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Aleurone, a layer of the bran fraction, is deemed to be responsible for the positive

health effects associated with the consumption of whole-grain products. Studies on

rodents, pigs, and humans report beneficial effects of aleurone in five main areas:

the reduction of oxidative stress, immunomodulatory effects, modulation of energy

management, digestive health, and the storage of vitamins and minerals. Our study is

the first aleurone supplementation study performed in horses. The aim of this study

was to investigate the effect of an increase in the dose levels of aleurone on the

postprandial glucose-insulin metabolism and the gut microbiome in untrained healthy

horses. Seven adult Standardbred horses were supplemented with four different dose

levels of aleurone (50, 100, 200, and 400 g/day for 1 week) by using a Latin square model

with a 1-week wash out in between doses. On day 7 of each supplementation week,

postprandial blood glucose-insulin was measured and fecal samples were collected.

16S ribosomal RNA (rRNA) gene sequencing was performed and QIIME2 software was

used for microbiome analysis. Microbial community function was assessed by using

the predictive metagenome analysis tool Phylogenetic Investigation of Communities

by Reconstruction of Unobserved States (PICRUSt) and using the Metacyc database

of metabolic pathways. The relative abundancies of a pathway were analyzed by

using analysis of composition of microbiomes (ANCOM) in R. There was a significant

dose-dependent increase in the postprandial time to peak of glucose (p = 0.030), a

significant delay in the time to peak of insulin (p = 0.025), and a significant decrease

in both the insulin peak level (p = 0.049) and insulin area under the curve (AUC)

(p = 0.019) with increasing dose levels of aleurone, with a consideration of 200 g

being the lowest significant dose. Alpha diversity and beta diversity of the fecal

microbiome showed no significant changes. Aleurone significantly decreased the relative
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abundance of the genera Roseburia, Shuttleworthia, Anaerostipes, Faecalibacter, and

Succinovibrionaceae. The most pronounced changes in the relative abundance at phyla

level were seen in Firmicutes and Verrucomicrobia (downregulation) and Bacteroidetes

and Spirochaetes (upregulation). The PICRUSt analysis shows that aleurone induces

a downregulation of the degradation of L-glutamate and taurine and an upregulation

of the three consecutive pathways of the phospholipid membrane synthesis of the

Archaea domain. The results of this study suggest a multimodal effect of aleurone on

glucose-insulin metabolism, which is most likely to be caused by its effect on feed

texture and subsequent digestive processing; and a synergistic effect of individual

aleurone components on the glucose-insulin metabolism and microbiome composition

and function.

Keywords: prebiotic, equine, insulin sensitivity, ferulic acid, betaine, gut health, Firmicutes, Bacteroidetes

INTRODUCTION

Whole-grain products have been incorporated in human and
animal diets for some decades, which not only meet the
conventional nutritional needs such as dietary fiber content but
also allow for an improvement of gut microbiome, a stimulation
of increasedmetabolic health, lower risk of cardiovascular disease
mortality, and a lower risk of cancer (1–8).

Aleurone is known as the layer within the bran fraction of
wheat, rye and oat, that is deemed to be responsible for positive
health effects associated with the consumption of whole-grain
products (9–11). Aleurone comprises a single-cell layer located
between the endosperm and the seed coat of the wheat kernel
(12, 13). The predominant function inside the wheat kernel is
to regulate the exchange of nutrients that are stored inside the
endosperm to allow for the seed embryo germination (14, 15).

When conventional grain milling techniques are applied, the
aleurone fraction remains attached to the bran fraction (16),
which leads to a low oral bioavailability (17–19). Recently,
however, advancedmilling and dry-fractionation techniques have
been developed to separate the aleurone from the bran fraction
[(20–22); Bühler Group, Switzerland]. This allows for a selective
incorporation of pure aleurone in both food and feed (23). Based
on the applied fractionation technique, aleurone is available in
different purity forms: Aleurone Standard Preparation 1 (ASP-
01) or a more purified form ASP-02 [(24); Table 1].

Aleurone is a biomatrix that contains several different
bioactive phytochemicals, such as antioxidants [e.g., ferulic
acid (FA)], osmolytes (e.g., betaine), vitamins (e.g., thiamin),
essential amino acids (e.g., lysine), and minerals (24, 25). These
key components are embedded in an arabinoxylan matrix (26,
27), which represents the fiber fraction of aleurone. The most
represented polysaccharides in the fiber fraction are arabinoxylan
(65%) and β-glucans (29%) while cellulose plays a minor role
(25, 28). The dietary fibers that are present in the aleurone
layer are mostly insoluble (26, 29, 30). The arabinose residues
of arabinoxylan are generally highly substituted with phenolic
compounds, which are either simple phenolic acids, such as
FA, p-coumaric acid, sinapic acid, syringic acid, vanillic acid,
alkylresorcinols, or complex phenols, such as lignin and lignans

(27). FA is deemed to be the most important phenolic compound
and is well-known both as a potent antioxidant (31, 32) and as
a molecule that can modulate the insulin sensitivity in obese
individuals by increasing the expression of the insulin receptor
substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and
protein kinase B (Akt) (33). The total antioxidant capacity of
different wheat fractions is highly associated with the FA content
(34). FA is approved in some countries for the treatment of
cardiovascular and cerebrovascular diseases (35, 36). Due to
its predominantly bound form to the arabinoxylan layer, FA
can be viewed as a structural component of the cell wall. This
probably explains the relatively poor bioavailability of FA from
the standard wheat bran when compared to aleurone (17, 37, 38).
Additionally, after oral uptake, the bioavailability of FA, like the
other aleurone components, depends on the efficiency with which
it is released from the fiber food matrix when passing through
the GI tract (19). Before the absorption of components into the
circulation can take place, they need to be released from the
aleurone tissue matrix by either intestinal mucosal enzymes or
the intestinal microbiome (39–41).

Another important aleurone component is betaine, which is
also known as trimethylglycine (42). Betaine has been studied
across many species mainly focusing on its effects on energy
metabolism as an endpoint. In both humans and pigs, it has been
shown that the feeding of aleurone-enriched diets significantly
increases plasma betaine levels (23, 43, 44). Also, when aleurone
was incorporated in a bread product, postprandial betaine
plasma levels significantly rose (11). Blood plasma betaine
steady states are achieved within a few days of dietary intake
(45). Betaine is a neutral, zwitterionic compound (43) and a
methyl derivative of glycine (45). Several studies across animal
species and humans showed that betaine had an influence on
the glucose and lipid metabolism and had anti-inflammatory
properties (46–48). Betaine insufficiency is associated with lipid
metabolism disorders, diabetes, and metabolic syndrome (43,
49). In a study of inducing metabolic syndrome in rats by
employing a high-fructose diet, betaine was shown to reduce
systemic inflammation, the insulin resistance (IR), and the
lipid accumulation (50). This effect was partly attributed to
an anti-inflammatory effect of betaine, which improves insulin
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TABLE 1 | Overview of the composition of aleurone standard preparation 1

(ASP-01) in grams or milligrams per 100 g dry matter (DM) [adapted from Buri

et al. (24)].

Component ASP-01

Crude protein (N × 5.70) 16.9 g/100 g DMª

Crude fat 5.8 g/100 g DM

Polyunsaturated fatty acids 66% of crude fat

Monounsaturated fatty acids 18% of crude fat

Saturated fatty acids 16% of crude fat

Total dietary fiber 54.1 g/100 g DM

Water-insoluble dietary fiber 50.0 g/100 g DM

Water-soluble dietary fiber 4.1 g/100 g DM

Crude ash 9.3 g/100 g DM

Phosphorous 1.9 g/100 g DM

Potassium 1.9 g/100 g DM

Magnesium 0.8 g/100 g DM

Calcium 76.2 mg/100 g DM

Iron 21.3 mg/100 g DM

Zinc 11.4 mg/100 g DM

Sodium 1.7 mg/100 g DM

Vitamins >29 mg/100 g DM

B1 (thiamine) 1.6 mg/100 g DMb

B2 (riboflavin) 0.3 mg/100 g DM

B3 (niacin) 24 mg/100 g DM

B6 (pyridoxine) 0.3 mg/100 g DM

B9 (folate) 0.8 mg/100 g DM

E (α-tocopherol) 2.0 mg/100 g DM

Phytic acid (4,5,6-IP) 6.9 g/100 g DM

aDM, dry matter.
bValues correspond to Lopez et al. (51).

signaling. Betaine is also reported to act as a lipotropic agent,
which prevents or reduces the fat accumulation in the liver
by enhancing hepatic lipid export and fatty acid oxidation in
high-fat diet-fed rats, and the supplementation has been shown
to decrease the low-density lipoprotein (LDL) cholesterol levels
in humans (44, 48, 52). Though other compounds within the
aleurone fraction could also be responsible for this effect (53),
an evidence accumulates that betaine has an important role (48,
50). Animal studies focusing on betaine supplementation report
enhanced carcass characteristics and anabolic endocrine profiles
such as growth hormone (GH), insulin-like growth factor 1 (IGF-
1), and insulin (54–56). It is suggested that betaine stimulates the
GH secretion and insulin and IGF-1 receptor signaling (57) by
modulating homocysteine thiolactone (HT) pathways.

Studies performed in the different animal species report the
beneficial effects of aleurone in the five main areas: the reduction
of oxidative stress (34, 58, 59), immunomodulatory effects (9),
energy management (23, 44, 57), digestive health (60–62), and
the storage of vitamins and minerals (24, 63). To date, no
aleurone studies are available for horses. As mentioned in a
previous study, the bioavailability of the key components of the
aleurone fraction depends on how good the organism succeeds
in releasing them from the arabinoxylan containing a fiber

food matrix (19). This is achieved by either intestinal mucosal
enzymes or intestinal bacterial enzymes (39, 40). In the gut itself,
a microbial attack of covalently bound phenolic acids in the
aleurone fraction is expected to enhance their release (64). It
is not known whether animal species, such as horses, with a
profound hindgut fermentative capacity can accomplish a more
efficient absorption of the aleurone components. Interestingly,
there is also a demonstrated appreciable microbial activity in the
equine small intestine (65–67).

The main goal of this current study is to report the effect
of increasing doses of aleurone supplementation in healthy
untrained horses, focusing on two endpoints: the postprandial
glucose and insulin response and shifts in the gut microbiome
composition. We hypothesize that aleurone supplementation to
non-trained horses dose dependently modulates the postprandial
glucose and insulin dynamics and induces shifts in the
gut microbiome.

MATERIALS AND METHODS

Animals and Study Design
Seven healthy untrained Standardbred horses (age 4–7 years, 4 ♀,
3♂) were housed in individual boxes (14 m2) on wood shavings
and with ad libitum access to tap water and good quality hay. The
amount of hay consumed by each horse was recorded daily. The
composition of the hay batch was analyzed employing a Weende
analysis. The horses were turned out in sand paddocks 2 h a day.
Four different wheat aleurone ASP-01 dose levels were tested (50,
100, 200, and 400 g/day) for 10 consecutive weeks. Throughout
this study, we will refer to the wheat aleurone ASP-01 as simply
“aleurone.” Aleurone was supplemented at different dose levels
following a Latin square design (Table 2). Each supplemented
dose was fed for 7 consecutive days followed by a 1-week wash
out during which no aleurone was supplemented. Two batches of
concentrate feed were manufactured: one pelletized blanco batch
in which aleurone was replaced by wheat bran and a pelletized
batch containing 20% aleurone (Supplementary Table 1). Both
the batches were mixed to achieve the proper aleurone dose.
Horses were fed a concentrate meal twice a day at 8 a.m. and 8
p.m. The complete aleurone dose was provided at 8 a.m. Horses
were allowed to adapt to the blanco concentrate feed for 4 weeks
prior to the start of the study. Horses were checked for their vital
signs, such as heart rate, respiratory rate, rectal temperature, the
color of mucous membranes, capillary refill time, appetite, and
the consistency of stools twice a day. The study was approved
by the Animal Ethics Committee of the Ghent University EC
2014.14.

Postprandial Glucose and Insulin
Measurements
On day 7 of each supplementation week, horses were subjected
to a postprandial glucose and insulin follow-up. A catheter was
inserted into the jugular vein (over the needle, 16G, MILA
International, KY, USA), and blood was sampled when feeding
started (T0) and every 30min for 4 consecutive hours and after
that every 60min for another 4 consecutive hours. Blood was
collected in NaF-coated tubes for an immediate glucose level
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TABLE 2 | Latin square design of the experiment.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

H1 0 50 0 100 0 200 0 400 0 0

H2 0 100 0 200 0 400 0 50 0 0

H3 0 200 0 400 0 50 0 100 0 0

H4 0 400 0 50 0 100 0 200 0 0

H5 0 0 50 0 100 0 200 0 400 0

H6 0 0 100 0 200 0 400 0 50 0

H7 0 0 400 0 50 0 100 0 200 0

H1–H7 represent the horses; W, week; H, horse. Doses of aleurone in grams.

assessment (Alphatrak R©, Zoetis, Belgium). Regarding insulin,
blood was collected in heparin-coated tubes at T0 and every
10min (1 h) followed by every 30min (4 h). Insulin levels were
assessed on the same day by performing a chemiluminescent
immunoassay (CIA) [IMMULITE R© 1000 Immunoassay System
(Siemens Healthcare Diagnostics Inc., Tarrytown, NY, USA)]. On
day 7 of the week in which 400 g aleurone was supplemented,
blood was taken from the jugular vein (Vacutainer system) for
the performance of a routine blood examination including the
complete blood count (CBC) and clinical biochemistry.

Metagenomics
On day 7 of each week, the fecal samples were collected from
the rectum. The samples were immediately frozen in dry ice
and stored at −80◦C until they were processed. The samples
collected at the beginning of the trial, collected on the last day
of the trial (7 days after the last aleurone supplementation for
all horses), collected at day 7 of a week in which aleurone
was supplemented, and collected at day 7 of a week in which
no aleurone was supplemented are labeled as “blanco horses,”
“posttrial horses,” “aleurone supplemented horses,” and “non-
supplemented horses,” respectively.

The extraction of DNA was performed by using the QIAamp
Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany). About
10 g of each fecal sample were homogenized in a 90-ml phosphate
buffered saline (PBS) by using a stomacher and filtered through
a cell strainer (70µm). After centrifugation, fecal pellets were
washed twice with PBS before commencing the extraction of
DNA by using the manufacturer’s recommendations.

The quantity and quality of DNA were assessed by using
a spectrophotometer [NanoDrop 1000 (Thermo Scientific,
Wilmington, DE, USA)]. The metagenomics analysis was
performed via 16S rRNA amplicon sequencing. One primer pair
for the V3 and V4 region of the 16S rRNA gene was used for
25 PCR cycles to create a single amplicon of approximately 460
bp. These primers are described by Klindworth et al. (68) as the
most promising bacterial primer pair for 16S sequencing. The
gene-specific primers were appended with the adapter sequences
that are compatible with a subsequent index PCR that attaches
dual indices and Illumina sequencing adapters by using the
Illumina Nextera XT Index Kit. By this way, up to 96 libraries
can be created and pooled together for sequencing. Libraries
are quantified by using quantitative PCR (qPCR) with primers

on the required Illumina library adaptor sequences (following
the Illumina qPCR quantification protocol guide) and pooled
in an equimolar manner. The equimolar pool is denatured and
diluted by following Illumina protocols to produce a final 4.5 pM
sequencing library. About 20% denatured Illumina PhiX Control
V3 library was admixed to increase the sequence diversity of
this final library. Cluster generation and 2 x 300 paired-end
sequencing is performed in one Illumina Miseq flow cell. Using
the Illumina Miseq 300-bp paired-end sequencing, paired-end
reads with overlapped ends are generated. The overlapping reads
can be stitched to form high quality, full length reads of the V3
and V4 region.

Glucose and Insulin Data Analysis
All data were subject to an outlier analysis. Values more than
1.5 times the interquartile range were identified as outliers and
the identified values were removed from the analysis (69). For
responses where data was collected over the aleurone dosage
levels of 50–400 g/day, statistical modeling of data was performed
by using a mixed-model analysis using the PROC MIXED
procedure in SAS (Version 9.3, SAS Institute Inc., Cary, NC,
USA). The study design was an extended Latin square according
to the model:

Yijkl = µ + covariate+ Si +H(S)ij +W(S)ik + τl + εijkl,

where, Yijkl = the specific trait measured for each experimental
unit,µ= overall mean for the specific trait, covariate= covariate
value for each specific response after the first week on control
diet, Si = random square effect (i = I or II), H(S)ij = random
horse within square effect (j = I, II, III, . . . , VIII), W(S)ik =

random week within square effect (k = I, II, III, IV), τl = fixed
effect of treatment (l= dose I, dose II, dose III, and dose IV), and
εijkl = residual error.

For repeated measurements of blood glucose and insulin, the
fixed effect of time was added to the abovementioned model
as well as the interaction effect of treatment by time and horse
was identified as the subject for the random covariance of time
effect. Preplanned contrasts were used to estimate regression
coefficients over the aleurone dose level and to determine
significant relationships for (1) a linear effect, (2) quadratic effect,
and (3) cubic effect of aleurone supplementation. No significant
effects were found for cubic and quadratic effects; therefore, only
linear effects are reported.

Microbiome Data Analysis
Data preparation and metagenomics analyses both were
done by using QIIME2 (v2020.2) (70, 71) unless otherwise
mentioned. This includes sequenced read-pair quality trimming,
mergence into reconstructed amplicons, operational taxonomic
unit (OTU) picking, taxonomic assignment, and phylogenetic
reconstruction. To build OTU tables and trees, open-reference
OTU picking was performed against the Greengenes 16S
reference collection (release 13.8) (72). With the exception
of sample 52 (collected in a non-supplemented week of
horse number 6), the 16S fragment sequencing depth across
all the samples ranged from 28,619 to 128,871. Due to
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insufficient quality, sample 52 was removed from the analyses.
Each downstream diversity metric requiring normalization
by a rarefaction was calculated by using a sampling depth
ranging between 16,253 and 34,211, corresponding to the
lowest sequencing depth of the samples in each comparison
we investigated. A rarefaction plot (Supplementary Figure 1)
shows the observed OTU saturation after random sampling
up to 50,000 sequenced features in each individual sample.
To verify if the sequencing was adequate and reached feature
saturation, we visually inspected rarefaction plots depicting the
number of uniquely identified features at increasing sequencing
depth for all individual samples. Alpha diversity metrics, such
as Shannon’s Diversity, Faith’s Phylogenetic Diversity, and
the observed OTUs were calculated for each comparison of
sample groups and statistically analyzed by using the Kruskal–
Wallis test. Beta diversity metrics, such as Weighted UniFrac,
Unweighted UniFrac, and Bray–Curtis, were also calculated for
each comparison of sample groups and statistically analyzed
with a PERMANOVA test to assess the significance of the
differences. To identify the taxonomic features that were
differentially abundant between the conditions, an analysis of
the composition of the microbiome was done in R by using
analysis of composition of microbiomes (ANCOM) (v2.1) (73),
including the horse identity as a blocking factor in the design.
According to the recommendations of the software’s authors, the
minimum threshold for significantly different taxa was set at
70% for the W statistic (W0.7). Fold change (FC) was calculated
by using the mean centered log ratio difference. Additionally,
the microbial community function was assessed by using the
predictive metagenome analysis provided by PICRUSt (74) using
the Metacyc (75) metabolic pathways database. To identify
differential pathways between the conditions, the resulting
pathway abundancies were analyzed by using ANCOM in R.

RESULTS

Vital signs were monitored on a daily basis throughout the
entire trial; respiratory rate, heart rate, temperature, and capillary
refill time were always within the reference range. The color of
mucous membranes, appetite, and the consistency of stool were
considered normal throughout this study.

CBC and Clinical Biochemistry
No parameters were out of the reference range for both CBC and
clinical biochemistry for none of the horses that received 400 g
of aleurone.

Glucose and Insulin
There was a significant increase in the postprandial time to peak
of glucose (p= 0.030; Figure 1A). This effect was dose dependent
and significant at a dose of 200 g of aleurone (Table 3). There
were no significant changes in neither the glucose peak level
nor the glucose area under the curve (AUC) for any of the used
aleurone doses (Figures 1B,C).

For insulin, all three postprandial curve parameters were
significantly changed (Table 4). There was a significant delay in
the time to peak of insulin (p = 0.025) and a significant decrease

in insulin peak level (p = 0.049) with increasing aleurone doses,
with 200 g being the lowest significant dose (Figures 2A,B). The
insulin AUC was also significantly reduced (p = 0.019) after
supplementing horses with aleurone (Figure 2C).

Metagenomics
Alpha and Beta Diversity

Aleurone did not have any significant effects on alpha diversity
or beta diversity in this study. Pairwise Kruskal–Wallis analysis
using Faith’s Phylogenetic diversity, Shannon’s diversity, and
Observed OTUs was performed but no statistical differences
were detected for any alpha diversity metric. Beta diversity was
assessed by using weighted and unweighted UniFrac distance
as well as Bray–Curtis distance. No significant differences
were found.

A principal coordinates analysis (PCoA) plot based on the
weighted UniFrac metric (Figure 3) shows that there is large
inter-individual variability of the microbiome in the studied
group of horses.

Differentially Abundant Features

The Relative Abundance in Fecal Microbiome of Blanco

Horses vs. Horses Supplemented With Increasing Doses of

Aleurone: 50, 100, 200, and 400 g/Day
When comparing “blanco horses” with the horses after 1 week of
supplementation with 50 g/day aleurone, the ANCOM analysis
reveals that one unclassified species from the genus Anaerostipes
decreased significantly by a factor 2.94 (W= 73≥W0.7; FC 0.34)
after aleurone supplementation. At the genus level, this change in
abundance was also significantly decreased 2.98 times (W= 68≥
W0.7; FC 0.34). After a week of feeding aleurone at 100 g/day, the
abundance of Clostridium lavalense significantly increased 2.38
times when compared to the blanco week (W = 88 ≥ W0.7; FC
2.38). When aleurone was supplemented at a dose of 200 g/day
for 1 week, this significantly decreased the relative abundance of
Shuttleworthia and Anaerostipes at both the species (W = 87 ≥

W0.7; FC 0.28 andW= 85≥W0.7; FC 0.28) and genus level (W=

81 ≥W0.7; FC 0.28 and W = 78 ≥W0.7; FC 0.28), and increased
the abundance of C. lavalense (W= 83 ≥W0.7; FC 2.38).

Maximal Aleurone Dose Effect on Relative Abundance
To further study the effect of the maximal dose of aleurone,
the relative abundance of taxa in feces of the week before the
feeding of 400 g/day was compared with their relative abundance
after 1 week of 400 g/day supplementation. Feeding with 400
g/day of aleurone significantly decreased the relative abundance
of an unclassified species out of the Roseburia family (W =

87 ≥ W0.7; FC 0.16) and an unclassified Succinovibrionaceae
species (W = 72 ≥ W0.7; FC 0.18) was significantly decreased
as well. At the genus level, Succinovibrionaceae (W = 66 ≥

W0.7; FC 0.18) and Shuttleworthia (W = 61 ≥ W0.7; FC 0.31)
were significantly decreased. At the phyla level, Firmicutes,
Bacteroidetes, Spirochaetes, and Verrumicrobia showed the
highest changes in average relative abundance after feeding
400 g/day of aleurone (Figure 4, Table 5). Firmicutes and
Verrucomicrobia decreased and Bacteroidetes and Spirochaetes
increased in the relative abundance.
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FIGURE 1 | (A) Postprandial time to peak (min/10) of blood glucose after supplementing horses with either 0, 50, 100, 200, or 400 g of aleurone. (B) Postprandial

peak level of blood glucose (mg/dl) after supplementing horses with either 0, 50, 100, 200, or 400 g of aleurone. (C) Postprandial blood glucose area under the curve

(AUC) [(mg/dl) × min] after supplementing horses with either 0, 50, 100, 200, or 400 g of aleurone.

Long-Term Gut Microbiome Changes After Aleurone

Supplementation
A significant increased abundance of an unclassified bacteria
was found when comparing the 200 g/day dose with the non-
supplemented post-trial week. However, the particular bacteria
were unclassifiable up to the phylum level, but the effect was
measurable from the species (W = 96 ≥ W0.7; FC 2.92) to the
phylum level (W = 15 ≥ W0.7; FC 5.02). Other aleurone doses
did not cause long term changes in abundance.

When relative abundance of ‘blanco horses’ was compared to
the “posttrial” abundance, one significantly decreased species and
accompanying genus were identified: an unclassified species (W
= 54≥W0.7; FC 0.11) from the genus Faecalibacterium (W= 50
≥W0.7; FC 0.11).

Predicted Functional Gut Microbiota Changes Induced by

Aleurone Supplementation
Predicted functional gut microbiota of blanco horses vs. horses
supplemented with different doses of aleurone. Based on the
functionality predictions using PICRUSt and ANCOM2, several
significantly different metabolic pathways were detected from a
pairwise comparison between the samples from blanco horses
compared to the horses supplemented with different doses of
aleurone. Aleurone supplementation of 50 g/day significantly
decreased the lactose and galactose degradation I pathway 49.6
times (W = 278 ≥ W0.7; FC 0.02). Supplementation of 100
g/day aleurone significantly changed 15 predicted pathways
and supplementation of 200 g/day aleurone significantly
changed 7 predicted pathways (see Table 6). When 400 g/day
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TABLE 3 | Glucose values per horse and aleurone dose.

Horse Dose

(g)

Peak value

(mg/dL)

Time to

peak (min)

AUC

([mg/dL] × min)

Basal glucose

(mg/dL)

1 0 126 120 811.52 88

1 50 128 120 836.21 90

1 100 115 150 665.44 88

1 200 110 150 750.56 94

1 400 110 210 756.56 81

2 0 115 90 659.24 90

2 50 112 120 760.82 87

2 100 110 150 789.51 96

2 200 105 180 770.93 88

2 400 111 180 796.92 85

3 0 131 120 845.41 84

3 50 116 120 750.79 86

3 100 111 150 759.76 83

3 200 110 180 758.19 88

3 400 106 150 727.92 85

4 0 121 120 225.51 94

4 50 122 120 736.30 81

4 100 110 60 706.26 79

4 200 110 150 706.55 81

4 400 100 120 760.35 91

5 0 115 120 704.87 79

5 50 112 90 497.30 85

5 100 96 120 712.28 79

5 200 115 150 769.39 80

5 400 108 180 731.40 80

6 0 120 90 784.46 89

6 50 117 60 820.55 91

6 100 110 150 629.94 95

6 200 109 180 774.83 90

6 400 110 180 801.31 90

7 0 122 90 795.40 98

7 50 112 90 731.63 87

7 100 101 120 628.19 85

7 200 104 210 766.70 94

7 400 104 240 734.05 90

aleurone was supplemented, the TCA cycle IV (2-oxoglutarate
decarboxylase) was significantly increased (W = 246 ≥ W0.7;
FC 12).

Maximal aleurone dose effect on predicted functional
Gut microbiota. Based on the functionality predictions
using PICRUSt and ANCOM, two significantly different
metabolic pathways were detected with a pairwise
comparison between the samples collected in the week
before feeding 400 g/day aleurone and at the end of 1 week
of feeding 400 g/day, namely: a decrease of superpathway
of glycerol degradation to 1,3-propanediol (W = 249
≥ W0.7; FC 0.005) and a decrease of the L-glutamate

TABLE 4 | Insulin values per horse and aleurone dose.

Horse Dose

(g)

Peak value

(mU/L)

Time to

peak (min)

AUC

([mU/L] × min)

Basal insulin

(mU/L)

1 0 49.1 120 136.05 8.3

1 50 25.4 150 84.98 11.5

1 100 30.3 180 92.70 4.52

1 200 13.9 210 49.26 2

1 400 18.3 180 52.46 5.2

2 0

2 50

2 100

2 200

2 400

3 0 50.7 120 167.51 3.21

3 50 32.4 150 108.66 2.26

3 100 28.5 240 37.68

3 200 30.6 210 89.52 4.92

3 400 8.89 240 31.70 2.8

4 0 45.3 150 149.04 13.7

4 50 73.4 180 266.81 11.8

4 100 60.2 150 159.21 2

4 200 96.3 210 205.52 4.72

4 400 69.2 210 184.35 3.6

5 0 81.6 180 227.95 2

5 50 95 90 212.26 4.01

5 100 81.2 120 224.14 2.63

5 200 39.6 300 143.82 7.62

5 400 40.9 210 104.04 2.18

6 0 75 180 167.56 3.83

6 50 82.2 60 142.71 2

6 100 74.9 90 182.22 5.62

6 200 73.1 300

6 400 61.9 240 113.50

7 0 88.6 60 187.68 8.45

7 50 54.7 90 135.62 10.5

7 100 30.8 150 105.68 10.1

7 200 23.1 240 85.47 6.48

7 400 61.2 270 134.09 5.09

degradation VIII (to propanoate) pathway (W = 222 ≥

W0.7; FC 0.114).

Long-term effect on predicted functional Gut microbiota after
aleurone supplementation. Based on the functionality predictions
using PICRUSt and ANCOM, four significantly decreased
metabolic pathways were detected with a pairwise comparison
between the samples collected in the “pretrial” week and
the “posttrial” week. The pathway of photorespiration was
significantly decreased (W = 302 ≥ W0.7; FC 0.077) in the
“posttrial” week. The lactose and galactose degradation I pathway
was significantly decreased as well (W = 292 ≥ W0.7; FC 0.006),
and both the methanogenesis from acetate pathway (W = 227;
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FIGURE 2 | (A) Postprandial time to peak (min/10) of blood insulin after supplementing with either 0, 50, 100, 200, or 400 grams of aleurone. (B) Postprandial peak

level of blood insulin (mU/L) after supplementing horses with either 0, 50, 100, 200, or 400 g of aleurone. (C) Postprandial blood insulin AUC [(mU/L) × min] after

supplementing horses with either 0, 50, 100, 200, or 400 g of aleurone.

FC 0.042) and the L-glutamate degradation VIII (to propanoate)
pathway (W= 226 ≥W0.7; FC 0.054) were decreased as well.

DISCUSSION

This is the first study focusing on the effects of aleurone
supplementation in horses. A Latin square model was applied
in seven horses to study the effect of different doses of aleurone
on the postprandial glucose and insulin metabolism as well as
the gut microbiome. Our results suggest a multimodal effect of
aleurone, which is most likely to be caused by: (1) the effect of
aleurone on feed texture and subsequent digestive processing; (2)
the synergistic effect of the individual aleurone components on
the glucose-insulin metabolism; and (3) the effect of aleurone

and its components on the gut microbiome composition and
metabolic output of the microbiome.

No adverse effects of aleurone supplementation were found
on CBC and clinical biochemistry when feeding 400 g of
aleurone/day. Also, in other animal species and humans, no
adverse effects associated with aleurone supplementation have
been reported (76, 77).

In the present study, aleurone supplementation induced a
significant increase in the time to peak of postprandial glucose.
For the insulin response, there was a significant increase in the
time to peak and a significant decrease in the peak level and AUC.
The delayed time to peak of postprandial glucose has not been
explored in many studies, which focus on the supplementation
of aleurone or one of its components (78). Several studies report

Frontiers in Veterinary Science | www.frontiersin.org 8 April 2021 | Volume 8 | Article 642809

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Boshuizen et al. Aleurone Supplementation to Horses

FIGURE 3 | Principal Coordinates Analysis (PCoA) of the fecal samples

showing the distance among the seven individual horses. The analysis was

based on the weighted UniFrac metric. Different colors represent respective

individual horses.

an improvement of glucose homeostasis or a decrease of the peak
level of glucose after an oral glucose tolerance test (OGTT) or a
meal uptake supplemented with either arabinoxylan and betaine
or FA (50, 79–81). The increased time to peak of glucose having
an effect on the glucose peak level found in the current study is
in accordance with the study of Östman et al. (78), who reported
a significant delay in the time to peak of glucose after ingesting
wholemeal rye bread. In addition, no change in the glucose peak
level was noticed.

There are several possible explanations for the effect
of aleurone on glucose-insulin metabolism. A first possible
explanation for the delayed time to peak of glucose could be
that insoluble and soluble dietary fibers, especially β-glucans
and arabinoxylans, have their impact on the food bolus texture,
which increase its viscosity. These dietary fibers are thought
to form a viscous solution in the stomach, which delay
gastric emptying and intestinal absorption of macronutrients.
At the same time, the seeping through of digestive enzymes is
delayed, which, among other things, reduces the hydrolyzation
of polysaccharides (82, 83). A recent study showed that aleurone
influences feeding behavior in pigs. Pigs had fewer but longer
meals with a high level of dietary fiber, with an increased interval
between subsequent meals, without an effect on the total daily ad
libitum feed intake. The meal frequency significantly decreased
when aleurone supplementation increased (84). Arabinoxylans
are also known to blunt the gastric inhibitory peptide (GIP)
release. GIP is a well-known stimulator of glucose-dependent
insulin secretion (78, 85, 86). In order to investigate the
effects of dietary steamed wheat bran and arabinoxylan on
postprandial energy metabolism in mice, a group of researchers
performed several experiments that included single feedings
of a control diet vs. a steamed wheat bran diet and feeding
a dietary fiber-free diet vs. different dietary concentrations of
arabinoxylans. After feeding the arabinoxylan-enriched diet,
a significantly lower peak level and AUC of postprandial

glucose were seen when compared to the dietary fiber-free
fed group (87). The results also showed lower postprandial
blood GIP levels in the wheat bran fed group compared to
the control diet-fed group. Wachters-Hagedoorn et al. (86)
observed that the ingestion of corn pasta, a slow carbohydrate,
can induce a late and prolonged GIP response when compared
to the faster carbohydrates, such as glucose and corn starch in
healthy men.

When comparing the results of studies on aleurone, one
should keep in mind that different grain milling techniques
can have their additional influence on the study results (38).
In the present study, the ASP-01 type was used, which is
known to have a bigger particle size when compared to ASP-
02 (24). In a recent in vitro study, researchers tested whether
there were differences in the digestion of different cell wall
integrity wheatmilling fractions. They found that higher integrity
acted as a physical barrier to enzymes, delaying digestion
(88). Different milling processes also affect the availability of
the components such as betaine (89). This entails that, most
probably, both the three-dimensional (3D) structure of aleurone
and its particle size have an effect on how well aleurone is
digested and to what degree its components are absorbed in the
intestinal tract.

Besides these “physical” effects of aleurone on the digestive
processing of the food bolus, several of the individual
components of the aleurone fraction have been also shown
to enhance postprandial insulin signaling and sensitivity as
well as have an effect on glucose metabolism (33, 50, 79,
90). In a human study, Garcia et al. (79) found that after
6 weeks of supplementation with an arabinoxylan-rich diet,
there is a significant decrease in the postprandial peak
level of glucose, insulin, and triglycerides compared to non-
supplemented subjects. Pigs fed with an arabinoxylan-enriched
bread and a dark ground rye bread had lower postprandial peak
levels of insulin when compared to other diets (90). Additionally,
Fan et al. (50) observed that betaine supplementation to high-
fructose-fed obese rats showed a reduced peak level and AUC
of glucose in response to an OGTT, which suggests an improved
insulin sensitivity. FA, another component of aleurone, improved
the glucose homeostasis in high-fat diet-induced obese mice,
and in a more recent study, these researchers showed that FA
improved insulin sensitivity in a skeletal muscle of obese mice
by stimulating the IRS/PI3K/Akt pathway (33). Also, the other
studies looking into the physiological role of betaine report the
same results (91, 92). After 12 weeks of a whole-grain rich diet
intervention in humans, a reduced postprandial peak level and
AUC of insulin were reported, which was inversely correlated
with the levels of plasma glycine betaine (92). Likewise, Grizales
et al. (91) reported a lower peak level of insulin during an OGTT
in conjunction with betaine supplementation. Recently, the effect
of aleurone on insulin metabolism in pigs has been described
in a study where three groups of growing pigs were fed with
different concentrations of aleurone or a control diet without
aleurone. After 7 days, a lower peak level of postprandial insulin
was reported for the highest aleurone-concentrated diet (77).

The combined expression of the reduced and delayed
postprandial insulin response (time to peak, peak level, and AUC)
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FIGURE 4 | (A) Comparison of relative abundance of bacterial phyla present in feces of the horses that were supplemented with aleurone 400 g/day for 1 week with

the relative abundance 1 week before the 400 g/day supplementation and 1 week after the 400 g/day supplementation. (B) Comparison of relative abundance of

bacterial classes present in feces of the horses that were supplemented with aleurone 400 g/day for 1 week with the relative abundance 1 week before the 400 g/day

supplementation and 1 week after the 400 g/day supplementation.

together with the delayed glucose response suggest an increased
insulin sensitivity in the aleurone supplemented horses. A similar
effect has been reported in the other studies looking into the
effect of aleurone or one of its components on insulin sensitivity
in human and other species (91, 93–96). For instance, in pigs
that were fed with aleurone-enriched bread, the mean plasma
concentration of postprandial insulin was significantly lower
in combination with an unchanged postprandial glucose level
when compared to a diet consisting of a bread manufactured
from whole wheat grain (93). In pigs that were fed with an
arabinoxylan-rich diet, there was a decreased postprandial peak
level of insulin and C-peptide, which indicated that less insulin
was necessary to clear glucose from the bloodstream after the
ingestion of a meal having high arabinoxylan content when
compared to the diet poor in this dietary fiber (94). Increased
insulin sensitivity has also been observed in a betaine study in an
average human population where there was a strong association
between the administration of choline and betaine and a lower
degree of IR (95). In obese mice that were fed with a high-fat diet
supplemented with betaine and subjected to an intraperitoneal
insulin tolerance test, a lower level of blood glucose was observed

compared to the control group (96). Quemeneur et al. (77)
showed an increased insulin sensitivity after 7 days of feeding
an aleurone supplemented diet to pigs, which was shown by
a lower peak level of postprandial insulin reported for the
highest aleurone-concentrated diet (77). In horses that were
fed with a carbohydrate-rich diet having a low-level structure
and composed mainly of starch and sugar, a decreased insulin
sensitivity and glucose tolerance develop, which are evidenced
by an increase of the AUC of insulin with an unchanged AUC
of glucose during an OGTT (97). It would be interesting to
involve also an IV glucose tolerance test in future equine aleurone
studies. This would allow for studying aleurone effects when
bypassing the GI tract. As mentioned previously, the results of
the current study point toward an increased insulin sensitivity
in aleurone supplemented horses, probably through a complex
physiological interplay between aleurone physical properties,
aleurone components, and the microbiome. More research is
needed to further elucidate how this works in horses. Increased
insulin sensitivity is desirable in several pathological conditions,
such as equine metabolic syndrome (EMS) and laminitis (98,
99). Higher insulin sensitivity is also expected to coincide with
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TABLE 5 | Average relative composition at phyla level in percentage (%) 1 week

before 400 g/day aleurone supplementation and after 1 week of 400 g/day of

aleurone.

Phyla Before 400 g/day (%) After 7 days of 400 g/day (%)

Bacteroidetes 47.29 49.86

Firmicutes 45.67 42.64

Spirochaetes 3.81 4.62

Verrucomicrobia 1.33 1.15

Proteobacteria 0.88 0.88

Fibrobacteres 0.54 0.53

Cyanobacteria 0.14 0.12

Synergistetes 0.06 0.04

Unclassified 0.12 0.00

TM7 0.02 0.05

Euryachaeota 0.02 0.04

Tenericutes 0.06 0.03

Planctomycetes 0.03 0.02

Chloroflexi 0.01 0.02

Armatimonadetes 0.02 0.01

Lentisphaerae 0.01 0.01

TABLE 6 | Prediction of metagenome functional content correlated with the

aleurone supplementation at a level of 100 and 200 g/day using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved States (PICRUSt).

Pathway description 100 g/day 200 g/day

W FC W FC

Superpathway of glycol metabolism

and degradation

299 0.026 297 0.011

Isoprene biosynthesis II (engineered) 282 8.249 270 8.249

Coenzyme M biosynthesis I 281 8.833

Flavin biosynthesis II (archaea) 281 8.734 264 8.734

Mevalonate pathway II (archaea) 279 10.204

CDP-archaeol biosynthesis 277 10.072

coenzyme B biosynthesis 276 13.058

7-(3-amino-3-carboxypropyl)-wyosine

biosynthesis

276 14.573

Methanogenesis from H2 and CO2 275 11.155

Phosphopantothenate biosynthesis III 274 11.596

Archaetidylserine and

archaetidylethanolamine biosynthesis

273 12.528 244 12.528

Archaetidylinositol biosynthesis 273 11.637

Superpathway of taurine degradation 272 0.058 297 0.036

Tetrahydromethanopterin biosynthesis 272 11.575 247 11.575

Factor 420 biosynthesis 270 13.578

Lactose and galactose degradation I 240 0.046

W is the analysis of composition of microbiomes (ANCOM) statistic, and FC is fold change

compared to no aleurone supplementation. Boxes were left empty for the non-significant

W statistics (<W0.7 ) and accompanying FCs.

increased performance capacity in healthy individuals since
insulin is a physiological key metabolic hormone importantly
involved in energymetabolism and anabolic processes (100–102).

In conjunction with the effects of aleurone supplementation
on the glucose and insulinmetabolism, there were also significant
effects on the gut microbiome. Overall, the phyla showing
the highest changes in abundance in response to aleurone
supplementation were Bacteroidetes, Spirochaetes, Firmicutes,
and Verrucomicrobia, of which the former two increased
in abundance and the latter two decreased although these
changes were not significant at the phyla level in the current
study. Firmicutes and Bacteroidetes are the important phyla
represented in the microbiome of a healthy horse (103), which
have shown a variation in some cases and stability in others
in their relative abundance in response to for instances dietary
interventions such as feeding a natural high-energy forage-only
diet, in which the Firmicutes and Bacteroidetes phyla varied in
relative abundance (104, 105).

The results in the current study agree with a study performed
by Proudman et al. (106) on healthy thoroughbred racehorses
that were fed with a standard diet, where they found Firmicutes
and Bacteroidetes to dominate the fecal microbiota. In the
same study, they also observed an inter-individual variation
in response to dietary change. The results in the present
study also agree with the results of a study in which healthy
horses were fed with fiber-based diets, and at the end the
researchers found the most abundant phyla to be Bacteroidetes
followed by Firmicutes, with smaller quantities of Spirochaetes,
Fibrobacteres, Proteobacteria, and Actinobacteria (107).

The other way around, a decrease in Bacteroidetes is reported
to be associated with unfavorable conditions. When comparing
prepartum and postpartum mares’ fecal microbiota, a decrease
in the relative abundance of the phylum Bacteroidetes (5.2 vs.
2.1%) was significantly associated with the development of colic
caused by large colon volvulus, gas colic, or other large colon
displacements. In the current study that involved healthy non-
pregnant horses, Bacteroidetes levels were much higher at the
start of the study (49.9%), and they further increased during
aleurone supplementation (52.7%). Furthermore, postpartum
mares were also more prone to develop colic when the
relative abundance of the phylum Firmicutes was lower than
50%. Interestingly, the mean pretrial and posttrial Firmicutes
abundance was much lower in our study (45.7% before
400 g/day of aleurone supplementation and 42.6% after
400 g/day of aleurone supplementation) when compared to,
respectively, 68% pre-partum and 58% postpartum in the
study of Weese et al. (108). It can be expected that “basal”
fecal microbiome composition of a certain herd is determined
by many factors, such as differences in dietary management
(concentrate feed, roughage, and pasture turnout), stable
management, applied training intensities, and even hormonal
influences (108–110).

A recent study described a difference in the community
structure of themicrobiota between healthy horses and the horses
suffering from EMS. EMS horses showed a significantly lower
microbiota diversity. However, this study could not identify
significant differences caused by EMS at the phyla level or lower
taxonomic order (111). Interestingly, obese individuals showed
an increase in the relative abundance of the phylum Firmicutes
and a decrease of the phylum Bacteroidetes as well (112, 113).
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Dougal et al. (107) performed a weight-loss study involving
obese horses and ponies and showed a significant decrease
in the relative abundance of the phylum Firmicutes and an
increase of the phylum Bacteroidetes in association with weight
loss. Assuming that these horses developed an increased insulin
sensitivity during the study while losing weight, this microbiome
change would be in accordance with the results of the current
study. However, the obese horses were only sampled at week 10
and 16 of the dietary intervention and not at the beginning of
the weight-loss program. In addition, no follow-up of neither
glucose metabolism nor insulin metabolism was performed
(107). Morrison et al. (114) studied the effect of weight loss
induced by 7 weeks of dietary restriction on ponies’ fecal
microbiome and found a significant decrease of several bacterial
genera including the genus Roseburia. Aleurone decreased this
genus of the Lachnospiraceae family in the current study as
well (114). Shuttleworthia and Anaerostipes, both genera from
the Lachnospiracaea family, and the carbohydrate-fermenting
family of Succinovibrionaeciae were also decreased by aleurone
supplementation. High abundance of Anaerostipes is associated
with type 2 diabetes mellitus in humans and in high insulin
resistant humans the abundance of Succinovibrionaeciae was
positively correlated to the degree of inflammation of the visceral
adipose tissue (115, 116).

Apart from associating changes in body weight with
unfavorable changes in the microbiome, researchers have also
found a correlation between the insulin regulation and certain
microbiome compositions in ponies with insulin dysregulation.
An introduction of pasture turnout induced a significant change
in the differential abundance of the fecal microbiota of these
ponies. Amultivariate regression analysis showed that the insulin
sensitivity status of each pony accounted for a more variation
in the fecal microbiome than the variation typically observed
between horses. Adding pasture turnout to the diet accounted
for 3% of the fecal microbiome variation. However, strikingly,
the insulin status of these ponies accounted for 15.1% of
the microbial variation. The Ruminococcaceae family, on the
other hand, was decreased as well in the fecal microbiome
of the insulin dysregulated ponies, which is in accordance
with our study in which the genus of the butyrate producer
Faecalibacter from the family of Ruminococcaceae decreased
as well. The relative abundance of the Lachnospiraceae family
on the other hand, was significantly decreased in insulin
dysregulated ponies, a change that was not found in the current
study (110).

In a recent equine 2-year weight gain study looking into the
effect of obesity on the equine fecal microbiome, a significant
increase of the relative abundance of the phylum Firmicutes
was shown to be associated with increased body weight,
body condition score, and cresty neck score. In addition, the
phyla Bacteroidetes and Spirochaetes both decreased in relative
abundance in horses and ponies with an increase in obesity,
although these differences were not significant (117). Assuming
that these horses developed insulin dysregulation while gaining
weight, this fecal microbiome change is in accordance with
our data as well: with increasing insulin sensitivity, the relative
abundance of the phyla Bacteroidetes and Spirochaetes is

increased, and the relative abundance of the phylum Firmicutes
is decreased.

Finally, it is also important to realize that the changed
metabolome of the changed gut microbiome can have its effects
on the findings in the current study. Indeed, it can be expected
that changes in the composition of the gut microbiome lead to
the changes in the metabolic fingerprint of the microbiome (106).
Some of these metabolites have already been identified as having
beneficial health effects. For example, it has been established that,
as a part of the dietary fiber fraction, aleurone is partly digested by
the gut microbiota, which leads to the production of short-chain
fatty acids (SCFAs) [i.e., acetate, butyrate, and propionate; (118–
120)]. These SCFAs could modulate health benefits both locally
at the level of the gastrointestinal tract (121), and systemically,
for example, through the amelioration of insulin sensitivity (122–
124). Other by-products in the fermentation of fibers using
the gut microbiota are lactate, valerate, aromatic amino acids
(AAAs), and branched-chain amino acids (BCAAs) (125–127).
It would be interesting to look into shifts in the metabolome of
the gut microbiome in response to aleurone supplementation in
future studies.

The PICRUSt analysis in this study showed several significant
predicted effects of aleurone on the functional fecal metabolome
energy pathways. The L-glutamate degradation VIII pathway
was significantly downregulated after 400 g/day of aleurone
supplementation and in the “posttrial” fecal samples as well.
This pathway ferments glutamate into propionate and is expected
to be mainly used by bacteria from the phylum Firmicutes.
Aleurone was predicted to downregulate the propionate
production by the gut bacteria in this study, which could
lead to decreased levels of endocrine hormone glucagon-like-
peptide 1 (GLP-1). GLP-1 increases insulin serum levels and
it is possible that an aleurone-induced decrease in propionate
plays a role in the observed effects on the glucose-insulin
metabolism as seen in the current study (128). A different
amino acid degradation pathway that was downregulated by
aleurone is the Super pathway of taurine degradation, which
would provide the horse with more taurine to absorb from
its gut. Taurine is a natural occurring amino acid part of bile
acid conjugation, osmoregulation, membrane stabilization, and
regulation of intracellular calcium homeostasis and is known
to protect equine lymphocytes against oxidative stress (129).
Moreover, taurine has an effect on the beta-cell insulin secretion
in hamster cell-line and rat cell-line by changing beta-cell
current (130). Oral supplementation of taurine improved insulin
sensitivity and controlled hyperglycemia and hyperinsulinemia
in fructose-fed insulin resistant rats by altering the insulin
signaling-enzymes protein tyrosine kinase and protein tyrosine
phosphatase in the liver; therefore modifying post-receptor
events of insulin action. Kim et al. (131) have shown that taurine-
ameliorated hyperglycemia and dyslipidemia in insulin resistant
rats by decreasing IR and leptin levels (132). It is possible that the
effects of aleurone on the gut microbial metabolome, including
taurine production, are part of the explanation of how aleurone
modifies postprandial glucose-insulin levels.

Three consecutive pathways expressed by the domain of
Archaea, all contributing to phospholipid membrane synthesis,
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were significantly upregulated by aleurone. This included
the pathways of CDP-archaeol biosynthesis, Archaetidylserine
and archaetidylethanolamine biosynthesis, andArchaetidylinositol
biosynthesis. The function of the entire domain of Archaea
in the equine gut microbiome and metabolome is not well-
studied (133). The biologic production of methane, an anaerobic
respiration process called methanogenesis, is carried out by
this domain and feeding of aleurone induced a shift from
Methanogenesis from acetate toMethanogenesis from H2 and CO2

by these methanogens. This can possibly save more of the SFCA
acetate for either the equine energy metabolism or as a nutrition
for the gut microbiome and simultaneously decreasing luminal
H2 and CO2. Several necessary cofactors of the upregulated
pathway ofMethanogenesis from H2 and CO2 were also predicted
to be expressed at a higher level after aleurone supplementation:
including Cofactor 420 biosynthesis I, Coenzyme M biosynthesis
I, and Coenzyme B biosynthesis. Aleurone possibly induces the
growth of the Archaea domain by inducing the membrane
formation and pushes the methanogenesis into using H2 and
CO2 instead of the SFCA acetate.

In conclusion, the results of this study show that aleurone
blunts the postprandial glucose and insulin response and induces
significant shifts in the gut microbiome. Our results suggest
a multimodal effect of aleurone, which is most likely caused
by the effect of aleurone on the feed texture and subsequent
digestive processing, a synergistic effect of the individual aleurone
components on the glucose-insulin metabolism, and the effect of
aleurone and its components on the gutmicrobiome composition
and metabolic output of the microbiome. More research is
needed to further unravel the background of these findings.
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