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Osteosarcoma (OS) is the most common primary bone tumor and originates from bone

forming mesenchymal cells and primarily affects children and adolescents. The 5-year

survival rate for OS is 60 to 65%, with little improvement in prognosis during the last four

decades. Studies have demonstrated the evolving roles of parathyroid hormone-related

protein (PTHrP) and its receptor (PTHR1) in bone formation, bone remodeling, regulation

of calcium transport from blood to milk, regulation of maternal calcium transport to the

fetus and reabsorption of calcium in kidneys. These two molecules also play critical roles

in the development, progression and metastasis of several tumors such as breast cancer,

lung carcinoma, chondrosarcoma, squamous cell carcinoma, melanoma and OS. The

protein expression of both PTHrP and PTHR1 have been demonstrated in OS, and their

functions and proposed signaling pathways have been investigated yet their roles in OS

have not been fully elucidated. This review aims to discuss the latest research with PTHrP

and PTHR1 in OS tumorigenesis and possible mechanistic pathways.

This review is dedicated to Professor Michael Day who died in May 2020 and was a very

generous collaborator.
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INTRODUCTION

Osteosarcoma (OS) or osteogenic sarcoma is defined as the malignancy that originates from
bone-forming mesenchymal cells (1–5). This tumor is also known as the “growing bone tumor” (6).
OS is the primary malignant tumor of the skeleton in which tumor cells directly form immature
bone or osteoid (7). OS is the most prevalent type of primary bone cancer in both humans and
dogs (8–11). OS occurs more frequently in children, adolescents, taller humans, and large breeds
of dogs (9, 12). In both species, OS mostly affects the ends of long bones near the metaphyseal
regions (9, 13). The femur, tibia and humerus are the locations that are most often affected by OS
in humans (14).

OS is not a modern disease. A recent study revealed that dinosaurs also were affected by OS
(15). Ekhtiari et al. confirmed this grossly, radiographically, and histologically in a fibula from
a Centrosaurus in Canada. The dinosaur dates from around 77 to 75.5 million years ago (15).
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Previously, paleontologists found periosteal OS using micro-
computerized tomography (CT) in the hindleg of a fossilized
turtle (16). This was the oldest OS to be found in an amniote
indicating that OS was present in this fossil that has been dated
to 240 million years old.

There has been little improvement in the treatment of OS
and its prognosis in the last 40 years, especially for those
patients with metastatic OS (17–21). The reason behind this
could be the unavailability of novel biomarkers. Perhaps if there
were confirmed prognostic tumor markers, this might assist in
categorizing patients for risk-based treatment. Furthermore, the
complexity of OS is such that no two tumors look alike (22).

The current treatment strategy for human OS involves
neoadjuvant chemotherapy followed by surgical removal of the
tumor and adjuvant chemotherapy (23). Standard chemotherapy
uses a combination of doxorubicin and cisplatin with a high dose
of methotrexate in the neoadjuvant and adjuvant regimens (24).
This treatment procedure can improve the five-year survival rate
by 60-65% (23, 25). However, early surgical removal of the tumor
is the most successful treatment method (26, 27).

Canine and human OS share several key features such as
presence of micrometastatic disease at diagnosis, p53 mutations,
abnormal expression of several proteins (e.g., activator of
transcription 3, tensin homolog, Met, phosphatase, signal
transducer and ezrin), affected site and development of
chemotherapy-resistance (28). Furthermore, OS in dogs and
humans share similar DNA copy number aberrations and show
overlapping transcriptional profiles, suggesting that these two
diseases are similar at the molecular level. In addition, the
metastatic rate of OS without chemotherapy is 90% for dogs and
85–90% for humans and occur mostly in lung, bone and soft
tissues, in both species (28).

The high metastasis rate of OS results from the primary
bone tumor spread via hematogenous path to other secondary
locations (28). The most common cause of death in OS patients is
the development of pulmonary metastasis (28). Metastasis occurs
most frequently in lungs but rarely occurs in the surrounding
pleura. There is one case report where this happened and the
authors suggested it was due to the direct contact of pleura with
the lungs (29).

Even though <15% of OS metastases in canine and human
patients are detected at diagnosis radiologically, 85 to 90%
of patients develop gross metastases regardless of effective
management of the primary bone tumor (28). This shows that
microscopic metastases arise in the early stages of the disease
(30). The overall 5-year survival rate for OS in humans is around
60 to 70% in patients with nometastases and 10 to 30% in patients
with metastases at diagnosis (24, 31–33). On the other hand,
long-term survival rates for OS in dogs is only 10 to 15% (34),
supporting the idea that the canine OS may be more aggressive
compared to human OS (28).

One study found that overexpression of membrane-
cytoskeleton linker ezrin is involved with early development of
OS metastases in dogs (35). In line with canine OS data, it has
been found that increased expression of ezrin is significantly
associated with poor prognosis in OS cases in children (28).
Using canine OS cell lines, Hong et al. found that there is

an association between PKC and ezrin-radixin-moesin (36).
They showed that PKC inhibitor stops ezrin phosphorylation
and tumor cell migration (36). Jaroensong et al. reported that
overexpression of p-ezrin-radixin-moesin occurred early in
the development of pulmonary micrometastases of OS using
orthotopic xenograft mouse model of canine OS (37). This
expression decreased at later stages suggesting that ezrin is
involved in roles related to the survival of cancer cells after their
arrival at secondary metastatic sites (37).

Development of metastatic OS is the major cause of death in
dogs and humans. So, the identification of new and significant
treatments are crucial for the prevention of tumor metastasis
which would lead to the reduction of the number of deaths in
both dogs and humans (28).

The only basic prognostic indicators of human OS are the
patient’s response to chemotherapy, the presence of metastases
and satisfactory surgical margins (38). Other prognostic
indicators such as histological subtype, age, high concentration
of serum lactate dehydrogenase or alkaline phosphatase (ALP),
tumor size and site are still contentious (38). Recently, it has been
shown that the expression of parathyroid hormone receptor 1
(PTHR1) is a prognostic indicator in canine OS (39). Although
several studies have been carried out to elucidate the molecular
pathogenesis and related signaling pathways of OS using human
tissue, murine, canine models and cell lines, the disease remains
an unsolved puzzle.

Parathyroid hormone-related protein (PTHrP) was first
discovered as a causative factor of humoral hypercalcemia of
malignancy syndrome (40, 41). This syndrome occurs because
of increased secretion of PTHrP from tumor cells resulting
in elevated levels of calcium in serum and increasing cyclic
adenosine 3′,5′-monophosphate (cAMP) excretion in urine
(42, 43). In humans, PTHrP is synthesized as a protein with
either 139, 141, or 173 amino acids due to differences in mRNA
splicing (44). PTHrP shares homology of its N-terminal amino
acid sequence (1–34) with parathyroid hormone (PTH) (41).
This allows both hormones to act through a common receptor
(PTH/PTHrP receptor or PTHR1) (45).

PTHR1 is a seven-transmembrane class B G-protein-coupled
receptor (GPCR) (46). Examples of receptors included in
this family are the receptors for secretin, glucagon, pituitary
adenylate cyclase-activating peptide, growth hormone-releasing
hormone, vasoactive intestinal peptide, corticotrophin-
releasing factor, glucagon-like peptide, calcitonin, and
gastric inhibitory peptide (47). Structurally, PTHR1 contains
N-terminal extracellular domain (ECD) of ∼100–160 amino
acid residues, a transmembrane domain (TMD) containing
the seven membrane-spanning α-helices and a C-terminal
tail (48).

PTHR1 is activated by the binding of the N-terminal (1–34)
amino acids of PTH or PTHrP (47). The NH2-terminal part
of PTH/PTHrP binds to the extracellular connecting loops
and the TMD α-helices of PTHR1 (49, 50). This interaction
induces conformational changes in PTHR1, which initiates
intracellular signaling (51, 52). However, the COOH-terminal
part of PTH/PTHrP binds to the N-terminal ECD of PTHR1
(53, 54).
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FIGURE 1 | The regulation of cartilage and bone formation. Diagrammatic representation of the network of signaling factors involved in cartilage and bone formation.

Starting with the creation of mesenchymal condensations and their subsequent transition to differentiated cartilage and bone. The cells are represented as

osteoblasts , pre-osteoblasts , chondroblasts , chondrocytes , osteoclasts , hypertrophic chondrocytes , adipocytes

and myocytes . Reproduced with permission from reference (59).

Activation of PTHR1 initiates events of intracellular processes
by signaling through the stimulatory G-protein α-subunit (Gsα)
(55). Subsequently, the synthesis of cAMP is stimulated and
PKA is triggered (56). However, PTHR1 can be activated by
another signaling pathway through the Gq class of G-protein
α-subunits (Gqα) (57). This activation results in triggering
phospholipase C (57) which in turn activates PKC and
raises inositol triphosphate and intracellular calcium in tissues
(56, 58).

Numerous studies have established the roles of PTHrP and
PTHR1 in bone formation, remodeling (Figures 1, 2) and
regulation of calcium transport (60–64). In addition, these
molecules play a role in the progression and metastasis of many
human tumor types such as lung and breast cancers (65, 66).
The aim of this review is to highlight the latest findings about
functions of PTHrP and PTHR1 in normal and neoplastic tissues
by focusing on their roles in the progression of OS and discuss
the possible related pathways.

ROLES OF PTHrP IN NORMAL AND
TUMOR TISSUES

PTHrP acts as an autocrine or paracrine factor and has a
role in a number of significant physiological processes in
bone, such as the regulation of chondrocyte and osteoblast
differentiation and the proliferation (Figure 1) in the growth
plates of developing long bones (60, 61). In bone tissue, PTHrP
maintains the columnar organization of the chondrocytes and
slows down their differentiation (61). Garcia-Martin et al. (67)
suggested that PTHrP promotes proliferation of osteoblasts and
matrix mineralization via three partially redundant mechanisms.
These mechanisms are an intracrine nuclear localization
signal-dependent mechanism, an autocrine/paracrine signal-
peptide/PTHR1-dependent mechanism, and mixed mechanism
(67). Thus, secretion of PTHrP and subsequent activation
of PTHR1 would induce proliferation and mineralization of
osteoblastic cells (67) (Figure 1).
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FIGURE 2 | The actions of PTH and PTHrP on new bone formation. If PTHrP and PTH are given intermittently to patients, they increase the formation of

new bone but if either are given continuously, they increase resorption by stimulating osteoclasts to remodel bone . Both act via PTHR1 .

Reproduced with permission from reference (59).

In addition, PTHrP is involved in significant processes in
other tissues including breast (62, 68) and placenta (63, 64). In
the breast, PTHrP is abundant in milk, produced via the lactating
breast and has an important role in branching morphogenesis of
the mammary glands (62, 68). The concentration of PTHrP in
plasma is increased during lactation resulting in the regulation
of calcium transport from blood into the milk (62) and
stimulation of calcium mobilization from bone (68). In the
placenta, PTHrP has a role in regulating the direct transport of
maternal calcium to the fetus across the placental membrane
(63, 64).

Over and above its normal roles, increasing evidence has
indicated that PTHrP plays critical roles in tumorigenesis
(69–72). It has been found that PTHrP has a role in the activation
of protein kinase A (PKA) and C (PKC) pathways (73), regulation
of primary tumor growth and in metastasis (72). Luparello

et al. (69) found that PTHrP stimulates cell invasion using the
8701-BC human primary breast ductal infiltrating carcinoma
cell line. Further data obtained from immortalized human
mammary epithelial cell lines (S1T3, S2T2, and NS2T2A1)
indicated that PTHrP stimulates proliferation of tumor cells (70).
In addition, it has been found that knockdown of PTHrP reduced
tumor growth, induced apoptosis of osteoblasts and stimulated
the formation of autophagosomes using human MDA-MB-231
breast cancer cell line (74). The authors suggested that blocking
of PTHrP in the tumor cells might be a possible targeted therapy
for breast cancers, particularly those with skeletal metastases (74).
Similarly, Li et al. showed that PTHrP promotes breast tumor
initiation, progression and metastasis in mice and it could be a
novel therapy target (75). Together, these studies revealed that
PTHrP plays a critical role in the initiation of breast cancer
(74, 75).
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TABLE 1 | Roles of PTHrP in progression of OS.

Role of PTHrP in OS Type of

tissue

Species References

Increased expression of PTHrP is associated with reduced tumor growth and cell proliferation Cell line Rat (95)

Increased expression of PTHrP is correlated with decreased cell proliferation and tumor growth Cell line Mouse (96)

Overexpression of PTHrP caused tumor chemoresistance Cell line Human (97)

Overexpression of PTHrP stimulates migration of tumor cells Cell line Human (98)

Inhibition of PTHrP reduced cell growth and invasion Cell line Mouse (99)

Knockdown of PTHrP increased apoptosis and growth inhibition Tissue Mouse (99)

Presence of PTHrP protein in tumors was not a prognostic marker Tissue Dog (39)

A retrospective study found that increased circulating PTHrP
levels might be prognostic with shorter survival time and bone
metastases in patients with lung carcinoma (71). Recently,
Hastings et al. (65) also examined whether N-terminus or C-
terminus of PTHrP correlated with different lung carcinoma
type and prognosis. They established that C-terminus of PTHrP
may reduce the effect of N-terminus PTHrP on tumor growth
and progression (65). Iguchi et al. (76) established the role of
PTHrP in bone metastasis in mice models using human lung
squamous cell carcinoma-derived cells. Breast and lung cancers
usually cause osteolytic metastases in bone (77). This osteolytic
process depends on osteoclast-mediated bone resorption via
up-regulated osteoclastogenesis (77). Osteoclast differentiation
factors, which play a significant role in this process are receptor
activator of nuclear factor-jB (RANK), its ligand (RANKL) and
the decoy receptor, osteoprotegerin (OPG) (77). In humans,
positive PTHrP staining was seen in 60% of primary breast
tumors (78) and 92% of bone metastases (79). Recently Kim
et al. (66) showed that activation of the calcium-sensing receptor
(CaSR), a GPCR, up-regulated the production of PTHrP in breast
cancer in vitro. As a result, this enhanced proliferation of breast
cancer cells and reduced apoptosis (66). It was observed that
reducing the expression of CaSR in vivo and in vitro inhibited
the production of PTHrP and reduced the growth of the breast
cancer (66).

In addition to breast and lung cancers, PTHrP has been found
to stimulate tumor cell survival and proliferation in other cancers
including chondrosarcoma (80), anaplastic thyroid cancer (81),
medulloblastoma (82), adrenocortical cancer (83), oral squamous
cancer (84), colon cancer (85), prostate cancer (86) and renal
cancer (87). It has also been found that PTHrP is an essential
growth factor for human clear cell renal carcinoma (CCRC) and
acts as a novel target for the vonHippel-Lindau tumor suppressor
protein in vitro (88). Talon et al. (87) demonstrated that apoptosis
could be induced in the human CCRC cell line via the induction
of PTHrP-neutralizing antibodies followed by the inhibition of
PTHR1. Furthermore, Danilin et al. (89) showed that the mRNA-
binding protein HuR is involved in increased expression of
PTHrP and in mRNA stabilization in CCRC. A number of case
studies reported a strong expression of PTHrP in pancreatic
adenocarcinoma (90), intrahepatic cholangiocarcinoma (91),
pancreatic neuroendocrine cancer and that PTHrP levels were
elevated in the patient serum (92).

In addition to its role in tumorigenesis, Kir et al. (93) showed
that PTHrP is involved in cancer cachexia, a wasting disorder
of adipose and skeletal muscle tissues that leads to intensive
weight loss resulting in reduced survival time in patients with
cancer. PTHrP drives the expression of genes that are involved
in thermogenesis in adipose tissue (93). It was demonstrated
that the genes responsible for fat and muscle tissue loss were
neutralized by anti-PTHrP antiserum (93). In summary, PTHrP
is appearing to be a crucial factor in the pathogenesis of a large
range of epithelial and non-epithelial tumors.

ROLES OF PTHrP IN OS

The first attempt to understand the role of PTH in OS was
by Martin et al. (94) by inducing OS in rats using radioactive
phosphorous isotopes. Several later studies found that PTHrP
also plays a role in pathogenesis of OS (Table 1, Figure 3)
(96, 101–104). Suda et al. (102) demonstrated the expression of
PTHrP mRNA in all investigated rat UMR 106-01 and UMR
106-06 OS cell lines. Ho et al. (99) revealed that PTHrP is also
expressed bymurineOS cells. Recently, PTHrPwas detected in all
primary canine OS tissues (n= 50) using immunohistochemistry
staining (39). The findings showed that 50% of these canine
OS tissues had weak staining intensity and 50% strong staining
intensity. The study also found that there was not significant
correlation between the staining intensity and the prognosis of
OS in dogs (39).

In fact, the immunohistochemical (IHC) staining of PTHrP
demonstrated the presence of the protein in the OS at the time of
staining, but it does not tell us howmuch PTHrP is produced and
secreted over the time (39). This association between the presence
of PTHrP protein and prognosis has not yet been investigated
in humans

In contrast, PTHrP mRNA was not detected in aggressive
human OS xenografts (105). It has also been found that increased
expression of the PTHrP gene is associated with reduced tumor
growth and cell proliferation (Table 1) using a murine OS cell
line (96) and a rat OS cell line (106). Previous findings discussed
above showed that over-expression of PTHrP could be correlated
with a better prognosis for OS (Figure 4).

However, Gagiannis et al. (97) noted that PTHrP caused
tumor cells of SaOS2 human OS cell line to be chemoresistant
(Table 1). This was observed after inhibiting major apoptosis
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FIGURE 3 | Roles of PTHrP on two of the OS subtypes. Subtypes of OS arise from pre-osteoblasts that accrue mutations (possibly in Rb or p53). PTHrP, PTHR1 and

CREB activity are increased in osteoblastic OS influencing proliferation (99, 100) when compared to fibroblastic OS. Also, the intracrine PTHrP (iPTHrP) may contribute

to this process.

signaling pathways via blocking the death receptor and
mitochondria-mediated apoptosis signaling (97). It has also been
found that PTHrP stimulates migration of SaOS-2 and MG-
63 human OS cell lines (98). These two studies suggest that
overexpression of PTHrP could be correlated with a poorer
prognosis of OS (97, 98). These conflicting data may be related to
the use of different portion of PTHrP sequences in these different
studies (67, 107). If PTHrP influences chemoresistance then it
would be a good therapeutic target. Blocking this action could
improve patient survival with current treatments.

Ho et al. (99) found that the three major OS subtypes
(osteoblastic, chondroblastic and fibroblastic OS) produce
PTHrP, which act through the PTHR1 to activate adenylyl
cyclase, PKA, and the transcription factor cAMP responsive
element binding protein 1 (CREB1) (Figure 3) (99). The
osteoblastic subtype had an increased level of PTHR1 compared
with the fibroblastic subtype but the PTHrP levels were no
different (99). The knockdown of PTHrP in OS reduced cell
growth and invasion in vitro and increased apoptosis and growth
inhibition in vivo, while the knockdown of CREB1 had much
greater growth inhibition and apoptosis (99). Moreover, Walia
et al. (108), found that PTHrP is a key factor for initiation
of OS in p53-deficient osteoblasts. The production of cAMP
is stimulated by PTHrP (108). This stimulation is followed by
PTHR1 activation, then, phosphorylation and transcription of
CREB1 is activated in p53-deficient OS (Figure 3) (108). It was
suggested that PTHrP-cAMP-CREB1-axis is essential for the
initiation and progression of OS in p53-deficient osteoblasts
(108). These findings are significant because P53 deficiency is a

common event in OS and understanding of this pathway could
lead to a better elucidation of this disease (108).

All of the above data showed that PTHrP is crucial for
tumorigenesis of OS and increased expression could be linked
with poor prognosis in mice (Table 1). However, further in vivo
studies are necessary to clarify the exact roles of PTHrP in the
progression of OS, possibly to be undertaken in dogs.

ROLES OF HUMAN PARATHYROID
HORMONE IN OS

The active portion of human parathyroid hormone is a 34-amino
acid peptide (109). Studies demonstrated that PTH (1–34) and
the native 84-amino acid hormone have identical spectrum of
biological responses in bone (110, 111). It has been shown
that single-daily subcutaneous administration of PTH (1–
34) accelerates the production of new bone matrix on the
endocortical, trabecular and periosteal surfaces via the stimulated
osteoblasts (Figure 2) (110). This leads to significant elevation
of bone mineral density, bone mass and strength of the bones
(112, 113). Because of this, PTH (1–34) or teriparatide has been
used in the management of adult patients with osteoporosis to
increase bone mass and prevent bone fracture (114–117).

The Food and Drug Administration (FDA) approved
teriparatide Eli Lilly & Co. (Indianapolis, IN, USA) as a treatment
for osteoporosis under the name “Forteo” in November 2002
(118). The approval of this drug came after preclinical and clinical
trials produced some conflicting results. Data from preclinical
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FIGURE 4 | Possible outcomes for dogs with osteosarcoma. Dogs with strong PTHR1 immunostaining tumors had shorter overall survival times compared to those

with weak immunostaining. Overabundance of PTHR1 could activate neoplastic osteoblasts to detach via up-regulation of integrin adhesion molecules (αvβ3, β1,

α2β1, α5β1, α6β1), resulting in pulmonary metastases. Other possible mechanisms which could explain the effects of PTHR1 expression including increased

chemoresistance, increased tumor growth and decreased apoptosis. This might result in shorter survival time.

trials revealed that a high number of rodents developed OS
after the treatment with very large doses of teriparatide for
most of their lifespan. For this reason, the FDA was required
to balance the possible side effects with the vital benefits

of this distinctive product (118). In addition, teriparatide is
not used to treat patients affected by primary malignant and
metastatic bone tumors (119), Paget’s disease (120) or who
have had radiotherapy (121). All these conditions may increase
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the probability of OS development in patient treated with
teriparatide (122).

Watanabe et al. showed that the induction of OS in rats treated
with teriparatide depends on the duration and dose of treatment
(123). In 2004, Vahle et al. described a safe regime of teriparatide
for rats (124), starting with 5 µg/kg at 6 months of age and
continued for either six or 20 months (up to 70% of life span)
resulted in significant increase in bonemass with no development
of neoplasms (124).

In humans, two cases of OS after treatment with teriparatide
have been reported in the USA (122). Nevertheless, in the
first case, the connection between teriparatide and the OS was
not clear (121). In the second case, the patient was treated
with radiotherapy before treated with teriparatide; thus, it is
uncertain whether the teriparatide treatment or radiotherapy
was associated with development of OS (119). Recently, another
patient developed OS after administration of teriparatide (122).
This patient had no history of Paget’s disease and had never
received any radiotherapy. According to Ogawa et al. (122),
this case was the first case with definite correlation between
teriparatide and acceleration of growth of a pre-existing
malignant tumor in humans.

Hyaluronan (HA) is a glycosaminoglycan component of the
extracellular matrix. It is involved is regulation of cancer cell
function (125, 126). It has been found that PTH increases the
production of HA in osteoblast-like OS cell line (UMR 106-
01 BSP) (127). Furthermore, as a response to PTH, endosteal
and periosteal osteoblastic cells exhibited metabolic variances
in their HA synthesis (128). It is suggested that PTH (1–34)
has a role in an administration mode-dependent manner, on
HA metabolism that is vital for migration of OS cell (98).
This role is correlated with OS cell differentiation and behavior
(98). Treatment of aggressive and poorly differentiated MG-
63 cells with intermittent PTH (1–34) was found to increase
expression of their HA-synthase-2, which lead to enhanced high-
molecular size HA deposition in the pericellular matrix and
increased migration of these cells. Continuous treatment of well-
differentiated Saos2 cell with PTH (1–34) also increased the
production of HA and modestly stimulated their migration (98).
Another study showed that the anabolic effect of PTH (1–34)
on bone metabolism was associated with changes in fibroblast
growth factor-2 (FGF-2) expression (129). These FGF variations
could modify the nuclear accumulation and subsequent action
of runt-related transcription factor 2 (Runx-2) and CREB
transcription factors which are important in the regulation of
osteoblast differentiation and growth (129).

Although the mechanism responsible for the rodent bone
neoplasms is still a puzzle, it was suggested that the incidence of
bone tumors is increased as a result of the prolonged treatment
period in these rats in conjunction with an extreme response
of the skeleton to the elevated bone formation effect of daily
administration of teriparatide (110). Moreover, as mentioned
previously, PTHR1 is activated by the binding of the N-terminal
(1–34) amino acids of PTH or PTHrP (47). The abundant
production of PTHrP which can bind to PTHR1 and promote
the formation of cAMP could result in induction of OS as
it will be discussed in the section “Roles of PTHR1 in OS”

(130). Hypothetically, treatment with teriparatide and blocking
of PTHR1 at the same time could reduce the possibility of OS
induction. More studies are warranted to clarify the correlation
between PTH, PTHR1, and OS.

ROLES OF PTHR1 IN NORMAL AND
TUMOR TISSUES

PTHR1 is found mainly in bones and kidneys (131), and
is involved in mineral ion homeostasis, bone turnover and
skeletal development (132). In bone, PTHR1 regulates function,
differentiation and proliferation of chondrocytes and osteoblasts
(Figure 1) (133–135). It also controls calcium release from the
matrix (136, 137).

In the kidney, PTHR1 has a role in the reabsorption of
calcium in the distal convoluted tubule (46, 138) and in the
maintenance of blood phosphate levels via inhibiting phosphate
reabsorption in the distal and proximal tubules (139, 140). It also
increases the activity of 1α-hydroxylase, resulting in increased
calcium absorption from the intestine through increasing levels
of 1,25-dihydroxycholecalciferol (46, 138).

Expression of PTHR1 protein has been detected in human
primary tumors, including melanoma (100%), prostate
adenocarcinoma (100%), colorectal carcinoma (100%), OS
(50%), renal cell carcinoma (23%), and breast carcinoma (17%)
(141). Studies showed that expression of PTHR1 was also
detected in several human breast cancer cell lines (70, 142).
Previously, Linforth et al. (143) found that expression of PTHR1
is correlated with poor prognosis in patients with primary
breast cancer whilst Hoey et al. (144) reported that PTHR1
was highly expressed in human breast cancer bone metastases
samples compared to primary breast cancer. The overexpression
of PTHR1 in MCF-7 cells stimulated tumor cell proliferation
through autocrine signals, which are mediated by cAMP and
extracellular signal-regulated kinase (ERK) pathways (144).

In addition to PTHR1, recent studies have shown that
overexpression of other GPCRs were associated with poor
prognosis in pancreatic, breast and prostate cancers (145–147). Li
et al. (146) found that increased expression of purinergic receptor
P2Y2, a class A GPCR, correlated with a poor prognosis in
prostate cancer. Moreover, protease-activated receptor 1 (PAR1),
a second-class A GPCR, was reported to be highly expressed
in aggressive breast tumors (146). Wang et al. (147) found
that overexpression of GPR87, another class A GPCR, was
linked with reduced survival for patients with pancreatic cancer.
Furthermore, GPR87 was reported to promote aggressiveness in
primary cell lines derived from the above patients’ tumors (147).
These data might support the carcinogenicity of PTHR1 and
other GPCRs.

PTHR1 was not well-studied in cancers other than breast and
OS. The next section highlights the critical roles of PTHR1 in OS.

ROLES OF PTHR1 IN OS

Numerous studies using human cell lines (105), murine
(99), human (141) and canine (39) tissues have reported
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TABLE 2 | Roles of PTHR1 in progression of osteosarcoma.

Role of PTHR1 in OS Type of

tissue

Species References

Overexpression of PTHR1 is linked with increased invasion and proliferation Cell line Human (105)

Knockdown of PTHR1 stimulated tumor differentiation and decreased invasion and growth Tissue Mouse (99)

Blocking of PTHR1 reduced metastatic cell invasion, proliferation, migration and adhesion Cell line Human (148)

Patients with strongly staining for PTHR1 OS tumors had reduced survival times compare to

those with weak immunostaining intensity OS tumors

Tissue Dog (39)

Decreased mRNA expression of PTHR1 inhibited proliferation, migration and invasion Cell line Human (149)

the association between overexpression of PTHR1 and OS
progression (Table 2). Mutsaers et al. (100) detected PTHR1
in primary and metastatic OS of osteoblastic and fibroblastic
subtypes in vivo from two different types of transgenic mice. It
has been suggested that increased expression of PTHR1 in OS
could stimulate progression by formation of a more aggressive
subtype (105).

PTHR1 mRNA is highly expressed in metastatic human OS
compared with primary tumors (105). Overexpression of PTHR1
was linked with increased invasion and proliferation in 143B,
U2OS, SaOD-2 and HOS cell lines (105). In addition, Ho
et al. (99) reported that knockdown of PTHR1 in murine OS
cells stimulated tumor differentiation and decreased invasion
and growth. It has been found that reduced expression of
PTHR1 in vivo enhanced mineralization and differentiation in
OS (99).

Recently, immunostaining for PTHR1 was detected in all
canine OS tissues (n = 50) (39). The findings showed that dogs
with PTHR1 strongly staining OS tumors had significant shorter
survival time compared to those with weakly staining tumors
(39). According to this study, dogs with appendicular OS showing
PTHR1 strong immunostaining lived for 212 days compared
to those with weak immunostaining who lived for more than
double the time (459 days). The conclusion was that expression of
PTHR1 could be a significant prognostic indicator in canine OS
(39). As was mentioned previously, the relationship between the
expression of PTHR1 and survival time of OS patient has not yet
studied in humans. However, recent experiments by the group at
Liaoning Cancer Hospital showed that treatment of human Saos-
2 and U2OS cell lines with mangiferin, a xanthonoid, decreased
mRNA expression of PTHR1 in vitro (149). This study suggested
that the inhibition of proliferation, migration and invasion of
OS cells that resulted from this treatment are correlated with
inhibition of PTHR1 (149). Moreover, a recent evidence revealed
that blocking of PTHR1 in human Saos-2 and U2OS cell lines by
using of Quercetin, a flavonoid found in vegetables, fruits, and
grains, reduced metastatic cell invasion, proliferation, migration,
and adhesion (148). These findings suggest that PTHR1 could be
a novel and promising therapeutic target for OS.

The pathway of PTHR1 in tumorigenesis of OS was suggested
by Walkley et al. (130). Under normal conditions, PTHrP
binds and activates PTHR1which is located on the surface
of osteoblasts. Activation of PTHR1 leads to the synthesis of
cAMP from ATP via adenylyl cyclase. Consequently, cAMP

induces the detachment of cAMP-dependent PKA from its α

regulatory subunit of PKA type 1 (PRKAR1A) (130). Activated
PKA translocates into the nucleus to phosphorylate and activates
CREB. As a result, target genes downstream of PTHR1 signaling
are activated (130). In OS, several abnormalities in the PTHrP-
PTHR1-PKA pathway increased the activity of PKA pathway.
This includes an elevated number of PTHR1 on the cell surface
and increased expression of the Prkaca gene that encodes the
catalytic component of PKA (130). Other abnormalities are
increased production of PTHrP, which can bind to PTHR1 and
promote the formation of cAMP and mutations in PRKAR1A
gene, which result in an increase in the PKA activity (130).

A recent study carried by Li et al. (150) proposed that
the effects of PTHR1 could be mediated by angiogenesis,
inflammation and the Wnt pathway through altering the
expression of the crucial enriched genes (Dkk1, Lef1, Agt-CCR3,
and Agt-CCL9) using mouse OS cells.

Previous studies have reported that integrin adhesion
molecules are involved in the migration of OS cells (151–
153). Up-regulation of integrins including α5β1, α2β1, α6β1
(151), β1 (152) and αvβ3 (153) was associated with aggressive
metastastic OS. PTHR1 could have a role in down-regulation
or up-regulation of cell-cell or cell-extracellular matrix adhesion
molecules. Integrins might be upregulated by PTHR1 in
aggressive OS (Figure 4). To validate the current hypothesis and
to further understand OS, future studies should investigate the
correlation between PTHR1 and integrins in OS.

The results from all these studies taken together, show that
detection of PTHR1 in OS could predict prognosis and therefore
may be a potential therapeutic target.

The obvious question that may arise from this review is, why
increased immunostaining of PTHR1 is correlated with reduced
survival time, although dogs studied by Al-Khan et al. (39). had
no clear evidence of metastasis at presentation in the smaller
group (n = 20 dogs). This suggests that increased amounts of
PTHR1 may activate tumor cells later to detach and metastasize
to the lung, which leads to a reduced survival time (see Figure 4).
The increase in PTHR1 in OS could be correlated with increasing
the capability of tumor cells tometastasize and this was supported
by a recent study (99). Knockdown of PTHR1 in OS reduced
invasion of tumor cells in vitro (99). In addition, Yang et al. (105)
revealed that overexpression of PTHR1 increased invasion and
showed that metastatic OS had increased expression of PTHR1
mRNA compared to the primary tumor.
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CYTOPLASMIC AND NUCLEAR
LOCALIZATION OF PTHrP AND PTHR1
IN OS

It has been found that full length PTHrP has a nuclear
localization signal (NLS) that allows transport into the nucleus
after binding to the transport regulatory protein, importin β

in the cytoplasm (154). PTHR1 binds to both importin α1
and importin β (155). PTHR1 overexpression has been found
in the nucleus during early interphase stage (G0/G1, S, and
G2 phases) of the cell cycle in the following cell lines; SaOS-
2 human OS, MC3T3-E1 mouse non-transformed osteoblasts
and ROS 17/2.8 rat OS (155). At G0/G1, S, and G2 phases,
DNA is more open to transcriptional activity compared to the
later phases where DNA is compact, transcriptional activities
are reduced and the immunofluorescent staining of PTHR1 was
weaker (155).

The localization of PTHrP was observed in the cytoplasm of
canine primary OS cells in 66% cases and in the nucleus plus the
cytoplasm in 34% cases (n = 50 dogs) (39). Similarly, PTHrP
was detected in the cytoplasm and nucleus using murine OS
tissue (99) and human metastatic bone lesions in patients with
prostate carcinoma (156). In contrast, PTHR1 was localized to
the cytoplasmic plus nucleus of canine OS cells in 100% cases.
Another study detected PTHR1 in the cytoplasm of murine
OS cell (99), while it was detected also in the nucleus and
cytoplasm of normal rat liver cells (157). The study of Al-
Khan found that there was no significant correlation between
the localization of PTHrP and PTHR1 and prognosis of OS
in dogs (39). According to this study, the increased nuclear
localization of PTHR1 in OS cells could be linked to the high
rate of mitosis. Moreover, most of these cells are at stage G0
and G1.

On the other hand, it has been found that nuclear localization
of PTHrP is correlated with inhibition of apoptosis using nine
human and rat prostate cancer cell lines [PC-3, PC-3MB, LNCaP,
DU-145, AT-2.1, MLL, AT-3.1, MAT-Lu (ML), and GP9F3] (156).
It is suggested that PTHrP has a vital role in the promotion of
prostate tumor growth and/or progression (123). Another study
revealed that nuclear localization of PTHrP promotes survival
of chondrocytes under conditions that stimulate cell death using
COS-7 cell line (158).

The only study that investigated the immuno-localization of
PTHR1 in human OS cells did not mention the pattern of the
immunostaining and they used only four cases of OS (141). The
study of Al-Khan et al. (39) is the only immunohistochemical
study that investigated the localization of PTHR1 in canine OS.
More studies are warranted to confirm the present findings.

CONCLUSION

In conclusion, this review has shown that canine OS is a good
model for the human disease and highlighted the roles of PTHrP
and PTHR1 in normal tissue and in OS. Both PTHrP and PTHR1
are crucial factors for induction of OS. Increased expression of
these two proteins in OS is correlated with a poor prognosis.
PTHrP and PTHR1 play critical roles in pulmonary metastasis,
chemoresistance, tumor growth and decreased apoptosis in OS
patients. Although the function of these two proteins in bone,
breast, placenta, and kidney has been described, their evolving
roles in the pathogenesis of OS requires further investigation.
This review supported the proposition that PTHR1 could be a
novel and significant prognostic indicator in OS and both PTHrP
and PTHR1 could be targets for novel therapeutics for OS. Also,
future studies on the correlation between increased expression
of PTHR1 and integrins may improve our understanding of OS
progression via the discovery of novel signaling pathways that
could be manipulated to improve patient outcomes.
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