneficial effects were observed in those that
fed a roughage diet and higher rates of CT (>1.5% DM). This
may be, at least in part, an effect of CT rate or diet type but is
likely a combination of the two; however, we lack conclusive
data to understand this complex relationship. Similarly, HT in
ruminant diets has also demonstrated varied results for CH4

emissions. Recent work showed that gallic acid, an HT derivative,
and tannic acid reduced CH4 emissions in beef cattle (54, 69),
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whereas HT from chestnut appears to have little or no effect
(70). However, once again, we lack adequate data to conclude the
reason for these differences. The discrepancies among CT and
HT studies appear to point to a dynamic relationship among a
variety of factors, including the chemical structure of the tannin,
tannin inclusion rate, base diet (i.e., forage vs. concentrate),
and animal species and stage of production (i.e., maintenance,
growth, fattening, or lactation).

To garner a better understanding of the dynamic relationship
among factors affecting tannin efficacy, in vitro gas production
techniques have been used to screen tannin-rich forages for
their potential to alter fermentation patterns and reduce CH4

emissions by ruminants. This approach has proven to be a cost-
effective and time-saving tool (71, 72). These techniques are
especially useful when exploring domestication of wild types of
perennial prairie legumes (73), investigating increased utilization
of arboreal plant resources as forage (74), or when seeking the
value of feeding invasive plant species to ruminants (75, 76).
However, there is often some disparity between in vitro and in
vivo CH4 production (77). To better understand the real impact
of tannins on ruminant nutrition, long-term and conclusive in
vivo or in situ studies must be conducted to calibrate in vitro
data. We must enable the application of in vitro methods to
provide a rapid determination of tannin feasibility in various
production systems.

Post-rumen Digestion
Ruminant animals are generally considered inefficient at
converting ingested protein into an animal product due to a
large portion being lost as NH3 in the rumen. The efficiency of
N use and retention by ruminants can be improved by either
slowing the degradation rate of protein to enhance synchrony
with carbohydrates or increasing rumen undegradable protein
in the diet (78). Much of the interest in tannins revolve around
the prospect of possible degradation and absorption of rumen
undegradable protein following dissociation from tannin-protein
complexes post-rumen. Condensed tannins readily decrease
ruminal N digestibility (79), resulting in reduced urinary N
excretion (62, 80) with a concomitant increase in fecal-N
excretion and a possible reduction in excreta gas emissions (81).
This shift in the site of N excretion might represent a decrease
in N retention. However, some have reported increases in the
efficiency of protein utilization expressed as weight gain per
protein intake due to CT inclusion in the diet (82). Hydrolyzable
tannins also bind and precipitate proteins, possibly increasing
post-rumen availability of N, but they also offer the potential
to slow the ruminal degradation of N and possibly promote the
synchrony of N and carbohydrate degradation. Much like what
is observed when feeding CT to ruminants, a shift in N excretion
from urine to feces is observed when including HT in the diet
(56). While increases in N utilization associated with feeding HT
have not been reported, supplementation with gallic acid may
decrease urinary N excretion without negatively impacting N
digestibility (54).

The ability to shift the route of N excretion from the urine
to the feces without sacrificing N digestibility is increasing in
interest due to excreta’s contribution to total livestock emissions.

The feeding of CT has demonstrated the potential to decrease
fecal gas emissions (81, 83) and reduce fecal urease activity
(84). Similarly, nitrous oxide emissions from urine were reduced
when gallic acid was fed (51). Once again, we lack adequate
data to assume the mechanism(s) that alter emissions or
that the observed alterations in excretion route and excreta
emissions will improve overall emission status. However, based
upon the positive results observed in the limited number of
studies performed, research into the effect of tannins on excreta
emissions warrants greater focus.

Gastrointestinal Nematodes
Gastrointestinal nematode (GIN) and other gastrointestinal
parasite infections negatively impact ruminant nutrition. Both
small and large ruminants are affected, but internal parasites
are especially detrimental to small ruminants, including sheep
and goats. Legume CT, particularly those from sericea lespedeza
(Lespedeza juncea var. sericea), demonstrate anthelmintic activity
against GIN parasites in small ruminants (85). Sericea lespedeza
(Lespedeza cuneata) (86) and quebracho (Schinopsis sp.) (87)
CT also inhibits Eimeria spp. in goats, which are responsible
for coccidiosis. Condensed tannins may also be efficacious
as an anthelmintic against common cattle parasites Cooperia
oncophora and Ostertagia spp. (88).

Increased use of the larval exsheathment assay has led to
the screening of novel forage CT for anthelmintic activity (89).
In vitro screening for the potential anthelmintic activity of
tannin-rich forages is not limited to CT. Concentrations of 25mg
HT/ml effectively kill Haemonchus contortus in vitro (55). Gallic
acid reportedly demonstrates egg hatch inhibition against GIN
that commonly infect cattle (90).

An important question that cannot be answered using
in vitro techniques is what are the negative nutritional and
toxic implications, if any, of feeding HT to ruminants for GIN
control? Therefore, in vivo research must follow reports of
positive impacts of CT but especially HT to confirm anthelmintic
activity without detriment due to phytochemical toxicity.
Some hypothesize that parasitized ruminants will intentionally
select forages with anthelmintic properties (i.e., tannins). Some
evidence of ruminant self-medication by selecting for tannin-rich
forages when parasitized by GIN has been reported (91). More
often than not, however, the self-medication hypothesis is not
confirmed (92, 93).

Why and When Do Tannins Work?
The question of when and why tannins positively impact
ruminant nutrition is a difficult one to answer. Tannin bioactivity,
especially that of CT, is often plant-specific. The mechanisms
of action for tannin biological activities, such as ruminal CH4

mitigation, reducing rumen proteolysis, or inhibiting GIN, are
mostly unknown. The mechanism for one biological activity
likely differs from that of another.

There is evidence that structurally recalcitrant tannins are
most effective in modifying fermentation and reduce CH4.
For example, CT from Acacia angustissima var. hirta are
highly effective at reducing enteric CH4 production (73). The
undegradable 5-deoxy flavan-3-ol structure of the Acacia CT
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likely contributes to its ability to mitigate CH4 formation during
fermentation (94). Additionally, tannins’ antioxidant activity is
positively correlated (r > 0.90) to ruminal CH4 emission (94),
suggesting that antioxidant activity at least contributes to the
mechanism of action involved in CT-CH4 mitigation.

The ability of tannins to bind and precipitate protein,
and potentially create rumen undegradable protein, may
depend on factors associated with chemical structure and
conformation, the pH in which the tannin-protein interaction
occurs, and the herbivore’s ability to bind tannins with
salivary proteins during mastication and rumination. The
structural diversity of tannins adds to the difficulty of
determining the impact of specific structural characteristics
on tannin-protein interactions. Structural attributes of CT,
including the mean degree of polymerization, stereochemistry,
and prodelphinidin-to-procyanidin ratio, sometimes do not
explain protein-tannin interactions (95). However, some reports
suggest that large prodelphinidin-based CT demonstrate greater
protein precipitating capacity than large procyanidin-based
CT (96). Recently, the impact of the increased mean degree
of polymerization and inter-flavan bond type on protein
precipitation capacity has been confirmed (97). Similar to
factors affecting protein precipitation by CT, larger polymers
of HT demonstrate greater protein precipitating capacity than
monomeric forms (98).

The pH is an important factor affecting the protein
precipitating capacity of tannins; the closer to the isoelectric
point of the protein, the greater the protein precipitation
capacity (99, 100). Much of what we know about the role
of pH in CT-protein interactions supports the hypothesis that
protein-tannin complexes dissociate in acidic environments
(such as in the abomasum of ruminants), leading to protein
degradation and subsequent amino acid absorption in the
small intestine. As the pH of the environment where tannin-
protein complexes occur becomes more acidic relative to
the isoelectric point of the protein, the protein precipitating
capacity of tannins decreases (100). Accordingly, when the
environment is less than pH 5, tannin-protein complexation may
be minimal (101).

The neutralizing effect of proline-rich protein in saliva has
long-been hypothesized (102). Many browsing herbivores that
readily consume tannins do not produce saliva that contains
proline (103). Despite a lack of proline, some browsing ruminants
(i.e., goats) can bind tannins with salivary proteins (104),
suggesting that proline is not a requisite for all salivary protein-
tannin interactions.

An explanation for when and why tannins are useful
anthelmintics continues to be elusive. Much of the literature
suggests the efficacy of both CT and HT against GIN is
dose-dependent (55, 89), such that greater concentrations of
tannin result in more significant anthelmintic effects. Tannin
concentrations vary within species based on plant maturity,
which is another factor to consider. In some species, mature
plants produce lower tannin concentrations than immature
plants (76, 105), whereas others may increase or remain
unchanged with maturity (105). However, it is crucial to

fully understand the CT concentration at different seasonal
growth stages in a given plant species (106) to maximize their
ontogenic phytochemical characteristics on sustainable ruminant
production systems (8).

Why Do Tannins Not Work?
Dietary tannins do not always affect the nutritional status of the
ruminant animal. There are many possible reasons for this. If
the forage or feed resource is too low in tannin concentration,
little, if any nutritional impact will be observed. The tannin’s
chemical structure produced by a given plant can determine
whether or not the phytochemical is effective at eliciting a desired
animal response. Modes of action of tannins also differ for
different activities such that the type and structure of tannin
used to elicit one nutritional response may not be useful for
that of another. Another challenge occurs when feeding highly
bioactive tannin-rich forages. The animal may reject tannin-rich
forage due to reduced palatability due to salivary protein binding
and astringency.

Future Perspectives
There is still much to learn about how CT and HT affect
ruminant animal nutrition. Much of what we understand
about tannin impacts on ruminant nutrition is the result of
in vitro studies. While in vitro assays are excellent screening
tools, more in vivo confirmation of research findings is needed
to move tannin science from use-inspired basic research to
application. A significant challenge to this progress is the
lack of domesticated (cultivated) plants rich in bioactive
tannins. As a result, the availability of plant material suited
for many ruminant producing regions is limited. Even when
the seed is commercially available, it is often cost-prohibitive
due to the limited supply and labor required to collect
undomesticated species.

Future research should emphasize the strategical application
of tannins rather than the current “shotgun” approach from a
nutritional perspective. Much of the previous and recent research
has emphasized directly inhibiting enteric CH4 production
and increasing rumen undegradable protein. However, there is
potential to utilize some tannins’ degradation to reduce CH4

via hydrogen-sink and increase N-use efficiency by improving
nutrient synchrony. There are opportunities to exploit tannins’
antioxidant properties, particularly immunomodulatory effects,
thermal stress, and human-health products. Tannins’ influence
on excreta emissions requires attention, but ultimately we need to
understand better how excreta from animals consuming tannins
alters soil fertility, soil microbiota, and plant growth.

Despite deficiencies in current knowledge about nutritional
implications in ruminant animals, polyphenolic phytochemicals
(i.e., tannins) have great potential as a tool in ruminant
production systems. Further investment in plant breeding and
domestication efforts, as well as research efforts to further
elucidate how tannins impact ruminant nutrition and system
processes, will be necessary to realize the full potential of these
important phytochemicals.
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TERPENES

Biosynthesis and Functionality
The bitter-taste, emulsifying, foaming, non-ionic, non-
volatile, membranolytic, surfactant, and structurally diverse
saponins (glycosides) are low molecular weight (1,000–1,500
Da) secondary natural compounds in food and non-food
plants (107–109), marine plants (110) and animal lineages,
including invertebrate sea cucumber species (111, 112).
Chemically, glycoside saponin biosynthesis begins with the
catalyzation of acetyl co-enzyme A to isopentenyl pyrophosphate
units generated by the multistep mevalonate 3-hydroxy-3-
methylglutaryl-CoA reductase (113), a common route to the
synthesis of cholesterol and some steroids (114).

Saponins comprise the hydrophobic aglycone (sapogenin)
structure that is linked to polar functional groups and attached
via a 3-C chain structure to an individual or multiple
hydrophilic sugars (i.e., arabinose, galactose, glucose, glucuronic
acid, methylpentose, rhamnose, or xylose) (115, 116) and
moieties (i.e., glycones) (117, 118). Aglycones are subject
to gene encode enzyme-mediated (i.e., cytochrome P450-
dependent glycosyltransferases, monooxygenases, and others)
(119) change (i.e., acylation, hydroxylation, glycosylation,
oxidation, and substitution) (119, 120) to form a varied group
of compounds (121).

Saponins are chemically categorized into two groups:
triterpene or steroidal. Following the isoprenoid pathway, the
aglycone splits into pentacyclic triterpenoid saponins (TPS) with
a 30-C aglycone core by cyclization of 2,3-oxidosqualene (113,
117, 122), yielding the first group of saponins. The second group
is related to the biosynthetic pathway of tetracyclic steroidal
metabolites to a 27-C aglycone backbone (114, 117, 120) with a
5-ring furostane or a 6-ring spirostane skeleton (123) involving
oxygenations and glycosylations (117).

Although in the presence of other phytochemistry (124),
saponin mixture in a single plant species occurs (120, 121,
125), such as cucurbitane, cycloartane, dammarane, holostane,
hopane, lanostane, lupane, oleanane, tirucallane, taraxastane,
tirucallane, and ursane TPS types (107, 126) have been identified
in more than 500 plant species (114). Within a hundred family-
group plants, the Anacardiaceae, Araliaceae, Combretaceae,
Compositae Campunalaceae, Caryophyllaceae, Leguminosae,
Polygalacea, Sapindaceae, Theaceae, and Verbenaceae families,
their genera and species attract more attention (114, 127–131).

In angiospermmonocotyledons and angiosperm dicotyledons
plants, the variation, composition, concentration, distribution,
and differential bio-activity of TPS are influenced by plant
growth, agronomic and genotype-environmental interactions
(132–134). Moreover, TPS-plant storage, physical milling, TPS
separation, and the bio-accessibility of metabolites in the form of
concentrated extracts, derivatives, or food additives to facilitate
human-animal utilization may modify aglycones’ structure
and their bio-physiological, nutraceutical, and pharmaceutical
activities (121, 124, 135).

Although paths for those roles are not well-understood and
despite differences in chemical structures, different activities
exist for TPS, including adjuvant (136), antibacterial (137,

138), antidiabetic (139), antifungal (140–142), anti-inflammatory
(123, 125), antioxidative (109, 143), antiprotozoal (144–146),
antiproliferative (147), antiviral (148, 149), cardiotonic and
cardioprotective (122), and cytotoxic (127, 128, 150) effects
have been reported. Additionally, TPS have also exhibited other
functional properties, such as food-additive in flavorings (26),
gastroprotective (151, 152), hemolytic (153), hepatic (139, 149),
immunologic (123, 154), insecticide (155, 156), anti-obesity
therapeutic potential (111, 116, 157, 158), neuroprotective
(159), vermicide (160), and emulsifier and stabilizer of the
nanosuspensions (161, 162).

Nutritional Importance
Central to TPS’s bio-physicochemical network of interactions,
the nutritional significance of TPS for ruminants stems largely
from their digestive and methanogenic significance (163).
Consequently, usingMedicago sativa L. (alfalfa) and C. sinensis L.
(tea plant) as examples, this review will be limited to considering
certain aspects of the bio-metabolic and rumen microbial shifts
in sheep and cattle derived from TPS supplementation, which
are not entirely consistent and understood. Compared to non-
supplemented diets, Table 1 has a comparative overview of
digestive function reaction to alfalfa-TPS (26.9–601.3 mg/g
extract) intraruminal or feed-mixed supplemented [10.6–800mg
TPS/kg body weight (BW)] in different breeds and BW
(42–60 kg) of sheep between 14 and 90 days.

Based on the use of 17.8–35.9mg TPS/g extract, an
intraruminal increasing TPS-dose in wethers fed roughage diets
resulted in a less disturbed digestive system than the digestive
responses of intraruminal supplemented wethers fed concentrate
diets (164). However, using 27.8mg TPS/g extract, compared to
the lowest intraruminal dose of 200 mg/kg BW in Suffolk wethers
fed grass-hay, 800 mg/kg BW administered intraruminally
increased rumen pressure, particulate matter outflow, and VFA
concentration by 25, 25, and 10%, respectively (115). This effect
was further associated with a reduction in organic matter (11%)
and neutral detergent fiber (10%) total tract digestibilities, ciliate
protozoa populations (CPP; 80%), and daily CH4 production
(8%) (115).

There is limited experimental data on the use of TPS on animal
production under mid to long-term management. However,
Liu et al. (108) demonstrated complementary opportunities
for both physio-metabolism and production evaluation. These
authors indicated that a high-TPS concentration extract shifted
from 0.04 to 0.08 TPS-to-dry matter intake (DMI) ratio in
concentrate plus roughage diets used by Hu male-lambs during
90 days, yielded a 12, 44, 2, 2, and 7% increase in dry matter
(DM), neutral and acid detergent fibers, ether extract, and crude
protein digestibilities, respectively. Nevertheless, when the TPS
supplementation increased from 24 to 94.3 mg/kg BW, the
effects on DM, neutral and acid detergent fibers, ether extract,
and crude protein digestibility decreased by 12, 44, 2, 2, and
7%, respectively. These effects were also associated with an 8%
reduction in daily BW gains.

These studies illustrate how sheep responses can be influenced
by motivated, focused action. However, the long-range vision
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TABLE 1 | Effects of triterpenoid saponin (TPS) supplementation on several ruminal and total gastrointestinal tract parameters1.

Plant species2 TPS-animal interaction Digestive parameters

Extract TPSC Animal mg/kg BW TPS:DMI RM RPC PMO OMD NDFD TVFA CPP DMP

Medicago sativa L.a Root 27.8 Sheep‡ 200 1 1.74 +22 0 −1 −2 +6 −42 +6

400 2 1.67 +21 +4 −7 −8 +3 −81 +5

800 3 1.67 +53 +25 −12 −12 +17 −88 −2

TPS:DM RTR TMRT DMD OMD HEMD CELD TVFA CPP

M. sativab Plant 26.9 Sheep† 10.6* 2 −6 0 −1 −1 −2 −6 +1 −37

21.4 4 −3 −2 0 0 −1 +4 −6 −47

10.6 2 −24 +10 +6 +1 +35 +32 −19 −33

21.4 4 −23 +7 +9 +2 +28 +40 −28 −55

TPS:DMI DMD NDFD ADFD EED CPD

M. sativac Leaf-root 601.3 Sheep 12.0 0.04 −1 −15 +15 0 +2

24.0 0.08 +11 +22 +17 +2 +9

47.1 0.16 +4 +1 −24 −2 +3

94.3 0.32 −3 −8 −15 −5 −4

1Ratios of TPS to dry matter (DM) (TPS:DM) or TPS to DM intake (DMI) (TPS:DMI); rumen motility (RM, n/min)†; rumen pressure change (RPC, mm Hg)†; ruminal turnover rate (RTR,
%/h); total mean retention time (TMRT, h); particulate matter outflow (PMO, g/d); total-tract crude protein (CP), DM, ether extract (EE), organic matter (OM), neutral detergent fiber (NDF),
acid detergent fiber (ADF), hemicellulose (HEC), and cellulose (CEL) digestibilities (g/100 g); total volatile fatty acids (TVFA, mmol/L); ciliate protozoal populations (‡CPP × 105/ml); and
daily methane production (DMP). The notations + refers to an increase and – refers to a decrease in percentage values relative to non-TPS supplemented diets data in each experiment.
Triterpenoid saponin concentration (TPSC) is presented in mg/g of M. sativa plant extract; and mg/kg DM of M. sativa root extract, and M. sativa leaf-root commercial extract product.
2a = Klita et al. (115) in which intraruminal TPS extract supplementation was conducted for 14 days. †Measured on day 11. ⊺Methane measurements (24 h) on day 12 based on
indirect calorimetry and respiratory hoods from 4 Suffolk wethers. b = Lu and Jorgensen (164) in which *roughage and concentrate diets fed to wethers subject to intraruminal daily
supplementation of TPS during 14 days. c = Liu et al. (108) in which TPS-supplemented concentrate plus roughage diet were fed twice daily to 10 Hu male-lamb groups (n = 5) during
90 days.

to shape or reshape TPS’s use and ensure its relevance to small
ruminant needs a particular combination of knowledge and
perspectives. It should equate the sheep feed industry interest
with clinical science in the context of a deepening sense of animal
practice responsibilities to concomitantly address societal needs
and ecosystem environmental challenges.

Overall, we can only speculate that the TPS-extract source
within the same plant species, the extraction method, compound
composition, concentration and dose, way and time of
supplementation, diet type, and sheep genetics refer to the range
of variation in the summarized alfalfa-TPS supplementation
response in Table 1. Unless such information is forthcoming,
there is a risk of limiting factors to benefit from the TPS
functional activities described above with sheep if they are
susceptible to specific doses in farming grazing conditions.

Table 2 illustrates how cattle and sheep respond to TPS
supplementation. It illustrates the impact of TPS doses from
tea seeds and alfalfa extract sources on fermentative, microbial,
and blood parameters of Brahman (Bos indicus) and crossbred
B. indicus cattle (234–364 kg) and sheep (41.7–42.5 kg). The
approach is justifiable because, in the current and post-COVID
challenges, it is unlikely that individual research could undertake
simultaneous cattle-sheep TPS supplementation assessments.
However, it would be possible for cooperative research across
the livestock industry to justify the expense involving additional
knowledge gains.

As with beef cattle, sheep can cope with increasing doses
of tea seed-TPS. A difference is the range of TPS doses
tested between large and small ruminants. Another critical

difference is the greater emphasis on cattle measurements
after TPS withdrawal than on sheep. This has resulted in the
interaction among supplementation digestive and fermentative
parameters. The summarized data indicate that Ramos-Morales
et al. (169) pointed out that TPS does not always reduce
CPP. However, this information may not be surprising because
saponin functional diversity and biological pathways do not
always positively correlate (170). Early on, Dourmashkin et al.
(171) provided evidence that saponins at 0.05% concentration
modify eukaryotic cell membrane permeability by producing a
pore-forming characteristic expected to inhibit both CPP (115)
and CH4 emissions (172).

Published trials using tea seed-TPS indicated that their
anti-methanogenic effect in vitro (173) in small ruminants
(167, 168, 174) is considered to be a selective saponin-sterol
association (175, 176) on protozoa surface (170). Nevertheless,
CPP may increase when plant-TPS (145, 177) and low cell-wall
carbohydrate diets are fed (178).

Dourmashkin et al. (171) found that saponin-treated cell
membrane growth is associated with concentrations above
0.09%. Sidhu and Oakenfull (179) also demonstrated that, when
orally fed, saponins are not absorbed into the bloodstream but
might modulate mitosis (180, 181) by molecule transport, cell
membrane fluidity, and cell proliferation in vitro (182) and in
vivo (183).

Contrary to the transient antiprotozoal effect of TPS (184), a
linear increase of protozoal numbers is triggered by increasing
tea seed-TPS doses in crossbred Brahman cattle, while a
defaunation effect was observed at 13 days post-TPS treatment
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TABLE 2 | The effects of supplementing triterpenoid saponin (TPS) from Camellia sinensis L. or Medicago sativa L. on digestive and blood profiles of †Belmont Red

Composite [Africander (African Sanga) × Brahman (Bos indicus) × Hereford-Shorthorn (3/4 B. taurus)] and Brahman steers, and ‡Dorper crossbred × thin-tailed Han

ewes, Hu rams, Huzhou lambs and *Hu male-lambsa.

Parametersb, c C. sinensisb, c

Cattle† Sheep‡ Sheep Sheep

TPS mg/kg BW 31.5 44.3 Post-TPS 28.6 83.7 112

TPS:DMI 0.14 0.22 Post-TPS 0.13 0.18 0.30

TVFA +3 −2 −2 +16 −3 +13

CPP +99 +190 −5 −16 −42 −41

DMP +6 +3 −16 +2 −11 −27

Animal species C. sinensis serum biochemistry

TPS mg/kg BW TPS:DMI CL K Na:K I GLU CHO UM GGT ALP AST

Cattle 22.7 0.11 −1 −12 +12 −23 −15 +5 −29 +5 +5 −5

44.2 0.21 +1 −11 +12 −21 −15 0 −17 +10 +10 −7

64.9 0.30 +3 −12 +13 −22 +3 +5 −20 +17 +17 0

M. sativa plasma profile

GH IGF-1 T3 T4 GLU CHO UN TRG ALT AST

Sheep* 12.0 0.04 +38 +32 +77 +42 +20 +2 +5 −2 +46 +31

24.0 0.08 −9 −5 +22 −9 +16 −7 −30 −35 +49 +27

47.1 0.16 +8 +2 +11 −18 +20 −9 −44 −68 +81 −27

94.3 0.32 +5 −8 +40 +4 +21 −3 −35 +3 +98 −28

a Positive and negative percentage data refer to non-TPS supplemented diets in each experiment.
bCiliate protozoal populations (†CPP Log × 108/ml rumen fluid, CPP a % of total bacterial 16S rDNA, CCP × 105/ml, ‡CCP × 107/ml), daily methane (CH4) production (DMP),
dry matter intake (DMI), body weight (BW), total volatile fatty acids (TVFA, mmol/L). Serum electrolytes and minerals [mmol/L; chloride (CL), potassium (K), sodium to potassium
ratio (Na:K), iron (I, µml/L)]. Metabolites [mml/L; cholesterol (CHO), glucose (GLU)]. Renal function [mmol/L; urea nitrogen (UN)]. Enzimes [IU/L; alkaline phosphatase (ALP), aspartate
aminotransferase (AST), γ-glutamyl transferase (GGT)]. Plasma hormones [ng/mL; growth hormone (GH), insulin-like growth factor-1 (IGF-1); mmol/L; tri-iodothyronine (T3), and thyroxine
(T4)]. Metabolites [mg/dL; urea nitrogen (UN), glucose (GLU); mmol/L; triglyceride (TRG), alanine transaminase (ALT), aspartate aminotransferase (AST)].
c † = Ramírez-Restrepo et al. (165) in which eight rumen-cannulated steers were progressively supplemented with dissolved tea seed saponin (TSS; 580mg TPS per g of TSS) mixed in
the morning diet during 3 and 4 days. Post-TPS values were recorded 13 days after TPS withdrawal. Individual CH4 emissions were measured (48 h) in open-circuit respiratory chambers,
recording levels of supplementation of 27.0 and 43.5mg TPS/kg BW, which are equivalent to ratios of 0.13 and 0.23 TTS:DMI, respectively. = Ramírez-Restrepo et al. (166) in which
after 13.8mg TPS/kg BW (0.08 TPS:DMI) supplementation during 6 initial days, a gradual increase of intraruminal (four cannulated steers) dissolved TSS supplementation before the
morning feeding and mixed in the morning feed (2 non-cannulated steers) was performed during 7, 14, and 16 days, respectively. =Mao et al. (167) in which 32 lambs fed in two equal
parts daily. Open-circuit respiratory chamber measurements (48 h) and microbial populations from four lambs after 60 days trial. = Zhou et al. (168) in which 12 rumen-fistulated Hu
rams fed once a day. Three rumen-fistulated and re-faunated Hu rams supplemented with 1.8 g of TPS for 3 weeks in the basal diet. Open-circuit respiratory chamber measurements
(24 h). * = Liu et al. (108) in which TPS-supplemented concentrate and roughage diets fed AM and PM to 10 Hu male-lamb groups (n = 5) during 3 months; physiological values in
the 60–90-day period. ‡ = Liu et al. (108) in which 18 primiparous and six rumen-cannulated Dorper × thin-tailed Han crossbred ewes were used and fed supplemented for nutrient
digestibility and CH4 emissions in open-circuit respiratory systems (Experiment 1, 29 days), and fermentation and microbial ecology examination (Experiment 2, 42 days), respectively.

as shown in Table 2 (165). There, TPS modified the structure
of the methanogen community at the subgenus by increasing
the numbers of methanogens and decreasing their abundance
in the RO and SGMT clades, respectively (185). In parallel,
TPS supplementation reduced numbers of protozoal genus
Entodinium spp. and increased Euplodinium and Polyplastron
genera. The withdraw of TPS supplementation was associated
with lower proportions of Isotricha and the greater presence of
Metadinium and Eudiplodinium genus (185).

This suggests that, in tropical cattle, TPS may have a high
selectivity index for protozoa, without an adaptation of those
ciliates and other microbial communities to short-term feeding
of TPS. Moreover, it is essential to note that tea seed-TPS
as a feed additive appears to exert a differential protozoal
and anti-methanogenic effect across Dorper × thin-tailed Han
crossbred ewes, Hu rams, and Huzhou lambs (Table 2). With

these facts in mind, readers are directed to Hu et al. (173), Guo
et al. (172), Mao et al. (167), Zhou et al. (168), Wang et al.
(186), and Liu et al. (187) for the detailed complementary impact
of TPS on rumen ecology and extend of nutrient digestion.
Together, these findings mirror the belief that further research is
required to understand better multifaceted TPS supplementation
effects associated with the breed, sex, and animal category
sound interactions.

Future Perspectives
Although in our research no comparison of patterns of CH4

emissions was performed between a single and two equal daily
portions of TPS supplementation, there is little doubt that
the circadian rhythm of CH4 emissions from steers after the
morning non-supplemented and TPS-supplemented diets (165)
is consistent with that observed in twice-daily TPS-supplemented

Frontiers in Veterinary Science | www.frontiersin.org 9 March 2021 | Volume 8 | Article 628445

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Tedeschi et al. Phytochemicals in Ruminant Nutrition

sheep (167, 168, 188) and cattle fed Rhodes grass (Chloris
gayana Kunth) ad libitum (189). Conversely, the current review
provides evidence that forage diets fed to ruminants could
modulate the animal response to TPS-sources inclusion in
tropical agriculture (177, 190–192). However, this reason may be
further explained by capturing TPS supplementation advantages
in seasonal nutrition, fermentability, and methanogenic indices
of forages (71, 72). A sustainable ruminant industry should
consider three questions. How long does the TPS-protozoal
selective effect in the rumen ecosystem of tropical cattle last?
Is this physio-metabolic response opening the possibility that
tea seed-TPS may reduce cattle CH4 emissions in the long-
term rather than as an immediate abatement? Should we
investigate the effects of very low TPS concentration additives
and/or far lower TPS:DM ratios on ruminants to achieve target
microbial community profiles without significant associated
meta-physiological disturbances?

Few ruminant studies beyond methanogenesis have focused
on complementary clinical responses to TPS supplementation
(Tables 1, 2) to understand or confirm pharmacological
discoveries, phytochemical screening, safety, and efficiency
of therapies, and in vitro findings. In particular, safety and
tolerability studies have demonstrated that Brahman (166)
and Belmont Red Composite [Africander (African Sanga)
× Brahman × Hereford-Shorthorn (3/4 B. taurus)] (165)
steers tolerate on average 32.2 ± 16.61 and 27.3 ± 13.53
mg/kg BW of TPS supplementation during 23 and 20 days,
respectively. This for each breed is ∼6.4 and 4.5 vs. 5.5
and 3.8-fold the non-toxicological effect levels in mice (i.e.,
subcutaneous injection) (117) and dogs (i.e., intramuscular
route) (193), respectively.

However, as low TPS doses in Brahman (13.8 ± 0.64 mg/kg
BW) and Belmont Red Composite (9.2 ± 0.35 mg/kg BW) steers
are 1.9 and 1.2%; respectively, of the canines long-term daily
administration (i.e., 26 weeks), this variation might facilitate
further efforts to clarify biological constraints and a vision of
improved farming practices. In parallel, TPS effects on animal
behavior and health indicated that the administration at 0.42 ±

0.013% of the DMI to Brahman steers remarkable reduced DMI,
and developed primary tympany and enteritis.

Although that high dose was not tested on Belmont Red
Composite steers, a similar clinical pattern of symptoms but a
lower magnitude were experienced when TPS doses achieved
between 0.10 and 0.14± 0.003% on the DMI. This was consistent
with other studies (194, 195) that reported that some TPS might
disrupt endothelial permeability, infiltration of cellular systems,
and active nutrient transport, and nutrient uptake in the gut.
This likely involves a sequential cascade involving cytokines,
chemokines, reactive oxygen species expressions, and several
intracellular signaling pathways, to name a few (196). However,
those cattle dose-dependent effects contrast Klita’s et al. (115)
reports that sheep have a lethargic feeding behavior and lack of
rumination associated with intra-ruminal TPS:DMI ratios of 4
and 8%.

The interaction between TPS and the functional capacity of
organs and body systems can produce relatively complicated
outcomes. Table 2 underpins blood test differentiation between
TPS-plant sources and animal species. That strategy should,
in turn, allow greater understanding of significant differences
in blood biochemistry and biological drivers between non-
cannulated and cannulated cattle after TPS supplementation
(166). Based on the evidence provided here, it appears that
such physiological associations could be the vehicle to spread
knowledge and refine and collect prolonged assessments to
ensure practical use of TPS additives.

Collectively, in response to the natural structure of TPS and
their related sapogenins (126, 169, 170, 184), possible reasons for
the observed differences within bovids are the pharmacodynamic
and pharmacokinetic profile expressions of the host physiological
system (197, 198). This is likely characterized in healthy
animals by differential genetic and metabolic binding, inter-
individual variability, cellular and molecular self-regulatory
feedback mechanisms, induction and inhibition of pathways,
pharmaco-genomics, and pharmaco-metabolomics (199).

However, supported by the heterogeneity of systemic
reactions shown in Tables 1, 2, it is suggested that a broad
medical approach in future studies is critical to understanding
TPS supplementation throughout the interrelationships within
and between ruminant species, breeds, and crossbred animals.
Medicine will benefit from increased knowledge of more
significant or down-regulation expression of signal transducers,
transcription factors, membrane proteins, ion channels,
and mitochondrial enzymes in cell lines (200, 201). Such
observations further indicate the relevance of complementary
microbiota analysis to understand the impact on ruminal
ecology, methanogenesis, and animal physiological functioning
following clinical-relevant TSS-supplementation and at
withdrawal endpoints.

In summary, although over the last years, review
research advances in TPS have been evident (27, 162, 202–
208), the disparities in physicochemical characteristics of
close and non-closely intermediate related compounds
in TPS-containing plants (209–211) from one to another
material depends on the vast structural diversity of TPS
molecules (131, 212). Therefore, feasible investigations
should focus on TPS physio-metabolic interactions after
ingestion to elucidate complex interactions with the diet’s
nutritive value and substantial variation in gastrointestinal
microflora and animal metabolisms. This is reasonably
straightforward in intermolecular forces, genetic-molecular
animal predispositions, cellular signaling frameworks, intra-
cellular-matric chemoreceptors, metabolic fluxes, multi-enzyme
cascade, and morphological changes. The approach across the
catalog of TPS-plants, their phytochemical compounds, and
interactions will promote secondary compound-physiological-
based ruminant models (15), human and animal health,
regulatory environments, ecosystems management, and
eco-efficient ruminant production.
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VITAMINS AND ANTIOXIDANTS

Types of Vitamins
Various vitamins and related minerals, many of which play
critical roles as antioxidants important for growth and health, are
sometimes deficient in ruminant diets. Ruminant requirements
change with species, class, age, weight, health, and growth
performance (213), but much of the research into these
requirements are outdated and not representative of current
production systems. Vitamin and related mineral deficiencies
most often affect animals fed in confinement and only rarely
occur in those allowed to graze or browse pastures and
rangeland containing abundant, diverse plant species except
when soils are severely deficient, as is sometimes the case
with Se (214). When deficiencies occur, they are often a result
of incorrect ration formulations or antagonistic effects (e.g.,
K and P, S, and Cu). However, they can be corrected by
supplementation, feed changes, or allowing animals access to
diverse pastures containing dicotyledenous species, such as
legumes. Historically, cattle confined feeding operations have
supplemented ruminants at or above published requirements as
a preventative measure (215).

In grazing or browsing ruminants, most vitamins and
minerals necessary in cellular antioxidant activity can be ingested
from fresh plant material. In turn, these are transferred to
ruminant products; dairy products especially can accumulate
these compounds, often quantified as antioxidant protection
degree (214) or total antioxidant capacity (216). Unsaturated
fatty acids, phenols, and volatile compounds are likewise
transferred from forages to dairy products and play important
roles in taste and odor as well as eventual consumer health
(217). These are incredibly rich in grazing systems, at times ten
times greater than in stall-fed ruminant diets (218). Therefore,
vitamin and mineral supplementation often becomes the best
management option only in confined feeding operations or
monoculture grazing systems.

Importance
The α-tocopherol and related compounds (vitamin E) and closely
associated selenium (Se) are common feed-related deficiencies
in confined ruminants not fed fresh green forages (219). Both
are important in antioxidation processes that mitigate stress.
Vitamin E, in conjunction with Se, plays a crucial role in cellular
antioxidation. When deficient, physiological and immunological
functions can be impaired, as can growth performance in
confinement (220).

Retinol (vitamin A) is fat-soluble and plays an important role
in ruminant eyesight, bone development, epithelial cell function,
reproduction, as well as general immune functions (221). In
ruminants, retinol enhances antioxidation that protects against
cellular free-radicals (222). Carotenes are retinol precursors,
and, under pasture or rangeland conditions, over 10 carotenoids
have been documented in forages that can meet ruminant
requirements (221). Their presence in milk produces distinctive
butter and cheese colors that consumers identify with grazing-
based dairy. However, feeding trials in confined feeding systems
where fresh, green forage was lacking indicate that retinol

supplementation to sheep (223) and calves (224) increases its
presence in animal tissue, indicating that deficiencies may occur.
There is also evidence that Vitamin A can interfere with Vitamin
E retention in ruminant blood plasma, liver, and fat tissue.

Ascorbic acid (vitamin C) inhibits cortisol release, is a robust
cellular antioxidant, and plays a vital role in ruminant products’
fatty acid profile, especially dairy (225). Its supplementation
to confined ewes, for example, increases the antioxidant
concentration in milk (226). It also affects lamb, but not kid,
meat quality parameters when administered before transport and
slaughter (227). Diet can be a strong determinant of herbivore
blood and milk ascorbic acid concentrations (228, 229), and its
injection in confined cattle can reduce mortality rates (230).

Folic acid and vitamin B12 supplemented to confined
multiparous (older) dairy cows can reduce dystocia by 50% and
speed up first breeding postpartum by 3.8 days (231). It has
no effect on primiparous dairy cows or any other health or
reproductive factor for either class of animals. This indicates
that, in confined feeding conditions, these can be essential
supplements in multiparous ruminants where vitamin B can
become depleted over time. No similar positive effect of folic
acid and vitamin B12 supplement in pastured ruminants has
been observed.

The Ruminant Animal’s Perspective
Stress on ruminants affects animal health by increasing cellular
oxidation. Stresses include abiotic factors, such as climate (mainly
temperature extremes) or management, including transport or
handling (219). Biotic stresses include interaction with other
animals, reproduction, lactation, and feed quantity and quality
deficiencies, as well as numerous other potential interactions with
the living environment. Oxidative stress occurs when reactive
oxygen species or free radicals surpasses the detoxification
capacity of antioxidants. Activation of inflammatory-immune
response and decreased overall immune function can result.
There is evidence indicating that oxidative stress during weaning
and transport plays a crucial role in the occurrence of bovine
respiratory disease (232, 233) and affects feed efficiency (234)
in newly received feedlot cattle. Ingesting antioxidants, such
as vitamin E and related Se, can help reverse these adverse
effects. When these are limited in the diet of confined ruminants
consuming a limited diversity of fresh forages, supplementation
can mitigate the adverse effects of stress on growth and product
quality (226, 235, 236).

The Ruminal Microorganisms’ Perspective
Ruminal microbes can synthesize as well as degrade vitamins and
other antioxidative dietary compounds. Diet affects this dynamic.
High energy concentrate diets, for example, result in an 80%
vitamin A loss in the rumen compared to only 20% breakdown
in high-forage diets (237). As a result, slow-release rumen boli
containing vitamins and minerals have proven effective for
enhancing confined ewe reproductive functions (238). However,
it is unclear if vitamins played any role and their effectiveness
declines after the initial weeks. The effectiveness of slow-release
Cu, Se, or Co has proven especially useful in pastures where soils
and consequently forages are low in any one of these minerals.

Frontiers in Veterinary Science | www.frontiersin.org 11 March 2021 | Volume 8 | Article 628445

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Tedeschi et al. Phytochemicals in Ruminant Nutrition

However, because forages typically supply vitamins above rumen
microorganism requirements, their supplementation has not
been widely studied in grazing or browsing ruminants. In a
feedlot where fresh forages are rarely an ingredient, however, this
picture changes drastically.

The Consumers’ Perspective
Volatile compounds ingested by grazing and browsing lactating
ruminants change milk and dairy product fatty acid profile
and antioxidant properties (239–241). Not only can this extend
product shelf life, but it can also be important for health benefits
to consumers as well as unique flavors in milk, butter, and
cheese that arise from consuming certain forages that vary by
region and season (214). These are driven by forage composition,
particularly dicotyledonous plant species (242). When animals
are fed in confinement, supplementation can compensate for
vitamin deficiencies in the animal, which is then reflected in the
product (235). In North Americanmilk production, where strong
flavors are not a consumer preference, forages containing these
compounds may not always be desirable.

Sources of Vitamins
The role of Vitamin E and other antioxidants in ruminant
nutrition and health has been well-documented. Without them,
animal health suffers, and production yield and quality decline.
What is not always recognized is that their supplementation is
largely irrelevant to pasture or rangeland-fed animals that ingest
these naturally from fresh, green forages. These antioxidants
readily appear in products originating from these free-ranging
ruminants (214). Grazing and browsing ruminants, especially in
ecosystems with diverse plant species, rarely benefit from dietary
supplements. The same is not the case for confined feeding
operations or monoculture grazing systems.

Confined animal feeding operations for feeding ruminants
high energy diets invariably enhance animal production
and health when they include synthetic vitamins and other
antioxidant-enhancing supplements in the feed. This will come
from fresh green forages or, in their absence, as synthetic
supplements. These are generally injected to increase efficiency
and bypass rumen degradation, but slow-release ruminal boli
may also play a role in systems that do not lend themselves to
repeated injections (238).

Very little is known about the antioxidant efficacy of
feeding conserved (e.g., hays and silages) vs. freshly harvested
(greenchop) forages to confined ruminants. Feeding trials
comparing cut-and-carry or greenchop systems to conserved
forages should also examine the role of forage species, functional
groups (e.g., legumes), plant maturity, environment (e.g., soil
nutrients or moisture), browse vs. grazing (especially for goats),
and species diversity. Additional trials should examine the
benefits of allowing animals to graze, browse, or even pen-feed
selectivity (self-medication) for forages that lend themselves to
greater antioxidant activity in the ruminant, animal products,
and humans who consume products containing high or low
concentrations of ruminant-originating antioxidants. Additional
research should compare the efficacy of plant vs. synthetic
vitamin sources in ruminant diets.

Should vitamins be systematically quantified in ruminant
feedlot diet components? Quantifying vitamins important in
ruminant cellular antioxidant functions in confined animal feed
may not be as useful as measuring key minerals, mostly because
the former is broken down by rumen microorganisms fed high
concentrate and high energy feeds, making these unavailable
for absorption in the remainder of the gastrointestinal tract.
Supplementing vitamins up to minimum recommended levels
has already been proven beneficial to ruminants in confinement,
under heavy reproduction pressure, or under management-
induced stresses, such as handling or transport.

Future Perspectives
Additional research topics needing attention include the
effectiveness of slow-release rumen boli for vitamins in feedlot
systems. Timing (reproduction, weaning, season, maturity),
rumen microorganism breakdown leading to inefficiencies, and
duration of release all merit attention. The efficacy of slow-
release supplements for confined feeding vis-à-vis fresh forages
(classes, species, maturity, diversity) also merits focus, especially
regarding animal and human consumer health benefits.

The key question is, should we invest resources in this
phytochemical? For pasture-based systems that include diverse
forage species, including legumes and other forbs, any investment
is unlikely to produce any measurable benefit except in cases
where soils are deficient in key minerals, such as Se, important
for antioxidant health. More research is needed in the case of
confined feeding operations, especially long-duration systems,
such as confined dairies. Examples include comparing the
economic and health returns of year-round fresh, diverse forage
systems where mild climates allow cultivation during any season.

ALKALOIDS

Classification and Definitions
Alkaloids represent the largest class of secondary plant
compounds in North-American perennial plants and occur in
many rangeland grasses and weeds (243), where they mostly
have gained attention as a potential toxin for ruminants and
other pasture livestock in case of overfeeding of alkaloid-
containing plants. Alkaloids were initially classified as cyclic
compounds containing N in a negative oxidation state, derived
from an amino acid. However, some pseudo-alkaloids are
not derived from amino acids and alkaloid-like compounds
(amines) that do not contain N within any ring-structure. Given
the confusing nomenclature of alkaloids, pseudo-alkaloids, and
amines, it seems more convenient to classify them based on their
biogenetic origins, where four groups were created: (1) alkaloids
derived from ornithine, arginine, lysine, histidine, phenylalanine,
tyrosine, tryptophan, anthranilic acid, and nicotinic acid; (2)
purine alkaloids (e.g., xanthine caffeine); (3) aminated terpenes
(e.g., diterpene aconitine, triterpene solanine); and (4) polyketide
alkaloids (e.g., coniine, coccinellines) (39). Alkaloids may be
produced by plants and fungi infesting certain pastureland plants,
such as the endophytic fungus N. coenophialum in tall fescue that
contains the alkaloids peramine, ergot, and loline (244).
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Nutritional Importance
Overall, forage plants that include significant concentrations of
alkaloids are considered toxic as many adverse effects in livestock
exist, including acute and chronic symptoms, such as damage to
the central nervous system, liver damage, muscle cramps, and
death (245). The toxicological effects associated with alkaloids,
specifically the broadly present class of pyrrolizidines, has been
in discussion since the 1960s, specifically in context with animal
production (246). Specifically, breeding efforts to remove tannins
from forage for ruminants to optimize meat production may
have possibly reduced tannins and alkaloids’ interactions, thus
increasing the toxicity of the latter (247). Many plants with
high alkaloids in the leaf are not palatable to herbivores due to
bitterness (248). It has been observed that wild animals (e.g., deer,
rabbits) tend to limit the consumption of alkaloid containing
plants but also to be highly tolerant. This resistance to chronic
alkaloid intoxication has been, in part, ascribed to intestinal
microbiome containing strains that can degrade alkaloids (249).

Initial efforts to remove alkaloids from the food chain
of livestock production did not consider the crucial role
of alkaloids across several ecological networks (245). Ergot
alkaloids (e.g., ergovaline, ergonovine, ergine) are commonly
found in tall fescue (Festuca arundinacea—now Schedonorus
arundinaceus Schreb.; https://plants.sc.egov.usda.gov), but an
endophytic fungus—Neotyphodium coenophialum—produces
them. Through a mutualistic symbiotic relationship, it enables
the tall fescue to thrive during drought and cold weather and
resist insect predation, nematode infestation, and some diseases
(244), but it can be devastating to the ruminant animal (250, 251).
In a previous study, a genetically modified non-producing-ergot
N. coenophialum has been incorporated into tall fescue to still
yield the plant’s agronomic benefits without causing toxicity to
the grazing animal (244). Similarly, perennial ryegrass (Lolium
perenne L.), another widely used cool-season pasture grass,
is infected with N. lolli—an endophyte fungus that produces
the biologically active ergot, peramine, and lolitrem alkaloids,
which cause ryegrass staggers in livestock (244). In contrast,
reed canarygrass (Phalaris arundinacea L.) produces the alkaloid
gramine in leaf sheaths and stems, reducing ruminant’s forage
intake, thus limiting growth and development (244).

Simultaneously, various therapeutic activities have been
ascribed to alkaloids, including antioxidant, cancer-preventive,
antidiabetic, anti-inflammatory, and vasodilatory activities (252–
254), but it has not been well-investigated how livestock could
benefit from these beneficial activities from alkaloids. Many plant
extracts that have been investigated for the beneficial actions
of contained polyphenols and terpenoids may also contain
alkaloids contributing to their biological activities, for example,
giant milkweed (255) or herbal mixtures containing polyphenols,
terpenoids, and alkaloids (256).

Additionally, the microbiome of ruminants, including
bacteria, archaea, protozoa, and fungi, in part, metabolizes
alkaloids to non-toxic metabolites (257); however, causal
relationships have not been well-investigated. For example,
Koester et al. (258) showed that cows with high vs. low tolerance
to fescue toxicosis have vastly different microbiota compositions,
specifically fungal phylotypes Neocallimastigaceae, potent

fiber-degrading fungi, were consistently more abundant in the
tolerant cattle. Additionally, it has not been well-investigated,
which microbial enzymes are required to perform alkaloid
metabolism (259).

Future Perspectives
Overall, alkaloids’ beneficial role to ruminants and their
synergistic contributions to ecological networks in forage-animal
management has not been well-investigated. The contribution
of alkaloids in complex plant extracts beneficial to ruminant
nutrition also remains to be explored.

ESSENTIAL OILS

Classification and Definitions
Unlike the previous phytochemicals that maintain a reasonably
specific chemical makeup, EO are mixtures of compounds
comprised of previously discussed phytochemicals and other
intrinsic chemicals. Indeed, the nomenclature “essential oils”
is a misnomer because EO is neither essential in the sense
that animals have a daily requirement nor are oils because
they contain glycerol (2). The term EO was likely derived
from quinta essentia (i.e., quintessence) attributed to Bombastus
Paracelsus von Hohenheim1493−1543, who used the term for any
extraction of pharmacological drugs via steam distillation (260).
Essential oils are classically defined as complex, multi-component
mixtures of various volatile and non-volatile compounds,
including acids, acetones, alcohols, aldehydes, esters, phenolics,
and terpenes (261). The primary constituents of EO are low
molecular weight terpenes/terpenoids and aromatic compounds,
with monoterpenes representing 90% of EO (262). Essential oils
are commonly extracted from materials found throughout the
plant, including bark, leaves, flowers, roots, seeds, and stems. The
biological properties of an EO are determined by its chemical
profile that can vary depending upon the extraction process,
plant material, plant maturity, and growing environment (262).
In many cases, much of the pharmaceutical properties exhibited
by EO can be attributed to the phytochemicals that comprise an
EO (e.g., terpenes, terpenoids, phenolics, polyphenolics) (261).

Essential oils can exhibit antimicrobial, antiseptic,
antiparasitic, antioxidant, anti-inflammatory, and immuno-
modulating activities. In general, EO display hydrophobic or
lipophilic attributes that result in a high affinity for bacterial cell
membranes, generating ion leakage that can ultimately result
in ATP depletion and cell lysis (263, 264). Since ancient times,
EO have been exploited by humans for their pharmaceutical
properties (263), with EO currently being used regularly in
agriculture, cosmetic, food, homeopathic, pharmaceutical,
and therapeutic industries (262). Essential oils are cited as
improving animal health and nutritional status by stimulating
the circulatory, digestive, and immune systems, as well as
reducing pathogenic bacteria and parasites (261, 265).

Nutritional Importance
The nutritional effects of EO are primarily attributed to
their antimicrobial properties that are comprised of multiple
interaction mechanisms. Gram-positive bacteria are considered
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more susceptible to EO than gram-negative bacteria due to both
hydrophobic and lipophilic interactions affecting cell membrane
stability (266). However, small molecular weight components,
via hydrophobic interactions, may be able to penetrate and
affect gram-negative bacteria (267). The application of EO
in ruminant nutrition has focused on ruminal modulation
to shift the microbial consortium toward one that improves
nutrient use efficiency (268). Significant emphases have primarily
remained focused on N-metabolism, CH4 abatement, and the
VFA profile (36, 264). Essential oils’ complex and varied
composition may provide the potential to alleviate tolerance
and resistance developments associated withmedically important
antimicrobials and synthetic compounds.

Ruminal Fermentation
The basis for employing EO in ruminant diets is to modify the
microbial population so that efficient fermentation pathways are
used, and the animal’s nutrient use efficiency is increased. The
primary means of accomplishing this is by altering the VFA
profile (lower acetate-to-propionate ratio) and a reduction in
fermentative waste products (e.g., CH4 and NH3). The mode of
actions provided by EO suggests they may be able to modify
ruminal fermentation similar to ionophores by decreasing the
prevalence of Gram-positive bacteria, including hyper-ammonia
producing bacteria and those that readily produce formate or
H2 (269).

In vivo research has demonstrated that EO reduce the acetate-
to-propionate ratio to a level comparable to ionophores when
ruminants are fed high-quality diets (e.g., dairy and feedlot)
(270–274). However, this result is inconsistent, and it is not
easy to discern if the decreased acetate-to-propionate ratio
results from reduced acetate, increased propionate, or both, as
all scenarios have been observed. An increase in butyrate has
also been indicated in some studies (270, 275) and is cited as
an indication that EO and ionophores have differing modes of
action (264, 270). As well, ruminal branched-chain volatile fatty
acids have been reduced (270) and increased (276, 277) in vivo,
indicating an alteration in the cellulolytic microbes or those that
synthesize branched-chain volatile fatty acids from branched-
chain amino acids. Both branched-chain volatile fatty acids
and branched-chain amino acids are essential for the normal
fermentative functions of cellulolytic microbes in the rumen (1).
Overall, the addition of EO often imparts no change to the total
VFA concentration (277, 278). However, increased (271, 279) and
reduced (280, 281) total VFA concentrations have been reported,
but the reduction in total VFA concentration is typically not to
the extent observed with ionophores (2, 22, 282).

The effect of EO on digestibility is a significant point of
contingency, but it has not been a focal point for much of the in
vivowork in beef cattle. Of those that have examined digestibility,
there was no effect on DM digestibility or neutral detergent fiber
digestibility (271, 272, 283). The result is similar in dairy cattle,
with only marginal effects on digestibility (274, 281, 284, 285).
As with digestibility, EO’s inclusion does not appear to affect
significantly intake, at least not at the supplementation levels
commonly used in vivo.

The provision of EO in vivo has not demonstrated a repeatable
effect on ruminal CH4 without suppressing digestibility.
Supplementing diets with EO has decreased CH4 in dairy cattle
(286–289), but did not change of increased CH4 production in
beef cattle (277, 278). Although CH4 production has not been
measured, when feeding EO, protozoa and methanogen numbers
decline in vivo with a corresponding reduction in the acetate-
to-propionate ratio (270, 272). A reduction in CH4 without
inhibiting digestion has typically been observed when EO are
provided at ∼500 mg/kg DM, but as little as 41 mg/kg DM
has imparted an effect. The beneficial effects are thought to
be due to selective inhibition of protozoa and methanogens;
however, the negative or ineffectual results are likely the result
of EO demonstrating indiscriminate binding or lack of adequate
biological activity.

Much research has investigated the potential application
of EO to reduce proteolysis and deamination in the rumen.
However, the consensus indicates that EO have little-to-no
effect on the ruminal breakdown of protein and amino acids
in beef or dairy cattle. The vast majority of research indicates
no difference in ruminal NH3 when EO are included in
the diet (275, 278–280). Similarly, numerous studies have
failed to indicate a difference in blood or milk urea N
from animals provided EO (274, 290, 291). The lack of
effect is thought to result from EO being supplemented at
too low of a rate to alter N metabolism (264). However,
reduced ruminal digestibility had no effect on ruminal NH3

or blood urea nitrogen levels in beef heifers supplemented
with EO (292, 293). This could indicate that some species
of hyper-ammonia-producing bacteria are less sensitive to
EO (294).

Post-rumen Digestion
Essential oils increase the flow of non-microbial N to the
small intestine, as well as stimulate digestive enzymes and alter
microbial populations in the lower tract. However, minimal
investigation of rumen outflow and post-rumen digestion
has been performed, particularly in vivo. In beef heifers,
a linear increase in the flow of non-microbial N to the
duodenum has been observed with an increasing rate of
eugenol or cinnamaldehyde (292, 293). However, post-ruminal
N digestibility does not improve when feeding EO (292, 293,
295, 296). The inclusion of EO yields equal or lesser ruminal
N digestibility with no difference in intestinal digestibility.
This results in total-tract N digestibility not different or
lower than the control. A similar trend is present for starch
and neutral detergent fiber digestibility, ruminally and post-
ruminally. However, increased total-tract acid detergent fiber
digestibility has been observed and attributed to a stimulatory
effect of EO on digestive enzymes (283, 291, 297). In ruminants,
no research has directly investigated EO as a stimulus for gastric
or intestinal enzymes. However, this is not implausible as EO
have demonstrated the ability to reduce pathogenic fecal bacteria
(298) and diarrhea in calves (299), as well as reduce fecal DM and
viscosity in dairy cattle (274).
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Methodological Aspects
Essential oils have primarily been investigated using in vitro
methods, batch or continuous culture, particularly when
screening multiple compounds and rates. In many instances,
batch incubations have not adequately represented the dynamic
rumen environment, whereas continuous culture has provided
fermentation and outflow data comparable to in vivo results.
Over the past decade, in vivo methods have been regularly
implemented, but efforts have mainly focused on dairy and
feedlot sectors, with little to no investigation into grazing beef
cattle. Much of the in vivo research focused on fermentation
parameters and digestive functions has utilized low animal
numbers (4–16) in Latin square or switchback designs. Some
larger pen-fed studies have emphasized performance and carcass
characteristics with digestive attributes being investigated with a
small number of cannulated animals. A shortcoming of multiple
fermentation studies is that the use of low animal numbers
has not greatly progressed our knowledge of the inter-animal
variation associated with EO provision. For in vivo investigations,
the length of EO or treatment provision varies greatly. Research
focusing on digestion and fermentation commonly utilized 14-
to 31-day feeding periods, whereas the larger performance trials
typically ranged from 80 to 205 days on feed. There is an apparent
deficiency in fermentation and microbiota data for animals fed
EO for more than 30 days, limiting our knowledge of digestive or
microbial alterations with prolonged feeding.

Research Data
The successful application of EO depends on numerous factors,
but the overall effect of EO is unclear due to a lack of consistency
among measured variables. Even so, EO have regularly increased
intake and improved the VFA profile and feed conversion in
feeder cattle, as well as reduced CH4 and increased milk yield
and feed conversion in dairy cattle. The reason for the different
effects between a feeder and dairy cattle is likely, at least in part,
a result of differences in diet composition, particularly the level
and type of roughage. However, there is little information to
assist in making comparisons to high-roughage diets. In a meta-
analysis of the essential oil blend, Agolin Ruminant R©, in dairy
cattle, Belanche et al. (300) determined that supplementation
of the EO blend increased milk yield and reduced CH4, and
an adaptation period of at least 4 weeks was required for
consistent results. Unfortunately, most digestive studies have
utilized periods spanning 3–4 weeks, perhaps not allowing
enough time for consistent outcomes to be realized. In a meta-
analysis investigating the effects of EO in sheep diets, it was
determined that EO increased neutral detergent fiber digestibility
and propionate concentration and reduced protozoa populations
and acetate concentrations (301). However, in contrast to dairy
cattle, EO efficacy in sheep appeared to be highest within the first
30 days and then began diminishing. Regardless of species, the
methodologies commonly used to study fermentation have not
progressed our knowledge of EO efficacy with prolonged feeding.

Future Perspectives
There appears to be potential for EO to improve animal
efficiency and performance, but the variation among studies

makes it difficult to parse out the effect of EO vs. random
variation. If EO are to be commercially used in ruminant
production, emphasis should be placed on using methods that
improve the consistency of results (i.e., increased replication,
extended feeding periods, recovery methods, chromatographic
methods to determine purity). Research using forage diets
merit increased attention, as improved fermentation profiles
would greatly benefit this sector. Apart from nutrition, there
seem to be EO opportunities for internal and external parasite
control. Multiple in vitro studies have reported acaricidal activity
of EO and have successfully used them to control cattle
ticks (302–304), with evidence indicating EO as a potential
method of controlling flies and lice (305–307). This is a
vital area of research due to the rapid increase in parasite
resistance to synthetic compounds, providing a large opportunity
to investigate feed-through and topically administered EO
in ruminant species. Another area that merits attention is
the effect of EO on thermal stress. There is scientific and
anecdotal evidence indicating that EO’s provision may reduce
the stress associated with hyperthermia (308–310), but the
underlying mechanisms and efficacy in a production scenario
are unknown. Although EO’s nutritional effects may not be
consistent, there is potential for EO to improve other health
parameters that directly and indirectly affect the nutritional
status of ruminants.

Should researchers invest resources in EO? Based on the
current literature, adequate data point to the benefits of EO
to ruminant production. Additional efforts should invest in the
long-term and diversity of these compounds. However, research
projects must be performed in a manner that better capture the
effect of EO and promotes consistency among trials, rather than
focusing on the least publishable unit.

CONCLUSION

Many scientists embarked on alternative replacements to
antibiotics in animal operations in the last 15 years after
widespread concern over AMR due to antibiotics’ perceived
broad use in animal production. Phytochemicals became the
preferred research pursuit, even though these compounds
have been studied and applied in many fields long before
AMR became publicized. Phytochemicals embody a broad
spectrum of chemical components produced by plants and
some fungi to act as chemicals against predatorial microbes,
insects, and herbivores. Therefore, the idea of using them
to manipulate ruminal fermentation and to establish other
phytochemoprophylactic (prevent animal diseases) and
phytochemotherapeutic (treat animal diseases) activities
gained sympathizers.

Flavonoids comprise only 9% of known phytochemical
compounds, but most research has been dedicated to this group,
especially CT. However, because of inconclusive or contradictory
findings, more targeted research is needed to confirm and
validate published findings before definitive recommendations of
phytochemicals usage in ruminant nutrition are drawn, such as
what, when, and howmuch to use. Although some discoveries are
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encouraging, disagreements and lack of repeatability exist among
studies, particularly for CT and saponins.

Alkaloids may also have a potential untapped benefit
in ruminant nutrition. Although humans have long
used alkaloids for their pharmacological properties, their
phytochemical usage as feed additives in ruminants
has not been sufficiently scrutinized. In part, given
the intricacies in measuring and classifying alkaloids
chemically, they may act as ghost compounds alongside other
phytochemicals of known importance as plants produce many
phytochemicals concurrently.

Likewise, terpenes, vitamins, essential oils, and other natural
plant antioxidants play a large role in rumen ecology and
function. These are most prevalent but least studied in fresh
forages, especially in rangelands. The difficulty of isolating their
individual effects in forage-based systems make them especially
challenging to describe. This, however, does not detract from the
critical roles they plan in ruminant ecosystems. The importance
and individual effects are more easily identified in feedlot
situations where concentrates and preserved forages contain

fewer compounds, with consequent adverse effects on rumen
microbiome health and ruminant nutrition. More research in
these compounds in concentrated animal feeding operations is
therefore merited.

The phytochemicals’ role in sustainable ruminant production
is undeniable, but much uncertainty remains. Scientists have
yet to answer the sustainability issues before relying exclusively
on phytochemicals as a sensational remedy for AMR, especially
in complete rations lacking fresh forages and precluding
ruminant feed selection. Phytochemical feed additives may
have a place in sustainable production scenarios only if
more convincing results of their efficacy and effectiveness in
replacing antibiotics are dependably identified. The old saying
“do not put all your eggs in one basket” still applies to
phytochemical research.
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