
ORIGINAL RESEARCH
published: 07 December 2021

doi: 10.3389/fvets.2021.645517

Frontiers in Veterinary Science | www.frontiersin.org 1 December 2021 | Volume 8 | Article 645517

Edited by:

Catherine Elizabeth Stalin,

University of Glasgow,

United Kingdom

Reviewed by:

Michael Wilson,

University of California, San Francisco,

United States

Marc Vandevelde,

University of Bern, Switzerland

*Correspondence:

Jasmin Nicole Nessler

jasmin.nessler@tiho-hannover.de

Specialty section:

This article was submitted to

Veterinary Neurology and

Neurosurgery,

a section of the journal

Frontiers in Veterinary Science

Received: 23 December 2020

Accepted: 15 November 2021

Published: 07 December 2021

Citation:

Nessler JN, Jo WK, Osterhaus ADME,

Ludlow M and Tipold A (2021) Canine

Meningoencephalitis of Unknown

Origin—The Search for Infectious

Agents in the Cerebrospinal Fluid via

Deep Sequencing.

Front. Vet. Sci. 8:645517.

doi: 10.3389/fvets.2021.645517

Canine Meningoencephalitis of
Unknown Origin—The Search for
Infectious Agents in the
Cerebrospinal Fluid via Deep
Sequencing

Jasmin Nicole Nessler 1*, Wendy Karen Jo 2, Albert D. M. E. Osterhaus 2, Martin Ludlow 2

and Andrea Tipold 1

1Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany,
2 Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany

Meningoencephalitis of unknown origin (MUO) describes a group of

meningoencephalitides in dogs with a hitherto unknown trigger. An infectious agent

has been suggested as one possible trigger of MUO but has not been proven so far.

A relatively new method to screen for viral RNA or DNA is next-generation sequencing

(NGS) or deep sequencing. In this study, a metagenomics analysis of the virome in

a sample is analyzed and scanned for known or unknown viruses. We examined

fresh-frozen CSF of 6 dogs with MUO via NGS using a modified sequence-independent,

single-primer amplification protocol to detect a possible infectious trigger. Analysis

of sequencing reads obtained from the six CSF samples showed no evidence of a

virus infection. The inability to detect a viral trigger which could be implicated in the

development of MUO in the examined population of European dogs, suggests that the

current techniques are not sufficiently sensitive to identify a possible virus infection, that

the virus is already eliminated at the time-point of disease outbreak, the trigger might be

non-infectious or that there is no external trigger responsible for initiating MUO in dogs.

Keywords: dog, meningoencephalitis of unknown origin, inflammatory, brain, immune-mediated, unknown

etiology

INTRODUCTION

Meningoencephalomyelitis without detectable infectious etiology is a well-known disease entity
in dogs (1, 2). Several terms have been used for these inflammatory diseases of the central
nervous system (CNS) (3). The most recent nomenclature uses the term “meningoencephalitis
of unknown origin” (MUO) (4). Investigations of MUO cases via histopathologic examinations,
immunohistochemistry (IHC), or polymerase chain reaction (PCR) have failed to provide
conclusive evidence on the identity of a pathogen which may trigger the disease (5–9). Today’s
knowledge allows several interpretations: MUO might be a primary immune-mediated entity or
alternatively a multifactorial disease in which an infectious agent or other trigger induces an
inflammatory response according to the “hit and run principle” (10). This principle describes
a phenomenon, in which the primary pathogen is no longer detectable, when clinical signs are
recognized. Alternatively, the pathogen is novel and thus is difficult to identify using conventional
techniques (5). In such circumstances, the use of advanced techniques for virus discovery may
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present a promising way to identify hitherto unknown infectious
agents associated withMUO. Next-generation sequencing (NGS)
has revolutionized the rate and breadth of virus discovery (11).
This technique enables to sequence a mixture of genetic material
and reveals with high sensitivity so far unknown or incomplete
viral deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)
in a host (11). Recently NGS was used to search for candidate
infectious agents in a subpopulation of North American dogs
(12) with MUO without success. Viruses might have a specific
geographic distribution (13) which might differ between North
America and Europe.

The hypothesis should be examined that an infectious agent
triggers MUO. Therefore, we report in this study a metagenomics
analysis of the virome present in cerebrospinal fluid (CSF)
samples from a European subpopulation of dogs with clinically
suspected MUO in an acute stage of the disease or with acute
relapse of clinical signs. In this early stage of the disease the
possibility is enhanced that the etiological agent of this condition
might be detectable. Identification of virus specifically associated
with the development of MUO would greatly enhance our
understanding of the pathogenesis of this disease, which could
facilitate the development of a specific therapy or strategies to
prevent the onset of MUO.

MATERIALS AND METHODS

Case Evaluation and Sample Collection
Dogs included in this study were client owned patients of the
Department for Small Animal Medicine and Surgery of the
University of Veterinary Medicine, Hannover, Germany. All
dogs were clinically investigated by at least one Resident or
Diplomate of the European College of Veterinary Neurology
(ECVN). Further diagnostic examinations were performed with
informed written owner’s consent. MRI examination (3.0 T
MRI scanner Achieva, Philips Medical Systems, Best, The
Netherlands) and suboccipital CSF collection was performed
in general anesthesia (premedication: diazepam 0.5 mg/kg
intravenously (i.v.), levomethadone with fenpipramide 0.1 mg/kg
i.v. (L-Polamivet R©, MSD Tiergesundheit, Unterschleißheim,
Germany), induction of anesthesia: propofol dose to effect 1–
4 mg/kg i.v., orotracheally intubation and connection to a
semiclosed circle absorber system [Anesthesia ventilator, Cato R©,
Dräger, Germany), maintenance of anesthesia: isoflurane in an
oxygen/air mixture (1:1, flow 50 ml/kg/min)].

Diagnosis of MUO Cases
MUO was diagnosed based on criteria outlined by Granger et al.
(4) including described clinical signs and magnetic resonance
imaging (MRI) appearance as well as breed predisposition (14)
and negative testing for infectious agents commonly found in
the region of Northern Germany. PCR of CSF samples and
serum antibodies for canine distemper virus, Toxoplasma gondii
and Neospora caninum (Laboklin, Bad Kissingen, Germany)
had to be negative for a case to be included within this
study (4).

Preparation of Samples for Next
Generation Sequencing
CSF samples obtained from animals with suspected MUO
were frozen at −80◦C within 2 h after sampling and then
used for NGS analysis using a modified sequence-independent,
single-primer amplification protocol as described previously
(15, 16). Briefly, three freeze/thaw/homogenization cycles were
performed on 75–200 µl of CSF from each animal to disrupt
any cells present in the samples. After centrifugation (12,000 g
for 5min at 4◦C) and filtering (0.45µm) RNA and DNA were
extracted with TRIzol (Thermo Fischer Scientific, Waltham,
Massachusetts, USA) and QIAamp DNA mini-Kit (Qiagen,
Hilden, Germany), respectively. During the extraction of RNA
from samples using TRIzol, we carefully remove the colorless
upper aqueous phase which contains RNAwithout disturbing the
interface and lower phase where DNA is present, to reduce the
amount of decontamination background DNA. RNA was reverse
transcribed to complementary DNA (cDNA) with a mixture
of random and non-ribosomal hexamers using Superscript IV
(Thermo Fischer Scientific, Waltham, Massachusetts, USA).
Second-strand cDNA synthesis was performed on DNA samples

and newly synthesized cDNA samples using 3
′
-5

′
Klenow DNA

polymerase (2.5U) (NEB, Ipswich, Massachusetts, USA) with
the resulting dsDNA mixed at a 1:1 concentration. Random
amplification of samples was performed using Taq polymerase
(Thermo Fisher Scientific) as previously described (17) with only
non-ribosomal hexamers. PCR products digested at 37◦C for 1 h
with EcoRV (NEB). The restriction enzyme was inactivated at
80◦C for 20min and digested PCR products were purified using
a QIAquick PCR purification kit (Qiagen). A DNA library was
constructed using the NexteraXT protocol (Illumina, San Diego,
CA) with NGS performed on an Illumina MiSeq system using
MiSeq Reagent kit V3 (300 × 2 cycles; Illumina, San Diego,
California, USA). An additional quality control step involved
exclusion of any viral sequencing reads which aligned to external
samples from this study, which were processed and sequenced on
the same MiSeq lane. Raw reads were screened for the presence
of viral pathogens using IDseq (v3.5) Portal (https://idseq.net),
a cloud-based, open-source bioinformatics platform designed
for rapid identification of pathogens in metagenomics data, as
described previously (18, 19). In brief, host reads, duplicates
and lowquality reads are excluded via an algorithm. Non-host
reads are than aligned to NCBI nucleotide and protein database
(18, 19).

RESULTS

Six dogs with clinically suspected MUO were included in this
study (Table 1). Diagnosis of MUO was made based on standard
criteria: Clinical signs were in accordance with an intracranial
focal to multifocal lesion. MRI showed multifocal intraaxial
lesions with no to minimal mass effect in the white and/or gray
matter of the cerebrum, cerebellum and/or brainstem (6/6). In
most dogs (5/6) minimal to moderate contrast enhancement
was seen. In 4/6 dog’s CSF pathological changes as increased
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TABLE 1 | Clinical details of canine patients with clinical suspected meningoencephalitis of unknown origin.

No. Breed Age

(years)*

Gender Duration of clinical

signs before

presentation

Neuro-localization MRI CSF

Cell count (/3µl#)

differentiation

Protein

(mg/dl)

1 Small

munsterlander

2 fn Progressive over 3

months

Forebrain Multifocal subcortical white

matter, contrast+

28

mononuclear

127

2 Airedale terrier 5 fn Progressive over 1

week

Forebrain Multifocal subcortical white

matter, contrast+

0 49

3 Yorkshire terrier 3 mn Progressive over 2

weeks

Multifocal intracranial Multifocal subcortical white

matter, contrast+

8

mixed

54

4 Yorkshire terrier 9 f Progressive over 2

weeks

Multifocal intracranial Multifocal subcortical white

matter, contrast+

5

Mononuclear

48

5 Biewer yorkshire

terrier

2 mn Progressive over 2

weeks

Multifocal intracranial Subcortical white matter,

brainstem, cerebellum,

contrast+

1

Np

13

6 Yorkshire terrier 5 m Chronic over since 2

years, acute

deterioration

Multifocal intracranial Multifocal cortical gray matter,

thalamus, generalized brain

atrophy, contrast-

4

Np

14

*Rounded; #counted with Fuchs-Rosenthal-chamber; mn, male neutered; fn, female neutered; f, female; m, male; MRI, magnetic resonance imaging; contrast+ contrast enhancing

lesions; contrast-, non-contrast enhancing lesions; CSF, cerebrospinal fluid; mixed, mixed cell population of neutrophils and mononuclear cells; np, cell differentiation was not performed.

TABLE 2 | Overview of samples used for next generation sequencing analysis.

No. CSF volume (µl) DNA yield (ng/µl) No. of total reads Passed QC1 (%) No. of reads2 Viruses detected3

1 150 0.048813 2,741,706 75.98 1,640,976 · Propionibacterium virus ATCC29399BC (442 reads)

· Pepino mosaic virus (116 reads)

2 250 0.053985 2,135,708 66.87 574,390 · Carrot cryptic virus (14 reads)

3 250 0.047843 2,778,556 72.05 871,482 · Pa6virus (550 reads)

· Streptococcus phage IPP16 (76 reads)

· Spodoptera frugiperda granulovirus (2 reads)

4 75 0.049244 1,458,200 55.37 336,931 –

5 75 0.048705 2,244,666 65.29 534,895 · Acinetobacter phage Acj61 (214 reads)

6 200 0.049136 2,189,290 75.29 584,093 · Acinetobacter phage Acj61 (210 reads)

1passed quality control (QC) percentage represents the proportion of reads that passed sequence quality thresholds; 2the number of original sequencing reads that are sent to

downstream analysis after host and quality filtering; 3only reads with an alignment length ≥30bp are shown.

cell count and/or protein content were visible (Table 2). Results
implied an inflammatory brain disease. Testing for standard
infectious agents were negative. Raw sequencing reads obtained
from NGS performed on RNA and DNA samples extracted from
six CSF samples were analyzed using IDseq. The number of
reads which passed host filtering and quality control ranged from
336,931 to 1,640,976 (Table 2). An additional quality control
step involved exclusion of any viral sequencing reads which
aligned to external samples from this study which were processed
and sequenced on the same MiSeq lane. Upon completion of
the quality control steps, no sequencing reads specific to viral
pathogens known to infect mammals could be detected in the
MUO CSF samples (Table 2).

DISCUSSION

MUO is an umbrella term describing inflammatory changes of
the CNS with suspected non-infectious etiology (4). Thus, far,

no infectious agents have been detected as a potential trigger
for the exacerbating immune response using histopathological
or immunohistochemical techniques, virus isolation or PCR (5–
9). The dilemma is that absence of evidence is not evidence
of absence. Immunohistochemistry or PCR can only detect
pathogens, where a specific knowledge about the presumed
pathogen is present (20). In the current study, a novel non-
specific viral detection technique was applied, which was already
successfully used for metagenomic investigations in human CSF
(21–23) and various veterinary samples (24–26): Sensitivity and
specificity of NGS in human CSF sample was 95 and 96%,
respectively (21).

NGS sequencing discovers viral DNA or RNA without
requiring any prior knowledge (27) of specific viruses. With
this technique, for example Batai Virus Encephalitis in Harbor
Seals was detected in brain parenchyma (25). In dogs with
MUO an US-American research group examined fresh samples
of brain parenchyma and CSF of affected and unaffected
control dogs as well as various positive control samples with
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NGS. They detected occasional DNA or RNA of Pseudomonas,
Streptococcus, Staphylococcus species and bacteriophages, but
no consistent and specific candidate in cases of MUO
(25). Here, no specification about chronicity of MUO was
made (12).

One of the major dilemmas is the diagnosis of MUO.
MUO includes several subtypes of meningoencephalomyelitis:
granulomatous meningoencephalomyelitis (GME), necrotizing
leukencephalitis (NLE) and necrotizing meningoencephalitis
(NME) are the subtypes most frequently described (2–6).
Although these entities clinically can often be distinguished
by typically affected breed, age of onset and affected brain
area as well as appearance in MRI and CSF cell count,
some research suggests, that overlaps might exist (2, 4, 14,
28). Therefore, some authors suggests to use the term MUO
if no histopathological examination was performed (4). In
addition, the clinical diagnosis of MUO is a diagnosis of
exclusion, when the following results are found: (a) the clinical
examination suggests a focal or multifocal intracranial lesion;
(b) diagnostic imaging reveals a multifocal to diffuse intra-axial
lesion, preferably with contrast enhancement; (c) pleocytosis
and increased protein is evident in the CSF and (d) endemic
infectious diseases are excluded (2–9, 14). Nevertheless, normal
CSF findings are possible in dogs with MUO (4). According
to the current state of knowledge, histopathology after brain
biopsy is necessary to finally confirm the disease. Without such
a diagnostic tool MUO remains a presumptive diagnosis (4).
However, brain biopsy is highly invasive and often permission of
the patient’s owner is missing.

Distinct triggers might be involved in the pathogenesis of
the different MUO subtypes. Searching such a trigger in a
homogenous population of MUO subtypes might be helpful,
but was not successful as previously published (2, 4, 8).
Therefore, the present study used a different approach. The goal
was to pilot a search method for infectious agents screening
CSF samples of several subtypes of MUO based on clinical
presumptive diagnosis to depict heterogeneous presentation of
MUO in a clinical setting. Using this heterogeneous group
of dogs should increase the likelihood to find an infectious
trigger in one of the subtypes. In case of positive findings
results could have been confirmed by sampling probes from
a homogenous population evaluating one subtype of MUO.
The CSF samples were taken at an acute stage of the disease
or at the time point of acute relapse of clinical signs, where
the odds are high, that the infectious agent might still
be detectable.

In the CSF samples, a high percentage of non-host reads
were found. It is known that in clinical samples such as CSF
which contain very little biomass, the primers over-amplify
very small quantities of contaminants and therefore increase
the proportion of irrelevant contaminates in the final dataset
(29). To reduce background contamination pretreatment with
deoxyribonuclease might be used (30). But this might reduce the
chance to find DNA virus sequences (30). Therefore, the present
study used othermethods to decrease background contamination
that incorporated the use of non-ribosomal hexamers (16) and

specific sample processing technique. Bioinformatic processing
was performed via IDseq, which represents a new gold standard
for optimized screening of NGS data for known and unknown
viral pathogens (18, 19). IDseq has been used previously to
successfully identified pathogens in CSF samples (21). Of the
sequencing reads with an alignment length ≥30bp, only DNA or
RNA of bacteriophages or plant or insect viruses were identified
in the current study (31–37). Although a connection between
unspecific immune response in humans with positive stool
samples for a pepper associated virus has been suggested (38),
it is largely presumed that plant and insect viruses do not cause
clinical signs in mammals (39). Therefor the viruses found in
the CSF samples are interpreted as background contamination
and are hence considered clinically irrelevant (40). Therefore, no
evidence of novel or known viral pathogens with the potential
to infect mammals was found following analysis of sequencing
reads in this study obtained from samples of European dogs. This
complements a previous metagenomics study that also failed to
identify possible triggering pathogens in samples obtained from
North American dogs with MUO (12).

Although the CSF samples in the current study did not
contain viral RNA or DNAwhich could be associated withMUO,
negative NGS results cannot exclude an infectious etiology.
An infectious pathogen, which was potentially involved in
initiating the inflammation, could have been largely eliminated
by the immune system without impeding the inflammatory host
response [“hit and run”-theory (9, 41)]. NGS of samples from
dogs with acute or renewed flare-up of inflammation might
still offer the best chance to detect the pathogen, before it is
eliminated by the immune system. The evaluation of CSF samples
using NGS increases the chances of detecting any RNA or DNA
of a candidate virus associated with MUO. In human medicine
search for DNA of infectious agents in CSF via NGS has a
sensitivity of 73% and a specificity of 99% (42), but the optimal
protocol for NGS is dependent on the pathogen (43). Therefor
the diagnostic yield might be lower for certain viruses with the
protocol described herein.

Summarizing, we could not confirm the hypothesis that
MUO might be caused by an infectious trigger. Nevertheless,
our current state of knowledge of MUO is suggestive of
a multifactorial etiology, including an underlying genetic
susceptibility and involving an additional unknown external
trigger (44). The possibility remains that the trigger might not
be an infectious agent but another environmental noxa. In
several dog breeds, such as Pug Dogs, Maltese, and Chihuahua,
a genetic defect in DLA-II is known to increase the risk
of developing MUO (45, 46). The use of novel technologies
used to identify the etiology of possible pathogens associated
with neurological disease in humans via identification of virus-
specific antibodies in CSF, may also be of value in the field
of veterinary medicine in investigations of disease syndromes
such as MUO. The search for the origins of MUO will
in future require increased cross-disciplinary investigations to
determine the contributions of a postulated pathogen and the
host immune response in determining the pathogenesis of
this disease.
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