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Coronaviruses (CoVs) possess the largest and most complex RNA genome (up to 32 kb)

that encodes for 16 non-structural proteins regulating RNA synthesis and modification.

Coronaviruses are known to infect a wide range of mammalian and avian species causing

remarkably diverse disease syndromes. Variable tissue tropism and the ability to easily

cross interspecies barriers are the well-known characteristics of certain CoVs. The 21st

century epidemics of severe acute respiratory CoV (SARS-CoV), Middle East respiratory

CoV and the ongoing SARS-CoV-2 pandemic further highlight these characteristics and

emphasize the relevance of CoVs to the global public health. Bovine CoVs (BCoVs)

are betacoronaviruses associated with neonatal calf diarrhea, and with winter dysentery

and shipping fever in older cattle. Of interest, no distinct genetic or antigenic markers

have been identified in BCoVs associated with these distinct clinical syndromes. In

contrast, like other CoVs, BCoVs exist as quasispecies. Besides cattle, BCoVs and

bovine-like CoVs were identified in various domestic and wild ruminant species (water

buffalo, sheep, goat, dromedary camel, llama, alpaca, deer, wild cattle, antelopes,

giraffes, and wild goats), dogs and humans. Surprisingly, bovine-like CoVs also cannot

be reliably distinguished from BCoVs using comparative genomics. Additionally, there

are historical examples of zoonotic transmission of BCoVs. This article will discuss BCoV

pathogenesis, epidemiology, interspecies transmission, immune responses, vaccines,

and diagnostics.

Keywords: cattle, bovine coronavirus, respiratory, bovine respiratory disease complex, diarrhea, enteric, wild

ruminants

INTRODUCTION

Coronaviruses (CoVs) are enveloped viruses with the largest RNA genome (26.4–31.7 kb) that
belong to the subfamily of Coronavirinae within the family Coronaviridae, order Nidovirales
(1). Currently, CoVs are classified into four genera: Alphacoronavirus, Betacoronavirus,
Gammacoronavirus, and Deltacoronavirus, with alpha- and betacoronaviruses represented by
mammalian CoVs, while all avian CoVs are members of the other two genera (1).

Coronaviruses infect a wide diversity of mammalian and avian species causing respiratory,
enteric, neurologic and hepatic disorders (1). The 21st century has already provided abundant
and well-documented evidence of the ability of CoVs to quickly adapt to new hosts and ecological
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niches. Examples of expansion of host and geographical ranges
include the severe acute respiratory coronavirus (SARS-CoV)
pandemic, as well as the ongoing Middle East respiratory
coronavirus (MERS-CoV) epidemic and the SARS-CoV-2
pandemic; emergence of porcine epidemic diarrhea virus in both
Americas, and porcine deltacoronavirus emergence and spread
in Asia followed by its spread to the US (2–6). This ability to
quickly adapt to novel hosts and ecological niches are attributed
to the high mutation rate (number of mutations/genome/round
of replication) caused by relatively low fidelity of the viral
RNA polymerase (7), the large genomes of CoVs (8), and the
high frequency of homologous recombination events during
RNA replication well-documented for several porcine, feline and
canine coronaviruses (9–13). CoVs are the only known RNA
viruses that evolved amechanism for proofreading their genomes
(via activities of non-structural proteins 10–14) allowing them to
escape lethal error catastrophe events (14) and to generate and
maintain highly diverse and viable quasispecies pools.

Several human CoVs (HCoVs) associated with common colds
and acute gastroenteritis, HCoV-229E, HCoV-HKU1, HCoV-
NL63, HCoV-OC43, and human enteric CoV 44 (HECoV-
44) were recognized (15) even before modern tools for
molecular characterization and diagnostics were available
and the epidemic/pandemic nature of CoVs was widely
appreciated. Some of them were of suspect zoonotic origin
(15, 16) including spillover from cattle (HCoV-OC43 and
HECoV-44) (15, 17, 18).

Bovine coronavirus (BCoV) is a pneumoenteric virus that
belongs to the species Betacoronavirus 1 (subgenus Embecovirus)
of the Betacoronavirus genus along with wild ruminant
CoVs, porcine hemagglutinating encephalomyelitis virus, equine
coronavirus, HCoV-OC43, HECoV-44, and canine respiratory
coronavirus (1). Due to their close antigenic and genetic
relatedness, Betacoronavirus 1 species members appear to be
host-range variants originating from the same parental virus
as a result of multiple genetic recombination and interspecies
transmission events (17, 19–21).

Bovine CoV particles are enveloped and pleomorphic,
65–210 nm in diameter (22). Bovine CoV particles possess
5 major structural proteins: the nucleocapsid protein (N,
50 kDa), the integral membrane (M, 25 kDa), the small
membrane/envelope protein (E, 8 kDa), the haemagglutinin-
esterase (HE, 120–140 kDa) and the spike (S, 190 kDa)
(22). The latter consists of an S1 subunit that contains the
dominant neutralizing epitopes and an S2 subunit that mediates
viral membrane fusion. The HE acts as a receptor-destroying
enzyme (esterase) to reverse hemagglutination. The N protein
lies internal to the virus envelope and is associated with the
viral RNA, the M spans the viral envelope while the S and
HE project from the envelope. Additionally, 16 non-structural
proteins (nsp1-16) have been identified in betacoronaviruses
(23, 24). Like other enveloped viruses, BCoVs are sensitive
to detergents and lipid solvents (including ether, chloroform)
and are easily inactivated by most conventional disinfectants,
formalin, and heat.

Bovine coronaviruses cause respiratory and enteric diseases
in cattle and other ruminants but can be identified in the

respiratory and intestinal tracts of healthy cattle (22, 25–27).
BCoV is shed in feces and nasal secretions and is associated
with 3 distinct clinical syndromes in cattle (27): (neonatal) calf
diarrhea [(N)CD)] (22, 28), winter dysentery (WD) characterized
by hemorrhagic diarrhea in adults (25, 28–30) and respiratory
infections in cattle of different ages commonly as a part of
the bovine respiratory disease complex (BRDC) or shipping
fever of feedlot cattle (22, 26, 31, 32) (Figure 1). BRDC causes
major economic losses to the beef and dairy cattle industries
worldwide due to substantial morbidity and mortality. In North
America, this complex represents the leading cause of morbidity
and mortality in 6–10-month-old beef cattle after entry into
feedlots (33).

All BCoV isolates identified so far are shed in feces and nasal
secretions and belong to a single serotype/genotype based on
virus cross-neutralization and genotyping analyses regardless of
clinical origin (27, 28, 34, 35). However, genotyping identified
distinct sublineages and clusters based on the year and place
of isolation but not on the disease type (19, 35–38) (Figure 2).
Similarly, 2 to 3 subtypes of BCoV are recognized based
on their biologic and antigenic characteristics identified in
virus neutralization and ELISA [with monoclonal antibodies
(MAbs)] tests without association with the different disease
types (22, 26–28). While some studies identified mutations
potentially associated with respiratory and enteric phenotypes
(40–42); these findings have not been consistently confirmed
by other groups in observational or experimental studies (36).
Further, despite numerous genetic differences (point mutations
and deletions) detected in the spike (S) gene between enteric
and respiratory isolates or between BCoV and bovine-like
CoVs from wild ruminants and humans, in vivo and in vitro
experiments demonstrated high levels of cross-protection and
cross-neutralization between such isolates (36, 43–48). Thus,
no genetic or antigenic markers associated with the different
disease manifestations have been identified, suggesting that
the latter may result from the complex interplay between
pathogens (CoV and other viruses or bacteria), host and
environmental factors.

RECEPTORS AND ATTACHMENT
FACTORS

BCoV attaches to N-acetyl-9-O-acetylneuraminic acid
(Neu5,9Ac2) through HE and S proteins to initiate infection
(49–51). BCoV attachment is blocked by acetylesterase or
neuraminidase treatment and can be restored by resialylation.
It is further hypothesized that after the initial binding to sialic
acid (SA)-containing receptors, the BCoV S protein may interact
with a specific cellular receptor that leads to a conformational
change and the viral-cell membrane fusion (52). A study
demonstrated that similar to HCoV-OC43, BCoV preferentially
used α-2,6-(SA) and not α-2,3-SA; however, this effect was
less pronounced for BCoV compared with HCoV-OC43 (53).
The same study has shown that BCoV (similar to canine
respiratory CoV) employs human leukocyte antigen class I
(HLA-I) as an entry receptor. HLA class I molecules that belong
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FIGURE 1 | Summary diagram of different clinical syndromes associated with BCoV and challenges for successful vaccination associated with different

ages/production status of cattle. CD, calf diarrhea; WD, winter dysentery; BRDC, bovine respiratory disease complex. Coronavirus image placed above animal

represents potential carrier status. Rectangle boxes list unknown host and vaccine-associated factors that can result in suboptimal vaccine performance or lack of

protection of cattle of different ages.

to the immunoglobulin superfamily consist of three α chains
linked with a β2-microglobulin molecule that adopt a standard
immunoglobulin-like fold (54). The receptor-binding (lectin)
and receptor-destroying (esterase) domains of the HE protein
also play important roles for viral entry (55); although, these
interactions may be weaker than for the S protein because HE
is a less efficient hemagglutinin. Additionally, heparan sulfate
was identified as an alternative attachment factor, but this may
be related to the cell culture adaptation, not affecting the in vivo
infection and pathogenesis (53).

Histo-blood group antigens (HBGAs) are known to play a role
in cell attachment and pathogenesis of other betacoronaviruses,
including SARS-CoV and SARS-CoV-2 (56, 57). Specifically,
studies indicate that blood group A individuals are at higher
risk of infection suggesting that HBGAs may serve as additional
cellular receptors. It is currently unknown if BCoV can utilize
HBGAs as cell entry receptors, which necessitates further
research in this direction to understand the mechanisms of
emergence of BCoV-like CoVs (such as HCoV-OC43 and
HECoV-4408) into human population.

Overall, the complex interactions between BCoVs, their
cellular receptors and mucosal microbiota need to be
comprehensively evaluated to improve our understanding of
BCoV epidemiology, pathogenesis and interspecies transmission.

EPIDEMIOLOGY AND PATHOGENESIS OF
RESPIRATORY AND ENTERIC BOVINE
CORONAVIRUSES

Bovine coronavirus is widespread in cattle of all ages, resulting
in economic losses to the beef and dairy industry throughout
the world. The virus presence has been confirmed on all
continents, and seroprevalence studies demonstrate that over
90% of cattle have been exposed to BCoV during their lifetime.
Moreover, BCoVs are commonly identified in the respiratory
and intestinal tracts of healthy and diseased cattle (58). Recent
evidence suggests that BCoV can persist in colostrum-deprived
calves or colostrum-fed calves with repeated nasal shedding (59)
and detectable BCoV antibodies for up to 3 years suggesting
that active immune response does not always result in viral
clearance (60).

Enteric BCoV Infections
After its accidental discovery in 1972 by Mebus et al. at the
University of Nebraska (61), the virus was quickly isolated and
characterized (62), and soon after recognized as a common cause
of calf diarrhea (CD) (63). The virus plays a major role in the
development of CD during the first 3 weeks of life in both dairy
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FIGURE 2 | Phylogenetic analysis of complete genomes of enteric and respiratory BCoVs and bovine-like CoVs from wild ruminants. The evolutionary history was

inferred by using the Maximum Likelihood method and General Time Reversible model. The tree with the highest log likelihood (−81,750.81) is shown. The

percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the

number of substitutions per site. This analysis involved 53 nucleotide sequences. Evolutionary analyses were conducted in MEGA X (39). Black triangle markers are

used for bovine-like CoVs isolated from wild ruminants, and black round markers are used to mark respiratory BCoVs. The collapsed branch includes a cluster of

recent BCoV strains from Japan (35).
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and beef cattle herds (27, 64). The disease results from the virus
infecting both the small and large intestines, destroying villi and
leading to severe, sometimes bloody, diarrhea and high mortality
(65–67). Virus replication initially occurs in different sections of
the small intestine subsequently spreading throughout the large
intestine and causing a malabsorptive diarrhea. BCoV-infected
intestinal epithelial cells (IECs) die, slough off, and are replaced
by immature IECs. Stunted and fused small intestinal villi as
well as atrophied colonic ridges are observed during pathological
examination (65, 66, 68). The compensatory crypt hyperplasia
and increased fluid secretion further exacerbates diarrhea (69).
The loss of the mature IECs capable of absorption and digestive
enzyme secretion greatly diminishes the absorptive, metabolic
and secretory capacity of the intestinal tract (22, 69).

Continual feeding often provides more nutrients than the
damaged small intestinal epithelium can absorb (70). This in
turn leads to undigested nutrient fermentation in the large
intestine, increased fluid accumulation, bacterial overgrowth
and overproduction of organic acids, aggravating diarrhea (69,
71). Altogether, it leads to dehydration, metabolic acidosis and
electrolyte imbalance (due to sodium, chloride, potassium, and
bicarbonate loss) (72). While these pathological changes and
the ensuing disease are most severe in younger animals, BCoV
infection also contributes to winter dysentery (WD) development
in adult dairy cattle that causes a dramatic decrease in milk
production and significant economic losses (25, 27, 73).

BCoV causes enteritis in both dairy and beef herds, with most
cases occurring within the first 30 days of life (22, 61, 64, 74).
BCoV incidence in naturally occurring outbreaks of diarrheal
disease reportedly may vary from 15 to 70% (68, 75, 76). CD
may occur as early as 24 h of age in colostrum-deprived calves
and as late as 5 months of age (59, 68, 77). Soon after becoming
infected, calves begin shedding high amounts of BCoV (≤109

viral particles/ml of feces) which can continue for up to 2
weeks; while during the convalescent phase recovered calves
generally shed lower amounts for several weeks (78). While
BCoV is detected in the feces of both diarrheic and healthy
calves, diarrheic calves tested positive more often (incidence: 8–
69%) than healthy ones (incidence: 0–24%) (68, 69, 75). Low-
level intermittent BCoV shedding can be observed in >70% of
healthy cows despite the presence of serum and intestinal BCoV-
specific antibodies (76, 79). Because BCoV is more stable at lower
ambient temperature and reduced ultraviolet light levels, BCoV
shedding rates increase by 50–60% during the winter months
(22, 80) likely contributing to WD development in adult cattle
(29). BCoV shedding also increased by 65% at parturition, and
by 71% 2 weeks postpartum due to immunological and hormonal
perturbations in cows (80). Thus, calves born to BCoV-positive
cows have a significantly higher risk of developing diarrhea due
to periparturient exposure to the contaminated perineum, teats,
and the calving area (81).

Besides being an important enteric pathogen of cattle,
BCoVs are capable of interspecies transmission and causing
disease in adoptive/spillover hosts. For example, HECoV-4408
from a child with acute diarrhea is closely related to BCoV
genetically and antigenically and is suggested to be a BCoV
variant (17). It was confirmed that it can infect and cause

diarrhea in gnotobiotic calves as well as induce complete cross-
protective immunity against the virulent BCoV-DB2 enteric
CD strain (47). Based on complete genome analysis, it is
hypothesized that porcine hemagglutinating encephalomyelitis
virus andHCoV-OC43 have evolved from ancestral BCoV strains
at some point in the past (42). This analysis provides evidence
that CoVs of bovine/ruminant origin can become endemic in
adoptive/spillover hosts. Enteric BCoVs (bovine-like CoVs) can
also infect dogs (experimentally) and various domestic and wild
ruminant species (naturally and experimentally), causing clinical
(82) or subclinical infections and seroconversion (83, 84). These
data raise questions of whether dogs or wild ruminants could
also be a reservoir for bovine-like CoVs transmissible to cattle, or
conversely, if cattle can transmit CoVs to dogs, other ruminant
species and humans. Overall, the existing evidence indicates
that BCoVs are associated with serious and economically
significant disease.

Respiratory BCoV Infections
In 1982 Thomas et al. was first to identify BCoV as one
of contributing agents in calf pneumonia (85). Subsequently,
numerous investigators have confirmed that enteric and
respiratory BCoVs are members of the same quasispecies (86),
despite genotypic and antigenic differences between individual
isolates (26). Since 1995, the role of respiratory BCoV in BRDC
development and reduced growth performance in feedlot cattle
has been increasingly recognized (26, 27, 31, 87–90). Currently,
respiratory tract infections in growing and feedlot calves are
frequently attributed to BCoV (26, 27, 91, 92) and can manifest
as mild respiratory disease (coughing, rhinitis) or pneumonia
in 2–6-month-old calves (26, 27). A study demonstrated high
respiratory BCoV nasal and fecal shedding rates of 84 and 96%,
respectively (90). In another study, testing cattle 3-day pre-arrival
demonstrated that nasal shedding consistently preceded fecal
shedding (91). It was also demonstrated that many animals (61–
74%) shed respiratory BCoV prior to shipping to feedlots (93).
Fifty-eight to ninety-five percent of feedlot cattle seroconverted
to BCoV by 3 weeks after arrival (87, 90, 94, 95). The widespread
distribution of BCoV could be explained by two main factors:
(1) shedding of high titers of the virus from respiratory and
intestinal tracts (59, 92), and (2) existence of asymptomatic
(carrier) animals within most herds. These carrier animals shed
the virus in nasal secretions and feces and serve as a source of
infection to neonates and other susceptible animals on the farm
(59, 96).

BCoV seroprevalence studies that surveyed 135 Norwegian
dairy herds have demonstrated that calves in BCoV-seropositive
herds had an increased risk of respiratory disease development
compared with BCoV-seronegative herds (97). Dairy calves in
Ohio shed respiratory BCoV fecally and nasally with some of
them developing diarrhea and/or respiratory disease (rhinitis)
(59, 98). In a large feedlot study (n = 1,074 cattle), it was
demonstrated that feedlot calves shedding respiratory BCoV
nasally were more likely to have respiratory disease (1.6 times)
and pulmonary lesions at slaughter (2.2 times) than animals that
did not shed respiratory BCoV (31). In two subsequent studies,
calves shedding respiratory BCoV nasally were 2.7 and 1.5 times
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more likely to have respiratory disease than those that did not
shed (90, 91). In another report, nasal BCoV shedding or an
antibody titer <20 correlated with increased risk of treatment
for BRDC, while intranasal vaccination with BCoV vaccine
mitigated this risk (99). Further, in 3 of 4 outbreaks in Italy, the
classic signs of BRDC (dyspnea, fever, respiratory distress) were
evident in 2–3-month-old calves positive for BCoV and negative
for other respiratory viral pathogens, while presence of common
bacterial pathogens of cattle (Staphylococcus spp. and Proteus
mirabilis or Mannheimia haemolytica) was only confirmed in 2
of 4 outbreaks (92).

Despite this abundant circumstantial evidence derived from
epidemiological studies and routine diagnostic testing for
respiratory pathogens, the role of BCoV in the bovine respiratory
disease complex (BRDC) has been debated for several decades
(32). This is because attempts to experimentally reproduce
clinical respiratory disease are often unsuccessful (45, 100–102)
(Table 1). Of interest one out of the 4 studies that failed to
reproduce clinical disease (Table 1) reported somewhat extensive
pathological changes in the respiratory tract of the colostrum-
deprived calves inoculated with KWD3 strain (102) (Table 1).

In two studies, investigators were able to reproduce some
features of respiratory disease of variable severity (Table 1) (78,
103, 104). In the first one, 7 colostrum-deprived or colostrum-
fed calves received tracheal-organ culture supernatant containing
BCoV (from a field case) and developed cough, nasal discharge,
and diarrhea with a few scattered areas of atelectasis observed
in lungs of 3 calves at post-mortem (Table 1). In another
study, 3 colostrum-deprived calves were inoculated with a
field virulent pneumoenteric BCoV (Minnesota); all of them
developed diarrhea, 2 had pneumonia/respiratory distress, and 1
died (Table 1).

Thus, the BCoV-induced respiratory clinical disease and the
associated pathological changes remain less defined than those
for enteric BCoV (Tables 1, 2) (26, 27). The consensus opinion is
that the respiratory disease and pathology may vary with BCoV
strain, animal age, co-infections with other pathogens (from
BRDC complex), weather and additional environmental stress
factors (Table 2) (26, 27). The list of other viral and bacterial
pathogens identified in association with BRDC is rather extensive
and includes: parainfluenza virus, type 3, bovine respiratory
syncytial virus, adenovirus, enterovirus, reovirus, influenza D
virus, bovine viral diarrhea virus, bovine herpesvirus 1 and
4, Mannheimia haemolytica, Pasteurella multocida, Histophilus
somni, Mycoplasma bovis, and Trueperella pyogenes (105).
Multiagent experiments evaluated interactions between the
respiratory pathogens and stress and emphasized their synergistic
effects in the BRDC, but no such experiments have been reported
for BCoV (32, 105, 106). A recent study has concurrently
identified BCoV, H. somni, M. haemolytica, and P. multocida
(but not other common BRDC pathogens) during a respiratory
disease outbreak in pre-weaned beef calves emphasizing that
these pathogens were likely the major contributors to the
disease development (107). The multifactorial nature of BRDC
makes treating it extremely challenging. For example, antibiotic
treatment of animals with BRDC may lead to massive release
of bacterial lipopolysaccharides (LPS) inducing proinflammatory

cytokine response and further enhancing lung damage (27, 108)
while treatment with corticosteroids can reduce the numbers of
CD4 and CD8T cells and certain cytokine levels compromising
protective immunity and exacerbating disease (109, 110). Thus,
current evidence suggests that BCoV alone may not be routinely
associated with substantial infection/pathology of the lower
respiratory tract, but likely is significant as a respiratory pathogen
in the case of mixed infections and plays a major role in
inciting the disease. However, experimental data on infection of
SPF BCoV seronegative cattle with BCoV respiratory isolates is
needed to better confirm the role of BCoV in respiratory disease.

BCOV INTERSPECIES TRANSMISSION

BCoV-Like Infections of Wild and Domestic
Ruminants
In the last several decades, numerous CoV strains sharing
extensive biologic, antigenic and genetic similarities with BCoV
(named therefore bovine-like CoVs) have been identified in the
feces, intestinal contents or respiratory secretions of a diverse
group of domestic and wild (captive or free-range) ruminant
species (Table 3). Experimental inoculation of gnotobiotic (Gn)
or colostrum-deprived calves demonstrated that many of the
bovine-like CoVs were capable of efficient replication in these
calves, produced enteric disease and generated cross-protective
immune responses (48, 82). Additionally, 6.6, 8.7, and 13.3%
of sera from white-tailed deer in Ohio, mule deer in Wyoming
and caribous in Quebec, respectively, were seropositive for
BCoV antibodies (82, 114) suggesting that natural infections
are common.

Complete genome sequencing revealed that some of the
bovine-like CoVs isolated from wild and captive ruminants
(giraffe, sambar deer, white-tailed deer, waterbuck, water deer,
sable antelope, camelids and water buffalo) share high (>98–
99.6%) sequence identity with enteric and respiratory BCoV
strains, supporting their close genetic relatedness (19, 48, 84).
Similar to the lack of genetic markers for discriminating between
enteric and respiratory BCoVs, no reliable genetic markers were
identified to distinguish between BCoVs and ruminant bovine-
like CoVs (19). Instead, phylogenetic analysis demonstrates
clustering of BCoVs/bovine-like CoVs according to the year
of detection/isolation (Figure 2), which suggests that there is
likely a co-evolution with continuous exchange by the respective
virus pools. Finally, no consistent changes were observed in the
genomes of bovine-like CoVs after passage in gnotobiotic calves.
These data suggest that wild ruminants may represent a natural
reservoir for bovine-like CoVs and transmit them to cattle or vice
versa; these BCoVs represent a single host-range CoV species
(27). Such interspecies infections may result in generation of
more genetically divergent, potentially recombinant strains that
escape immune responses and could potentially spread to other
species including humans based on an historical precedent (42).
Further, similar to BCoVs, a number of bovine-like CoVs from
wild/captive ruminants can readily replicate in human rectal
tumor-18 (HRT-18) cells (19, 48, 82), which further suggests a
possibility for zoonotic transmission events.
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TABLE 1 | Experimental studies to reproduce respiratory disease following BCoV inoculation.

Study settings Animal

age, days

Animal

number

Inoculation route BCoV antigen in

respiratory/intestinal tract

Respiratory tract

pathology, disease

Intestinal tract pathology,

disease

References

Experimental studies - no clinical disease

Cross-protection study in gnotobiotic

calves using intestinal and respiratory

BCoV material

1–24 9 Oral Yes (upper resp. tract)/yes (large

intestine+feces)

N/A, no clinical signs N/A, diarrhea (100)

2–151 4 Intranasal+intratracheal Yes (upper resp. tract)/yes (large

intestine+feces)

N/A, no clinical signs N/A, diarrhea

Experimental inoculation of gnotobiotic

and colostrum-deprived calves with a fecal

BCoV isolate

3–50 11 Oral, intranasal,

oronasal

Yes (upper resp. tract)/yes (feces) N/A, no clinical signs N/A, diarrhea (101)

25–63 7 Yes (upper resp. tract)/yes (feces) N/A, no clinical signs N/A, diarrhea

Cross-protection study of BRCV, CD and

WD isolates in colostrum-deprived and

gnotobiotic calves

1–10 6 Oronasal Yes (upper resp. tract)/yes (feces) N/A, no clinical signs N/A, diarrhea (45)

5–27 2 Oronasal Yes (upper resp. tract)/yes (feces) N/A, no clinical signs N/A, diarrhea

Experimental inoculation of

colostrum-deprived calves with a WD

strain

2–4 8 Oronasal Yes (upper+lower resp.

tract)/yes (small and large

intestine)

Epithelial damage in nasal

turbinates, trachea and

lungs, and interstitial

pneumonia, no clinical signs

Villous atrophy and crypt

depth decrease in small and

large intestine, respectively,

diarrhea

(102)

Experimental studies - clinical disease

Experimental inoculation of

colostrum-deprived and colostrum-fed

calves with a tracheal-organ culture

supernatant containing BCoV

<7 7 Intranasal+transtracheal Yes (upper+lower resp.

tract)/yes (small and large

intestine)

A few scattered areas of

atelectasis, mild respiratory

disease, cough and nasal

discharge

N/A, diarrhea (103)

Experimental inoculation of

colostrum-deprived calves with attenuated

Mebus and virulent Minnesota strains of

BCoV

5 5 Oral Yes (lungs)/yes (Crypts/peyers

patches/feces)

N/A, Pneumonia, resp.

distress

N/A, diarrhea (78, 104)

F
ro
n
tie
rs

in
V
e
te
rin

a
ry

S
c
ie
n
c
e
|w

w
w
.fro

n
tie
rsin

.o
rg

7
M
a
rc
h
2
0
2
1
|
V
o
lu
m
e
8
|A

rtic
le
6
4
3
2
2
0

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Vlasova and Saif Bovine Coronavirus

TABLE 2 | Respiratory BCoV pathogenesis in cattle of different ages.

Age group

Young calves Adult cattle with WD Feedlot calves with BRDC/shipping

fever

Respiratory disease Coughing, fever, rhinitis, and inappetence,

often with concurrent diarrhea

Seronegative cows: transient fever, mild

cough, and serous mucopurulent

discharge

Fever, dyspnea, inflammatory and

necrotizing lung lesions leading to

bronchopneumonia, weight loss, and

death

Seropositive cows: no disease

Virus shedding From both respiratory and intestinal tracts Seronegative cows: from both respiratory

and intestinal tracts

From both respiratory and intestinal tracts

Seropositive cows: limited nasal shedding

Pathological findings in

respiratory tract

Sometimes: epithelial damage in nasal

turbinates, trachea and lungs, interstitial

pneumonia, atelectasis

N/A Subacute exudative and necrotizing lobar

pneumonia involving 50–80% of the lung

volume. Histologic lung lesions were

characterized as fibrinous, necrotizing

lobar pneumonia, but with moderate to

severe bronchitis and bronchiolitis

Comment Experimental infections (if reproduce)

result in milder disease

Disease is generally milder than in younger

calves

Multifactorial disease: detection of

Mannheimia hemolytica and Pasteurella

multocida in addition to BCoV is highly

common

Of interest, while bovine-like CoVs are frequently detected
in diarrheic or healthy wild ruminants, there are no reports of
occurrence of CoV-related respiratory disease outbreaks in the
wild ruminants. This once again emphasizes the multifactorial
nature of BRDC in cattle and suggests that its development is
likely related to existing herd management practices including
crowded housing, transportation, constant influx of new animals,
production-associated stresses in cows, etc.

BCoV-Like Infections of Non-ruminant
Species
In addition to a broad range of domestic and wild ruminants,
CoVs genetically/antigenically similar to BCoV have been
detected in dogs with respiratory disease (142) and in humans
(17). An enteropathogenic BCoV strain caused a subclinical
infection and seroconversion in experimentally infected dogs
(83). A recent report demonstrated that the HECoV-4408 strain
infects upper respiratory and intestinal tracts causing diarrhea
and intestinal lesions and conferring complete cross-protection
against the virulent BCoV DB2 strain in gnotobiotic calves (47).
Finally, while the most common ancestor has not been identified,
it is assumed that HCoV-OC43 has emerged in the human
population at the end of the 19th century likely originating form
a BCoV ancestral strain via recombination events (42). Thus,
detailed investigation of the endemic and emerging BCoV strains
in the context of the host glycobiology is needed to identify and
control potential pre-pandemic variants.

DIAGNOSIS

Pneumoenteric BCoVs replicate in the upper respiratory and
the intestinal tracts and are detected in nasal secretions and
feces, with nasal often preceding fecal shedding (27, 90, 95, 100,

101, 143). BCoV has also been detected or isolated from lung
in animals with respiratory disease (88). The complete list of
post-mortem diagnostic samples from animals with suspected
respiratory (or enteric) BCoV disease includes tissues from
the respiratory tract (e.g., nasal, pharyngeal, tracheal and lung
tissues) (34, 89, 93) and from the distal small intestine and colon
(101). For live animals, nasal secretions collected with sterile
polyester swabs and feces collected in sterile fecal cups should
be chilled and transported to the diagnostic lab (95, 144). From
live calves with acute respiratory disease, tracheobronchial lavage
fluids that were previously shown to be positive for BCoV antigen
by ELISA can be aspirated (145).

The acute transient nature of enteric BCoV infections in
younger calves and seronegative cattle necessitates sample
collection at disease onset or shortly thereafter. However,
persistent or long-term intermittent shedding has been reported
in recovered or healthy cattle, respectively (59, 60, 146). Due to
the stress of shipping and comingling of animals from different
sources, the peak of BCoV nasal (or fecal) shedding associated
with BRDC infections occurs within 1 week after arrival to the
feedlot (89–91, 95).

BCoV infection can be diagnosed by detection of virus,
viral antigen, or viral RNA in tissues, or various animal
secretions/excretions. Comprehensive diagnosis includes virus
detection in nasal secretions, lung homogenates or feces, and
virus isolation in HRT-18 cells during the acute phase and/or
detection of BCoV-binding or virus neutralizing (VN) antibodies
in the convalescent phase (27, 89, 93, 144, 147).

Immunofluorescent/immunohistochemical staining with
hyperimmune antiserum or MAbs to BCoV is performed for
viral antigen detection in respiratory (trachea, lung) or intestinal
(ileum, colon) tissues (frozen or paraffin-embedded). Detection
of BCoV in nasal secretions or feces can be done using immune
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TABLE 3 | Bovine-like CoVs and antibodies (serum) identified in domestic and

wild ruminants.

Animal species Location Sample type References

Alpaca USA (Oklahoma) Feces (111)

Alpaca Peru Feces (112)

Alpaca Peru Intestinal lavage (113)

Caribou/reindeer Canada Serum (114)

Dromedary camel USA (Wisconsin) Feces (115)

Dromedary camel UAE (Dubai) Feces (116, 117)

Dromedary camel Saudi Arabia Nasal/rectal swab (118)

Elk/Wapiti Canada Feces (119)

Elk/Wapiti USA (Kansas) Feces (120)

Goat South Korea Serum (121)

Giraffe USA (Ohio) Feces (48)

Himalayan tahr South Korea Feces (122)

Llama, alpaca USA (Oregon) Feces (123, 124)

Musk oxen UK Feces (125)

Nyala South Korea Feces (122)

Sable antelope USA (Ohio) Feces (19)

Sambar deer USA (Ohio) Feces (19, 28)

Sheep USA (Idaho, Montana) Feces (126)

Sheep Chile Intestinal contents (127)

Sheep, goat Spain Feces (128)

Sheep, goat Turkey Intestinal contents (129)

Sheep Sweden Serum (130)

Sika deer Japan Serum (131)

Sitatunga UK Feces (125)

Sitatunga South Korea Feces (122)

Water buck UK Feces (125)

Waterbuck USA (Ohio) Feces (82)

Water buffalo Bulgaria Serum (132)

Water buffalo Egypt Feces (133)

Water buffalo Egypt Feces (134)

Water buffalo Egypt Feces (135)

Water buffalo Italy Feces—intestinal

contents

(136, 137)

Water buffalo Bangladesh Feces (138)

Water deer South Korea Nasal swabs (139)

White-tailed deer USA (Ohio) Feces (19)

Wood bison Canada Serum (140)

Wisent South Korea Feces (122)

Yak China Feces (141)

electron microscopy, which has the advantage of detecting other
viruses, but its sensitivity is relatively low (59, 82). BCoV antigens
are commonly detected by ELISA using BCoV MAbs which can
be used for fast and reliable analysis of large sample numbers.
RT-PCR, nested RT-PCR, real-time qRT-PCR (targeting most
conserved genomic regions—-ORF1ab or N gene) are the
most sensitive assays currently available for BCoV detection
(45, 146, 148). For fecal samples, internal controls or additional
sample dilution may be needed to detect interference by PCR
inhibitors (149).

Antibodies to BCoV in serum, nasal secretions, or feces
can be quantitated in ELISA [overall or isotype-specific
antibodies (IgM, IgA, IgG1, and IgG2)] or using VN or HI
tests that measure functional neutralizing or hemagglutinating
antibodies, respectively (34, 150, 151). Because BCoV antibodies
are widespread in cattle, paired acute and convalescent
serum samples are needed for serologic diagnosis of BCoV
infections (26).

IMMUNITY, VACCINES, AND OTHER
PREVENTION STRATEGIES

The correlates of immune protection against BCoV infections
remain poorly defined. In multiple studies the BCoV-binding,
neutralizing and HI antibody levels in serum of naturally
infected calves or cattle on arrival in feedlots were correlated
with protection against enteric or respiratory disease (including
pneumonia), or BCoV shedding (27, 91, 94, 95, 98, 151–
153). Inoculation of gnotobiotic or colostrum-deprived calves
with CD, WD, or respiratory BCoV strains induced complete
protection against diarrhea following challenge with a CD strain
(43, 45). However, whether the serum antibodies themselves
confer protection against BCoV or they only reflect previous
BCoV exposure is uncertain and requires further investigation.
Limited data from some epidemiologic studies of BRDC
infections in cattle suggest that BCoV serum antibody levels
may be a marker for respiratory protection (26). So, Lin et al.
demonstrated that cattle shedding respiratory BCoV at the start
of the epizootic of BRDC/pneumonia had low levels of VN
and HI antibodies, whereas cattle with high levels of antibodies
against the HE and S viral glycoproteins remained negative for
respiratory BCoV (151, 152). Furthermore, the levels of VN,
HI and IgM, IgG1, and IgG2-BCoV antibody levels in serum
were highly correlated with protection against respiratory BCoV
infection. Finally, in cattle with fatal respiratory BCoV infections,
only IgM antibody responses were detected. However, a recent
longitudinal study demonstrated that BCoV serum antibody
levels did not correlate with the incidence of BRDC or BCoV
shedding (107).

Optimal vaccines against pneumoenteric mucosal pathogens
should be delivered to and be effective at both sites of virus
replication (respiratory and intestinal tracts) to provide optimal
protection. Also, most vaccines against mucosal pathogens
fail to induce sterilizing immunity or to prevent subsequent
reinfections, as observed for natural or experimental BCoV
infections (45, 59). Thus, the goal of vaccination is to confer
broad protection against the severe enteric/respiratory disease
that may lead to mortality and requires treatments. These
objectives may be best accomplished by vaccinating calves on
farms prior to shipping to auction barns or feedlots because
BCoV infections occurring at feedlots necessitate rapid onset
of protective immune responses. In support of this hypothesis,
a recent study demonstrated that IN vaccination of feedlot
calves with a modified live-BCoV calf vaccine on entry to
a feedlot reduced the risk of treatment for BRDC in calves
(99). These data confirm the results of experimental challenge
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studies of calves confirming cross-protection among BCoV
strains of distinct clinical origin. Another recent study from
Uruguay demonstrated that maternal vaccination against BCoV
reduced BCoV shedding in their calves (154). Further studies
are needed to determine whether inclusion of a mixture of
CD/WD/BRDC strains could be an optimal strategy to develop
a single broad-spectrum BCoV vaccine effective against BCoV
infections associated with distinct clinical syndromes (26).

While several licensed modified live vaccines against BCoV
are currently available (Bovilis, Merck/PBS Animal Health;
Guardian, Merck; Calf-Guard, ScourGuard 4KC and BoviShield
Gold 5, Zoetis; CattleWin BC, KyotoBiken Laboratories, Kyoto,
Japan), observational data or field studies evaluating their
protective efficacy against CD/WD remain scarce, while some
of studies suggest they induce poor protection against BRDC
viruses (155). Additionally, most studies evaluating candidate
BCoV vaccines report on their safety and immunogenicity but
not protective efficacy (156–159).

The ubiquitous nature of BCoV infections, lack of
comprehensive data on vaccine efficacy, short duration of
post-vaccine mucosal immunity, immunological immaturity
of calves, and potential interference by maternal antibodies
represent some of the existing challenges that likely contributed
to the lack of optimal protective effects against BRDC and
BCoV diarrheal disease. Moreover, the complexity of vaccine
management (the need to target variable age groups of cattle,
production status, newly arriving animals, etc.) and suboptimal
cost-benefit ratio of vaccine use suggest that alternative control
and prevention strategies need to be evaluated and employed.
So far, Norway is the only country that has been implementing

a joint biosecurity control program for BCoV and BRSV
since 2016 (160). This program has the goal of reducing the
occurrence of BCoV on a herd level by implementing strict
biosecurity measures and financial reward system for compliant
farmers/industries, while vaccination is not part of this program.
The efficacy of such approach remains to be determined.

CONCLUDING REMARKS

An overview of the existing data suggests that additional
research is needed to understand the basic mechanisms of BCoV
respiratory and enteric disease pathogenesis and the variables
and interactions between viral, host and environmental factors
that exacerbate disease or can lead to enhanced shedding and
transmission. Further additional extensive research is needed
to identify correlates of immune protection and attributes
required to generate effective vaccines/regimens that can prevent
severe disease and limit virus spread. The limited knowledge of
the mechanisms that regulate BCoV interspecies transmission
and determine broad host ranges warrants further research.
Finally, continuous investigation is needed to better understand
the ecology of bovine-like CoVs present in wildlife reservoirs
(including wild ruminants or other susceptible species) or the
threats they represent for public or animal health.
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