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Despite considerable efforts to control bovine mastitis and explain its causes, it remains

the most costly and common disease of dairy cattle worldwide. The role and impact

of non-aureus staphylococci (NAS) in udder health are not entirely understood. These

Gram-positive bacteria have become the most frequently isolated group of bacteria in

milk samples of dairy cows and are associated with (mild) clinical and subclinical mastitis.

Different species and strains of NAS differ in their epidemiology, pathogenicity, virulence,

ecology and host adaptation, and antimicrobial resistance profiles. They have distinct

relationships with the microbiome composition of the udder andmay also have protective

effects against other mastitis pathogens. Some appear to persist on the skin and in the

teat canal and udder, while others seem to be transient residents of the udder from the

environment. Analyzing genotypic and phenotypic differences in individual species may

also hold clues to why some appear more successful than others in colonizing the udder.

Understanding species-level interactions within the microbiome and its interactions with

host genetics will clarify the role of NAS in bovine mastitis and udder health.
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INTRODUCTION

Staphylococci can be subdivided into two groups, coagulase-positive and coagulase-negative,
based on their ability to clot rabbit plasma, a key diagnostic step in clinical microbiology
laboratories. Staphylococcal coagulase is an extracellular protein encoded by the coa gene.
Staphylococcus coagulase-associated clotting involves formation of a coagulase-prothrombin
complex that recognizes fibrinogen as a substrate and directly converts it into fibrin. Coagulase
secretion is a key virulence strategy in pathogenesis and persistence of staphylococcal diseases (1)
and has often been used to distinguish S. aureus from other staphylococci (2). In the context of
bovine mastitis, staphylococci were historically classified into two groups: one that included S.
aureus, considered more pathogenic and thus a “major pathogen,” and a second including other
staphylococci that were lumped together as “minor pathogens” and termed the coagulase-negative
staphylococci (CNS).
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Another classification scheme adopted in more recent mastitis
literature involves grouping all staphylococci other than S. aureus
into a single category, non-aureus staphylococci (NAS). Some
coagulase-positive and coagulase-variable mastitis pathogens
(e.g., Staphylococcus hyicus and Staphylococcus agnetis) were
also often included in the coagulase-negative category. In
addition, coagulase-negative variants of S. aureus are known
to exist, some of which can have similar pathogenicity to
their coagulase-positive variants (3). Some S. aureus isolates of
bovine origin react negatively to the standard coagulase test
and are PCR-negative for the coa gene (4, 5). Additionally,
the von Willebrand factor-binding protein exhibits coagulating
ability, resulting in S. aureus producing two proteins that
coagulate plasma (6). In a study analyzing the distribution of
virulence factor genes among isolates belonging to 25 NAS
species of bovine origin, the corresponding gene for the von
Willebrand factor-binding protein, vWbp was detected in S.
agnetis, S. hyicus, and S. chromogenes (7). Because the term
coagulase-negative staphylococci, based on the ability of proteins
to cause coagulation as a diagnostic test, may result in ambiguity
in the context of mastitis, non-aureus staphylococci (NAS)
provides a better term to classify pathogens associated with
bovine mastitis by providing a clear dichotomy between S. aureus
and the other staphylococcal species. Furthermore, NAS are often
considered pathogens of lesser importance in dairy production
(so-called minor pathogens), especially compared to S. aureus,
some streptococci and some coliforms (8). However, in most
studies they have been the most frequently isolated bacteria from
udder quarters with subclinical mastitis (SCM) (9) and their
ability to cause clinical mastitis (CM) cannot be understated.
Approximately 20% of milk samples collected on Canadian
dairy farms were NAS-positive and the prevalence of NAS in
quarters with a somatic cell count (SCC) < 200,000 cells/mL,
oftentimes regarded as healthy udder quarters, was ∼43% (10,
11), suggesting at least some can be considered commensals (12).
In a Canada-wide clinical mastitis (CM) study (13), NAS were
isolated from 10.7% of culture-positive samples, whereas in a CM
study from Wisconsin (14), 6.1% of isolates were NAS. In two
Belgian studies 5 and 12% quarters with CM, respectively, were
NAS-positive (15, 16). Other studies in the US and Belgium also
concluded that NAS are the principal cause of IMI on modern
dairy farms (17, 18). Prevalence of IMI with NAS is especially
high in virgin and first lactation heifers (18–24). In addition, it
has been argued that modern mastitis control programs, which
focus onmajor udder pathogens (and are apparently less effective
against minor pathogens such as NAS), may have contributed
to marked increases in prevalence of IMI due to NAS (23, 25).
On dairy farms implementing modern mastitis control practices,
the prevalence of major pathogen IMI has decreased resulting in
a lower bulk tank SCC. NAS IMI have become relatively more
important and are considered the leading cause of SCM (23).

NAS do not seem to be the main cause of mastitis in
herds with significant milk quality problems (Table 1); yet, in
herds with low bulk tank SCC, NAS IMIs contribute to a
substantial proportion of the bulk tank SCC (8). However, a
recent longitudinal study demonstrated that NAS IMI early in
lactation results in only a small but significant increase of SCC

(24), and other studies demonstrated that when compared to
non-infected quarters, NAS-infected quarters did not generally
have reduced milk production (26, 27). While their effect on
milk yield at the whole cow level has no negative impact (28),
NAS-infected heifers out-produced non-infected counterparts,
presumably due to a lower incidence of CM (29, 30). One
study reported a positive correlation of S. caprae with milk
yield in goats, further suggesting that NAS IMI may have
a positive effect in early lactation on milk yield (31, 32)
yet cows with SCM produced milk of poorer quality (2).
Elucidating factors to better understand the role of NAS in IMI
(Table 1) may lead to more effective prevention and control
measures of SCM.

SPECIES DISTRIBUTION AND DIVERSITY

Staphylococci have been isolated frommany animal species. Very
few of these NAS species (e.g., S. hyicus, S. pseudointermedius,
S. arlettae, S. felis, S. equorum, S. delphini, and S. caprae)
demonstrate a level of host specificity (32–37). NAS are very
prevalent in bovine IMI, especially in dairy heifers (38, 39).
In fact, 53 different species are recognized in the genus
Staphylococcus, 23 of which have been isolated from a Canadian
collection of > 5,000 bovine milk samples (9). Twenty-five
species were identified from 300 samples in another study (40),
whereas in a smaller study only 10 species were found from 105
NAS isolates (41).

In order to understand the variety of NAS species isolated
from milk, it is important to clearly determine phylogenetic
relationships among species (Figure 1). Previously, this
relationship was determined through construction of a
phylogenetic tree based on 16S rDNA sequences of 42 NAS
isolates (42). More recently, the genomes of over 400 bovine
isolates were sequenced and several methods were applied to
understand evolution and relationships between species (e.g.,
based on core protein set, entire genomes, SNPs). As a result,
5 main clades were identified, each with a varying number of
species (43). Construction of a phylogenetic tree based on whole
genome sequencing provided a highly reliable classification of
bovine NAS species. Earlier studies using single gene sequencing
revealed contradicting phylogenies when compared to each
other, failing to show true evolutionary histories and speciation
of Staphylococcus. By dividing bovine NAS species into 5 distinct
clades, shared biological properties among related species such
as virulence and host specificity can be better characterized.
These properties will provide the basis for studies on the role
and significance of individual and related NAS species for udder
health, as there is also diversity within species isolated from
different body sites on the same animal (44).

The diversity of NAS species begs the question of why somany
Staphylococcus species can be isolated from bovine milk samples
(Table 1). It is unclear if all NAS species fill the same niche
and are therefore interchangeable; whether they are all unique
in their interactions with the udder, or whether synergisms
exist among species or strains. There are reasons to believe
that a bacterial species only evolves to adapt to a certain niche
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TABLE 1 | Knowledge gaps in understanding the role of NAS on udder health.

Section Knowledge gaps

Species distribution and diversity • Interactions between individual NAS (e.g., synergistic) in the udder

• Interactions between individual NAS and the udder

• Acquired genes giving the ability to colonize and persist in udders and on teat apices

Dominant NAS species • Factors that underlie success of certain NAS as colonizers and the most prevalent species such as S. chromogenes

Impact of NAS on inflammation • Potential strain differences and factors of NAS species that provoke inflammation

Virulence and host association • Association between virulence genes and disease severity

• The role of capsular genes in NAS virulence

• Correlation between capsular genotype/phenotype and biofilm formation

• Biofilm production and its association with pathogenicity of S. chromogenes and other NAS species

• Elucidating the role of specific virulence factors (e.g., β-hemolysins) for S. chromogenes and other NAS species

• Tracking evolutionary history of NAS species in the context of virulence genes

Antimicrobial resistance • Clarifying if NAS species represent a reservoir of AMR genes for major mastitis pathogens

• Possibility of new resistance mechanisms in NAS species

• Characterization of intrinsic AMR mechanisms

• Correlation between co-resistance profiles of NAS species and its effect on udder health

Niche adaptation and host association • Classification of NAS species as commensal microbiota or opportunistic or obligate pathogens

Interactions within the udder microbiome • Causes of NAS being disruptors of the udder microbiome

• Role of bacteriocins produced by NAS species in modulating the udder microbiome

• Clarifying if NAS species IMI increase susceptibility to major pathogens or, on the contrary, prevent them from infecting

the udder

• Characterizing the host genetic component and its relationship to NAS colonization

Understanding how mastitis control

measures influence NAS incidence and

prevalence

• Further evaluation of the associations among mastitis control measures and incidence and prevalence of mastitis

caused by different NAS species

and that every mutation in every gene needs to provide an
advantage to bemaintained. Following that reasoning, every NAS
species, each with roughly 2.4Mb genomes and many thousands
genetic polymorphisms, must have vastly different behaviors.
Besides, each species has a large pan genome, suggesting large
strain differences within species. Analysis of NAS by Pulsed
Field Gel Electrophoresis (PFGE) has demonstrated that diversity
exists within species with respect to persistence and SCC in
corresponding milk samples (45), and between isolates of the
same species isolated from different body sites (44). This diversity
suggests important differences in virulence and host adaptation
genes, differences in gene expression between species, and
differences in interactions with other microbes. Importantly, the
identification methods and study designs in previous literature
may have influenced these results. Two phenotypic tests (API
Staph ID 32 and Staph-Zym) were shown to be inaccurate in
species identification from bovine milk samples, and genotypic
methods were shown to have higher type ability and accuracy
in the identification of bovine NAS (46, 47). API Staph has
been shown to have moderate to low performance in goat
NAS identification as well (48). Moreover, biases in biochemical
testing developed for human NAS should be considered in
the context of characterizing species diversity and prevalence
of bovine NAS as genotypic methods are considered more
accurate than biochemical galleries (47). Additional large-scale
longitudinal studies are needed to provide insight into how
both strain and evolutionary differences affect prevalence and
distribution of NAS species causing IMI, and the resulting impact
on udder health. MALDI-TOF is an accurate technique in this
regard, able to correctly identify almost all NAS isolates at the

species-level, as long as the library is updated with relevant field
isolates and strains from new species (49–51).

The ability of different NAS species to persist and colonize
different niches may be due to acquired genes which confer
selective advantages in their respective environment. For
example, several factors, such as surface proteins, biofilm
resistance genes, and phenol-soluble modulin peptides, increased
the ability of S. epidermidis to persist in blood isolates obtained
from newborn humans (52). Recently, the molecular relationship
was determined between S. agnetis isolates from cattle and
chickens. The chicken isolates were closely related to cattle
isolates and clustered together, indicating a common ancestor
and possibly a single jump from cattle to chickens (53). However,
no unique virulence genes were identified in a hypervirulent
chicken isolate, resulting in the speculation of small alterations
in virulence associated factors.

STAPHYLOCOCCUS CHROMOGENES:
THE DOMINANT NAS SPECIES

In a Canada-wide study, 50% of NAS isolates were S. chromogenes
(Table 2). This NAS species had the highest prevalence in IMI
of any bacteria in milk samples of cattle with SCM (and either
a low or high SCC) (9, 38). Staphylococcus chromogenes was
also the most prevalent species in a US study (55) and Belgian
studies (56). In Canada, S. chromogenes also has the highest
(of any NAS) prevalence in CM (as well in high or low SCC
quarters). Of all NAS species, S. chromogenes (followed by S.
epidermidis, and S. simulans)-positive milk samples had the
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FIGURE 1 | Phylogenetic tree of NAS species based on whole genome sequences, indicating major clades. Copied from Naushad et al. (43).

highest SCC (23, 60–62). S. chromogenes IMI is associated with
higher SCC and is considered an important species in quarters
with a high SCC, persistent cases and CM (38, 45, 61, 63). It was
also reported that S. chromogenes is responsible for significantly

increased SCC in cows with persistent SCM (64), as well as for
greater inflammatory responses and more pronounced clinical
signs (65). NAS also play a major role in small ruminant mastitis.
One study found that SCC increase was three times higher in
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TABLE 2 | Overview of the top 3 most frequently isolated non-aureus

staphylococci species in various countries from cows having subclinical or clinical

mastitis.

Country Top 3 species Prevalence (%) Reference(s)

Canada S. chromogenes

S. simulans

S. xylosus

49

17

12

(9)

Belgium S. equorum

S. haemolyticus

S. epidermidis

34

13

9

(40)

Finland S. chromogenes

S. simulans

S. warneri

49

23

5

(54)

The Netherlands S. chromogenes

S. epidermidis

S. capitis

30

13

11

(23)

United States of

America

S. chromogenes

S. haemolyticus

S. simulans

48

18

7

(55)

Belgium S. chromogenes

S. sciuri

S. cohnii

41

13

11

(56)

China S. arlettae

S. sciuri

S. xylosus

12

12

12

(57)

Poland S. warneri

S. chromogenes

S. xylosus

37

33

23

(58)

Argentina S. chromogenes

S. haemolyticus

S. warneri

47

32

7

(59)

Belgium S. chromogenes

S. haemolyticus

S. equorum

10

9

7

(16)

Belgium S. chromogenes

S. xylosus

S. vitulinus

29

9

9

(27)

Quarter milk samples were examined in each study, apart from one which used bulk tank

samples (40). Samples were considered NAS-positive according to the National Mastitis

Council guidelines, in addition to genotypic characterization of species.

small ruminant NAS than in bovine NAS IMI, and another
reported an elicited immune response in goats after inoculation
with S. chromogenes (66–68). This suggests that either the host
immune response or differences in NAS must be taken into
account when discussing bacterial virulence and commensalism.

Interestingly, S. chromogenes is most frequently isolated from
milk and skin (69), but not from other environmental sources,
suggesting that it is likely host-adapted (49, 62, 70–72). Literature
suggests that this species is largely isolated from samples of
bovine origin, although it can be isolated from the milk of
other dairy ruminants including goats and dairy buffalo (73).
According to Taponen et al. (54), 55% of S. chromogenes persisted
throughout lactation, while Fry et al. (45) showed persistence
based on PFGE. Another study reported the average duration
of IMI caused by S. chromogenes to be ∼40 days longer than
that of other species (28). Additionally, 45% IMI caused by S.
chromogeneswas shown to persist over at least two sampling days,

compared to only 9.8% of other species persisting for that long
(28). The average duration of S. chromogenes IMI was reported
to be 150 d in another study (63). Moreover, infection by one
S. chromogenes genotype, followed by recovery, then re-infection
with a different S. chromogenes genotype may be misclassified
as a chronic S. chromogenes IMI in the absence of strain-typing
data. Although PFGE-based strain-typing of the first and last
IMI isolates in a series from the same quarter (45) indicated
persistence, the duration of S. chromogenes IMI and all other NAS
species may therefore be overestimated by studies that have not
included a strain-typing method.

OTHER PREVALENT NAS SPECIES IN
DIFFERENT GEOGRAPHICAL REGIONS

Following S. chromogenes, the most frequently identified NAS
are S. simulans, S. xylosus, S. haemolyticus, and S. epidermidis.
While there are some regional differences in overall prevalence
(Table 2), these species are consistently isolated from the udder
and milk samples. In contrast, the other NAS species together
represent<10% of the NAS isolates. While it might be concluded
that regional and environmental differences affect the prevalence
and distribution of individual NAS species (Table 2), it is also
reasonable to conclude that species distribution is most likely
impacted by herd management (69). Hence, regional differences
are perhaps more impacted by the nature of the studied herds
than geography. These findings suggest that additional studies are
needed to better characterize these influences.

Interestingly, some Staphylococcus species are infrequently
isolated from milk, e.g., S. rostri was isolated in one study from
feces (16, 74). NAS species which can be isolated from other sites
on the cow, but not from milk or the exterior of the udder might
provide an opportunity to help clarify which genes allow NAS to
either infect or colonize the udder.

ASSOCIATION OF IMI AND UDDER
INFLAMMATION FOR DIFFERENT
NAS SPECIES

Host-pathogen interactions for many mastitis pathogens has not
been well-established because of the complex interactions in vivo,
and much of the evidence derived from the interactions of S.
aureus with its host. It is of great interest to determine whether
all NAS species provoke inflammation and increases in SCC.
Most studies, evaluating the associations between mammary
inflammation (e.g., SCC) and presence of NAS in milk samples
have been observational. Some conflicting information on effect
of NAS IMI on udder health (8, 63, 69) and the impact on
milk yield (26, 29) exists within literature. Large scale studies
using 16S, rpoB sequencing (9) and MALDI (50, 75) are targeting
these questions. Interestingly, when comparing the prevalence
of individual NAS species between milk samples with low SCC
(<200,000 cells/mL) or high SCC (≥200,000 cells/mL), all species
had higher prevalence in the latter, suggesting that NAS provoke
some inflammatory response (38). In addition to an increase
in SCC, NAS IMI was shown to have elicited host immune
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responses, an important consideration is the role of NAS in
modulating these responses, as they may offer cross-protection
against other mastitis pathogens (64, 65, 76, 77).

Few studies have evaluated NAS species and their influence
on udder inflammation in experimental intramammary challenge
trials (76, 77). Based on these studies, it was demonstrated
that intramammary challenge with S. chromogenes stimulated
an inflammatory response and that a strain previously isolated
from an IMI was more inflammatory than a teat apex strain.
Furthermore, while S. fleurettii could be isolated from milk of
experimentally infected udder quarters and was associated with
an increase in SCC, the strain was cleared from milk within
12 h (76). Hence, more data are needed to truly understand
the relationship between IMI and udder inflammation in the
context of NAS.

VIRULENCE AND HOST ASSOCIATION

In one study, the virulence potential of each Staphylococcus
species and the profile of all Virulence Factors (VFs) were
determined by defining a species-specific VF gene set from each
species and analyzing variation within them (7). Virulence genes
may explain why some species are more successful at colonizing
and surviving within the udder, and products of such genes are
considered VFs (7). The phylogenetic distribution, sharing and
evolution of VFs can reveal how these different species evolved
(7). Accordingly, if some NAS are commensals, a question of
interest would be whether they individually became commensals
or if they evolved from a common commensal ancestor. If
the latter is true, they would have become more aggressive in
claiming niches by accumulating VFs, leading to their evolution
into a different species (7).

The distribution of 191 VFs and their possible associations
with pathogenesis in 25 NAS species were determined along with
the relationship between VFs and udder health (high SCC and
signs of CM) (7). The overall number of VFs was not associated
with disease severity. This confirmed data from another study
in which virulence gene profile or accumulation of virulence
genes did not predict the type of mastitis (SCM or CM) or the
severity of inflammation (78). In one study, more severe disease
outcomes were correlated with increasing numbers of toxin and
host immune evasion genes (7). Although the effects of individual
VFs have been analyzed (Table 3), these findings suggest that
development of disease and interactions of VFs with the host
are complex and determined by interplay of genes rather than
just presence of specific virulence genes. Interactions of VFs
expressed by these genes with the host could also depend on
the specific staphylococcal species. Some NAS strains associated
with mastitis had varying proportions of virulence genes, and
biofilm formation genes were only detected in a small percentage
of examined species (58). The contribution of virulence genes
on disease outcomes or development can also be affected by
intrinsic factors (within the udder) or extrinsic factors (in the
cow’s environment) that influence gene expression. The latter is
likely influenced by factors such as herd management, climatic
conditions, and geographic location. One study using NAS

isolates from a single Chinese herd reported lower prevalence
of exotoxin and biofilm-associated genes compared to previous
studies (57). These findings suggest the need for additional
studies on presence or absence of these genes, and further
gene expression studies to resolve which are associated with
disease severity. The lack of expression studies prevents us from
understanding associations between specific NAS species and
NAS IMI, as well as which genetic elements are responsible for
differences in prevalence and distribution among NAS species.
Additionally, molecular characterization resistance and virulence
factors have also been conducted for small ruminant NAS (66).
While there may be opportunities to learn from these studies,
an important consideration is the potentially different host-
pathogen interactions between cattle and small ruminants.

Analyses of the distribution of 191 VFs in 441 genomes of
25 NAS species by t-Distributed Stochastic Neighbor Embedding
(T-SNE), a method to visualize high-dimensional datasets,
demonstrated that all species studied can be defined as separate
and homogenous bacteria (7) because of clear clustering by
species (Figure 2). Virulence potential was also associated with
the different phylogenetic clades. These findings suggest that
virulence potential developed gradually during evolution into
distinct species. This is in contrast to the possibility that some
species acquired several virulence factors relatively suddenly,
turning them into somewhat more virulent pathogens or more
adapted commensals.

As discussed above, it is unclear what mechanisms enable S.
chromogenes to be themost prevalent organism in bovinemastitis
(and successful in causing persistent IMI and SCM). In-depth
studies on genomes of 440 NAS isolates determined that closely
related S. chromogenes, S. agnetis, and S. hyicus had the highest
virulence potential (i.e., number of virulence genes), largely due
to exotoxin, host evasion and capsular genes, of all NAS (82).
However, S. chromogenes (∼50% of NAS isolates) did not differ
greatly in VF profile from the closely related species S. agnetis
(<0.5% of NAS isolates) and S. hyicus (<0.1% of NAS isolates)
(9). The lack of clear differences in detected virulence genes
between S. chromogenes and the other Clade B NAS, despite the
large differences in species distribution, suggest that an unknown
mechanism is at play which makes S. chromogenes the most
frequently isolated species in NAS IMI.

Interestingly, in the T-SNE plot (Figure 2), S. chromogenes is
the only species split into 2 populations with respect to virulence
genes, with a minority of the strains clustering with other
members of the clade B, while the majority of the S. chromogenes
strains have a distinct profile. An important caveat is that more
S. chromogenes isolates were included in this study than other
species, but it is tempting to speculate that the larger population
of S. chromogenesmight represent a pathotype that has adapted to
the udder. Additional evidence for this was presented in a study
demonstrating that S. chromogenes isolated from a chronic IMI
had greater ability to adhere to bovine mammary epithelial cells
compared to a strain isolated from the teat apex (83). Another
study compared a S. fleurettii strain isolated from sawdust
bedding and a S. chromogenes strain from a persistent IMI; the
latter strain persisted longer after experimental inoculation into
the udder (76). If true, the finding needs to be confirmed with
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TABLE 3 | Summary of virulence factors and their related genes that were detected in several NAS species, as well as the relationship between these genes and

pathogenesis in the context of NAS IMI.

Virulence factors (related genes) Associations of virulence factors with pathogenesis of NAS Reference(s)

Methicillin-resistance and biofilm-related

genes (mecA, eno)

• Isolates from clinical mastitis cases had a significantly higher presence of methicillin-resistant

(mecA) genes (21 out of 43 isolates)

• All 43 isolates tested positive for the presence of the biofilm-related gene, eno

(16)

Intracellular adhesin (icaA/B/C) • In human-associated NAS, it is a genetic determinant for biofilm formation

• Presence of icaA was associated with greater biofilm formation in bovine NAS species. Almost

half the isolates tested positive for this gene

(7, 79, 80)

Iron-regulated surface determinant

(isdA/B/C/I)

• IsdI the most frequently distributed gene among NAS species in a Canadian study

• Every NAS isolate contained at least one gene related to iron uptake and metabolism

• Staphylococci require iron to replicate and persist in infections

(7)

Hemolysin (hla/b/d) • Hemolysins lysed erythrocytes of cattle, sheep, and goats

• β-hemolysin (hlb) was the most frequent gene in NAS isolates in a Canadian study

• In Iran, bovine NAS isolates primarily produced δ-hemolysin (hld)

(7, 81)

Phenol-soluble modulins (PSMβ1/2/3/4) • Lysis of red and white blood cells, linked to biofilm formation and stimulation of inflammatory

responses

• β-type PSMs were associated with bovine NAS isolates in a Canadian study

(7)

a larger number of strains, as this might hold clues about why S.
chromogenes has become the dominant NAS species isolated from
milk of dairy cattle.

No clear difference was present between the two S.
chromogenes populations with respect to severity of mastitis
(Figure 2B). The subsequent sections will analyze how virulence
factors may explain why S. chromogenes is the only species that
diverges into two distinct populations. It is also important to note
that other reasons may include differences in AMR profiles, host
adaptation, interactions with host genetics and interactions with
the microbiome.

In some S. chromogenes isolates capsular genes from the
larger VF-based cluster are missing (7), which seems to be
one factor that causes the population split in this species. In
S. aureus, expression of these genes results in formation of a
polysaccharide capsule that helps resist phagocytic cell uptake,
thus playing a role in evasion of the host immune response
(84). However, there is conflicting evidence on the associations
between capsule genes and overall virulence of Staphylococcus
species. In one study, presence of these genes and formation
of polysaccharide capsules enhanced S. aureus virulence in a
murine model, but decreased virulence of S. aureuswhen causing
IMI (7). Based on a strong association between the amount
of biofilm formed and the capsular genotype and phenotype,
these factors may be important to virulence of S. aureus and
its ability to persist in chronic IMIs. In a Canadian study,
biofilm formation had no effect on disease severity (79). However,
it has been suggested that biofilms increase the ability of
NAS to persist in the mammary environment (79, 80). When
analyzing S. aureus isolates in vitro, isolates which harbored
genes coding for capsule type 5 (cap5) formed more biofilm
and produced a thinner capsular polysaccharide layer than
those with genes coding for capsule type 8 (cap8) (85). S.
chromogenes isolates had cap5 but cap8 was not present (78).
Additional in vivo testing is needed to better characterize the
associations between pathogenicity and biofilm production in
S. chromogenes.

Conversely, the absence of these capsular genes increased both
intracellular survival rates as well as invasion rates of S. aureus
(86). Persistence of this pathogen in an infected host has been
linked to the loss of capsular polysaccharide 5 and 8 (CP5/8). This
was confirmed in a murine model where isogenic acapsulated
mutants persisted for a longer period of time and in higher
numbers when compared to their capsulated counterparts (87).
In clinical studies, human patients with chronic osteomyelitis had
a higher proportion of non-typeable (NT) S. aureus, compared to
those with acute osteomyelitis (87). NT strains are non-reactive
with antibodies to CP types 1, 2, 5, or 8 (87), and these isolates
from chronically infected hosts were shown to have conserved
their acapsulated phenotype over successive passages on artificial
media without reverting back to encapsulation (87). Isolates from
cows with SCM revealed that the proportion of non-typeable
(NT) S. aureus strains was 86% (88). These findings reveal that
ability to persist in chronic infections is strongly associated with
NT strains (i.e., acapsulated pathogens). With a majority of S.
chromogenes isolates lacking capsule genes, it may be of further
interest to study the relationship between acapsulation and the
persistence of S. chromogenes in IMI.

Other previously identified VFs associated with pathogenicity
of S. aureus have also been detected in NAS. β-hemolysin (hlb)
was the most frequent and predominant gene detected in S.
chromogenes isolates and other species of clade B (7). The hlb
gene was detected in all isolates in clade D3, while only a few of
the isolates in one clade E species carried this gene (7). Strains of
S. aureus isolated from bovine CM produced predominantly β-
hemolysin, in combination with other hemolysins (89). This was
confirmed in a study which found that 97% of S. aureus isolates
from Europe and the US either produced or were PCR-positive
for β-hemolysin (90). It was also determined that 45–90 CFU
of a β-hemolytic S. aureus strain could result in CM (89). These
findings suggest that β-hemolysins may play an important role in
the pathogenesis of mastitis caused by some strains of S. aureus
but that it is not the sole virulence factor that influences disease
severity. With almost all clade B isolates expressing the hlb gene
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FIGURE 2 | Visualization of 25 NAS species by t-Distributed Stochastic Neighbor Embedding (T-SNE) based on virulence gene content, demonstrating that each of

the NAS species is a discrete microorganism; the red circles indicate the distinctive split between S. chromogenes populations (A). Labeling of severity of mastitis of

the NAS isolates separated based on virulence genes (B). Modified from (7).

(7), it may be of interest to elucidate its role in the pathogenesis
of these species.

Adenosine synthase A was another S. aureus virulence gene
detected in S. chromogenes. Adenosine synthase A is an immune
evasion factor for S. aureus responsible for increasing the
overall abundance of extracellular adenosine, which may be
the most potent immuno-suppressive signaling molecule. This

factor is necessary for staphylococcal survival within neutrophils,
allowing S. aureus to escape bactericidal activity of leukocytes and
other host immune responses (91, 92).

In the same study analyzing VF genes, all NAS species
contained at least one gene from the iron-responsive surface
determinant (isd) operon (7). Staphylococci require iron to
replicate and sustain infections, and it was shown that the isdI
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gene, the most frequently distributed isd gene among all NAS
species in this study, is necessary for S. aureus pathogenesis
(7). Similarly, most NAS species contained β-type phenol-
soluble modulins (PSMs), which have been considered major
determinants of S. aureus virulence (7). Phenol-soluble modulins
have multiple roles in staphylococcal pathogenesis, causing lysis
in red and white blood cells, contributing to biofilm development
and stimulation of inflammatory responses (93) (Table 3). The
numerous studies above have studied the roles of these VFs in
the pathogenesis of S. aureus. Perhaps elucidating their role in
pathogenesis of S. chromogenes in future studies may explain
its dominance in bovine mastitis and persistence in the udder
(Table 3).

A correlation was observed between the average SCC of milk
samples from which specific NAS species were isolated and the
number of exoenzyme, host evasion and iron uptake genes these
species carried (7, 9). These virulence genes might hold the key to
why certain NAS species provoke somewhat more inflammation
than others. Absence of these virulence genes may result in NAS
species becoming more host adapted or even commensal. This
is somewhat illustrated by S. chromogenes, which is considered
a host-adapted NAS, and has moderate numbers of exoenzyme,
host evasion and iron uptake genes. Furthermore, interesting
associations were found between virulence genes identified
in NAS, with striking differences in the strength of these
associations between isolates that caused low SCC and CM
isolates (7).

ANTIMICROBIAL RESISTANCE

The high prevalence of S. chromogenes relative to other NAS
species is likely multifactorial. Antimicrobial resistance (AMR)
might be one explanation for the predominance of a single
species of Staphylococcus associated with the udder, but based on
available data this does not seem to be the case. S. chromogenes
have relatively low phenotypic and genotypic prevalence of
AMR when compared to other NAS species isolated from the
udder (82). Another study demonstrated that S. epidermidis had
increased resistance rates against penicillin when compared to S.
chromogenes (94). Additionally, researchers reported presence of
β-lactamase in S. chromogenes is relatively low when compared to
either S. haemolyticus or S. epidermidis (61).

In Canada, higher numbers of AMR genes, with a strong
correlation between AMR genotype and phenotype, were
identified in NAS rather than S. aureus originating from the
same dairy herds (10, 82). This is in agreement with previous
reports where S. aureus isolated from SCM and CM cases were
less resistant than NAS against commonly used antimicrobials
(60, 75, 95, 96). In addition, studies have demonstrated that
NAS could serve as reservoirs for AMR genes for major mastitis
pathogens including S. aureus (97, 98).

A study (60) investigated the association between AMR and
antimicrobial use in NAS. An association was present when
penicillins, third-generation cephalosporins or macrolides were
administered systemically, but not when antimicrobials were
administered via the intrauterine and intramammary route

(99). It was hypothesized that antimicrobials administered
systemically for conditions other than mastitis, if partitioning
to the udder, could cause prolonged bacterial exposure to sub-
therapeutic antimicrobial concentrations in the udder. Similarly,
one study suggested that increasing systemic administration
resulted in a decrease of antimicrobial susceptibility of NAS
to β-lactams, as opposed to intramammary treatment of
SCM. Systemic administration was expressed as antimicrobial
treatment incidence, with units of the number of defined daily
doses animal used per 1,000 cow-days (100). In addition, there is
a higher likelihood of NAS being present in the udder compared
S. aureus, which would therefore result in an increased window
of exposure of NAS to antimicrobials used in dairy herds.

Methicillin-resistant NAS were an important reservoir of
AMR and virulence genes in a Belgian study (98). Most
cases saw an association between presence of AMR genes and
phenotypic resistance, and only a few cases had a negative
correlation between presence of AMR genes and resistance. This
study also identified some isolates which did not carry any
of the investigated AMR genes yet still displayed a non-wild
type (epidemiologically resistant) phenotype (98). Staphylococcus
sciuri appeared resistant to fusidic acid but this phenotype
was not correlated to any of the known fusidic acid resistance
genes (98) (Table 4). In a Swiss study (98) in vitro phenotypic
resistance to several antimicrobials such as erythromycin,
clindamycin and streptomycin was not explained by the presence
of any tested genes (102), suggesting development of new
resistance mechanisms. Previous studies have also characterized
associations between resistance determinants and AMR in NAS.
These include β-lactam resistance being associated with blaZ and
mecA genes, and chloramphenicol resistance having a correlation
with the FexA transporter. Daptomycin resistance was explained
by the presence of the mprF gene, whereas tetK and tetL
genes were associated with tetracycline resistance (82). Even
though bovine NAS isolates may acquire resistance to these
antimicrobials, it has been suggested through phenotypic AMR
patterns that intrinsic mechanisms of AMR may be present
for a subset of NAS species as well (82). It is worth noting
that many of these antimicrobials are not labeled for use in
lactating dairy cows. For example in North America and Europe
chloramphenicol is illegal for use in food-producing animals,
suggesting the absence of selective pressures.

A study in Portugal characterized the AMR profile of
methicillin-resistant staphylococci (MRS) isolates from bovine
SCM and CM cases, identifying 9.3% of isolates as being MRS
and associated with the mecA virulence gene (101). Despite the
low percentage of MRS detected, the majority of isolates still
had a multi-resistance profile (101) (Table 4). This study, in
addition to a Swedish one (61), revealed that AMR and virulence
gene profiles are species dependent. The Swedish study revealed
that the prevalence of β-lactamase varied among NAS species
and was more common in isolates originating from SCM cases
than from CM cases (61). β-lactamase is the most common
resistance mechanism in staphylococci, and while the prevalence
was high in S. epidermis and S. haemolyticus, there was little
to no detection in S. chromogenes and S. simulans (61). In this
study, S. chromogenes and S. epidermis were the most commonly
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TABLE 4 | Summary of antimicrobial resistance profiles and prevalence of single gene resistance determinants of frequently isolated NAS species across several studies.

Species Antimicrobial resistance profilea Resistance determinants (% prevalence of determinant) References

Acquired Intrinsic

S. lentus PEN, KAN, STR, TET, CHL, TMP, FUS tetK (23), tetM (10), tetL

(14), fexA (32)

–

S. sciuri PEN, FOX, GEN, KAN, STR, ERY, CLI,

SYN, TET, CHL, TMP, FUS

tetK (5), tetL (25), fexA (5) – (98)

S. epidermidis PEN, FOX, GEN, KAN, STR, ERY, CLI, TET,

CHL, TMP, FUS

tetK (45), tetL (9), fexA (27) –

S. epidermidis NA, ERY, KAN, GEN, TOB – –

S. simulans NA, ERY, STR, CLI – – (101)

S. haemolyticus NA, SXT – –

S. chromogenes NA, TET – –

S. chromogenes PEN, OXA, STR, TET, ERY blaZ (72), mecA (2) –

S. epidermidis PEN, OXA STR, TET, ERY blaZ (48), mecA (4) – (94)

S. xylosus PEN, OXA, STR, ERY blaZ (87) –

S. chromogenes PEN, OXA, TET, STR, ERY, CLI, CHL,

KANA, GEN, TRM

– –

S. xylosus PEN, OXA, TET, ERY, CLI, CHL, GEN – – (102)

S. sciuri OXA, TET, STR, CLI, KAN, GEN, TRM – –

S. chromogenes CHL, TET, CLI, PNV, PIR, ERY, AMP, PEN blaZ (10), tet38 (100), tetK

(2), tetL (3),

NorA (100), Sav1866 (100),

S. simulans CHL, TET, PIR, ERY, PEN, MDR tetK (3), tetL (3), tetM (3) norA (100), Sav1886 (100). (82)

S. xylosus CHL, TET, CLI, PIR, ERY, AMP, PEN, MDR msrA (14), tetK (19) norA (100), norB (100),

sav1886 (100)

S. arlettae – – blaARL (103)

Isolates from bovine milk diagnosed with clinical and subclinical mastitis were used in all studies with the exception of the first study which used nasal swab samples collected from

veal calves.
aMulti-drug resistant profiles are not included. NA, nalidixic acid; ERY, erythromycin; KAN, kanamycin; GEN, gentamicin; TOB, tobramycin; STR, streptomycin; SXT, sulphamethoxazole-

trimethoprim; TET, tetracycline’; PEN, penicillin; CLI, clindamycin; CHL, chloramphenicol; TRM, trimethoprim; FUS, fusidic acid; FOX; OXA, oxacillin; PIR, pirlimycin.

isolated species in SCM cases (61). In a Dutch study, 70% of
S. epidermis isolates and 18% of S. chromogenes isolates were
resistant to penicillin (94) (Table 4), suggesting that a high
prevalence of penicillin resistance in SCMwas associated with the
high prevalence of S. epidermis (61). These findings confirm the
existence of inter-species variation in AMR profiles, emphasizing
the need to continue monitoring co-resistance profiles among
NAS populations associated with bovine mastitis cases. Coupled
with the possible development of resistance mechanisms
not associated with previously characterized virulence genes,
additional studies analyzing AMR in NAS are needed alongside
the characterization of bovine NAS specific clinical antimicrobial
susceptibility breakpoints, as this presents a challenge in treating
bovine mastitis cases.

NICHE ADAPTATION AND HOST
ASSOCIATION

NAS prevalence and distribution is impacted by many
environmental and management factors such as geographic
region, climate, water sources, access to pasture, barn type,
bedding and host factors (parity, quarter location, antibiotic
use). In this context, it is useful to determine the natural habitat

of different NAS species. This defines whether they should be
considered as environmental or host-adapted pathogens. This
also relates to their commensal nature and their level of host
adaptation to the skin, teat canal and/or udder.

Host adaptation relates to colonization and persistence of
isolates as well as the level of inflammation caused. Adaptation
can be quite specific, demonstrated by the fact that species and
frequency of isolation of NAS differs between teat canal and milk
samples (104). Some studies find the most predominant NAS
species, S. chromogenes and S. xylosus, to be equally ubiquitous
in CM, SCM, skin, and environment (61, 75). These two species
are also more frequently associated with persistent IMI and
SCM compared to other NAS species (55). Other studies report
differences in distribution and in genotypes between milk, udder
and environment (60, 105). In contrast, molecular epidemiology
studies demonstrate that S. haemolyticus, S. fleurettii, and S.
equorum are predominantly environmental species (55, 105).

It was clearly demonstrated that some NAS species are
more associated with IMI than with environmental (e.g., parlor-
associated) niches (105). Interestingly, S. chromogenes is almost
uniquely associated with IMI and not found in the environment
of the dairy cow. Unpublished data from Walpole et al.
comparing isolates identified in milk vs. body sites, failed to
detect S. chromogenes a single time on other body sites of dairy
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cattle, whereas it was by far the most frequently isolated species
from IMI. In contrast, Adkins et al. (44) isolated S. chromogenes
from pre-partum mammary secretions, milk, the inguinal region
skin, teat skin muzzle, and perineum of peripartum dairy heifers.
Hence, these data demonstrate likely adaption to niches on the
cow which seems to underpin its success as an IMI organism.
Similar data have been reported for S. aureus, another host-
adapted udder pathogen (106).

A recent longitudinal study, identified 4 udder-adapted
NAS species, 2 of which were considered persistent and
some demonstrated characteristics of contagious pathogens
(S. chromogenes and S. simulans) (55). Contagious transmission
routes for S. chromogenes and S. simulans seem plausible
from this study, possibly in addition to environmental
transmission patterns.

INTERACTIONS WITHIN THE
MICROBIOME

Knowledge is emerging that an udder microbiome exists that
is distributed over the milk, milk ducts, cistern, teat canal,
teat apex and teat skin, where staphylococci seem to play an
important role (12). Previous literature used the NMC procedure
to define NAS-positive samples (Figure 2), importantly at the
time of publication, the National Mastitis Council (NMC) did
not publish guidelines for classifying quarters as infected or
not in the context of clinical diagnosis for IMI (107). Another
consideration is that culture-independent genotypic methods
have only been implemented during the past decade for use
in IMI diagnosis (108). The bovine milk microbiome in both
culture-based and DNA-based methods has proven to be more
complex than expected, with the role of different species in milk
samples—either as pathogens, commensals, or contaminants—
being essential in assessing the analyses (108). Currently, the best
definition of IMI is offered Dohoo et al. (107), but even these
criteria can be open to interpretation. S. chromogenes is one of
the organisms most negatively influencing the microbiome of the
udder based on the observation that it has the most negative
connections with other members of the milk microbiota. These
negative connections presumably reduce diversity and therefore
microbiome stability (109). A similar negative effect was observed
for S. xylosus. In general, staphylococci are negatively correlated
with Shannon and Simpson indices of diversity (109). Conflicting
evidence exists on whether or not they are disruptors of the
normal milk microbiome (12, 109). The negative interactions
might be due to indirect mechanisms that involve the host, such
as the induction of immune responses, or may be due to other
genera in the microbiome that are overshadowed by NAS.

Direct mechanisms, including the production of antimicrobial
factors such as bacteriocins, may also result in negative
correlation between S. chromogenes and other members of the
milk microbiota. NAS produce many of these bacteriocins with
capacity to inhibit the growth of mostly Gram-positive bacteria
but also some with potential to inhibit Gram-negatives (110).
A Belgian study found that 38 of 254 NAS isolates displayed
bacteriocin-like activity, and that 7 of these strains displayed

activity against at least one major pathogen associated with
bovine mastitis (111). Interestingly, the bacteriocin produced by
an inhibitory S. chromogenes strain used in this study (nukacin
L217) inhibited the growth of all mastitis-causing pathogens
tested (111). This bacteriocin may hold clues to the success
of S. chromogenes as an NAS species in IMI and its possibly
negative associations with major mastitis pathogens such as S.
aureus, as antibacterial production is often advantageous for
strain colonization in a certain niche (111). These findings are
mostly based on in vitro studies. It remains unclear if these
bacteriocins play an actual role in modulating the microbiota
inside the udder or on the skin, as in the Belgian study bacteriocin
production was abundant on growth agar medium but did not
grow in broth (111). Other species apart from S. chromogenes
also inhibit the growth of major mastitis pathogens. In a recent
study, cytoplasmic bacteriocins from S. epidermidis selectively
inhibited growth of S. aureus, including methicillin-resistant
strains (112). These studies suggest the need for additional in vivo
studies to determine how bacteriocins influence NAS species-
level interactions in the milk microbiome.

Previous studies have clearly established that co-infections
with other NAS and pathogens occur (113–115), yet there exists
conflicting evidence as to whether NAS increase susceptibility
to major pathogens such as S. aureus or prevent it from
colonizing the udder. Because major pathogens are generally
considered more virulent and damaging to the udder than
minor mastitis pathogens such as NAS, it would be of interest
to clarify what impact NAS has on major pathogens. Several
studies detailed analyses which concluded that NAS colonization
protected quarters against IMI bymajor pathogens (88, 116, 117),
whereas another reported that the presence of NAS was a risk
factor for acquiring S. aureus IMI (118). Interestingly, certain
strains of S. chromogenes can inhibit the in vitro growth of all
S. aureus, S. dysgalactiae, and S. uberis strains. The intensity
of inhibition varied amongst target species, with only 2 out of
10 S. chromogenes isolates showing consistent inhibitory activity
(117). A systematic review of the current literature revealed that
strong protective effects were observed in studies that had higher
underlying risks, as well as in challenge studies which introduced
major pathogens into the udder through the teat end (113).
Studies that used larger doses of challenge organisms and those
withmore stringent diagnostic criteria for pathogen IMI reported
reduced protective effects. Larger scale studies are needed to
resolve the existing conflicting evidence and better characterize
the association between NAS and major pathogens.

Interestingly, there also seems to be a host genetic component
to whether NAS are part of the milk microbiome. Two
main variants of the bovine antigen presenting major
histocompatibility complex protein Bola DrB3.2 strongly defined
what organisms are “accepted” to form the milk microbiome
(119). Each of the genetic variants seems to promote the presence
of different NAS species: S. equorum, S. gallinarum, S. sciuri,
and S. haemolyticus were enriched in microbiota of one of the
variants, whereas S. chromogenes was enriched within microbiota
of the second variant. These findings spark hypotheses related to
the predominance of S. chromogenes and the dichotomy between
“environmental” and “host adapted” NAS.
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FIGURE 3 | Conceptual discrimination of different non-aureus staphylococci

based on several factors. Displayed are the interaction with the udder

microbiome, host adaptation, and virulence potential.

CONCLUSIONS

To help improve our understanding as to whether NAS
species are commensals, opportunistic pathogens, or obligate
(minor) pathogens with respect to the udder, a framework
was conceptualized to categorize NAS based on different
discriminating factors (Figure 3). A first factor is the nature of
the interaction the NAS species has with the udder, ranging from
a commensal interaction to a pathogenic interaction. A second
factor is the strength and specialization behind this interaction,
from environmental organism to obligate symbiont. A third
factor is the impact of the NAS species on the milk microbiome
and on major mastitis pathogens. NAS make up a significant
fraction of the milk microbiome (109) and they also seem to
contribute to many of the predicted interactions between milk
microbiomemembers. This categorizationmight help in defining
which NAS dairy producers should consider more important
than others when designing control programs. Additional factors
could include antimicrobial resistance and compatibility with
host immune genetics and response.

Although many recent studies have focused on NAS at the
species level, many questions remain (Table 1). The true nature
of each NAS species has yet to be identified, either as commensals

or pathogens, or as environmental or contagious pathogens. The
effects of these interactions between NAS with the rest of the
milk microbiome as well as its associations with host genetics
and the immune response need to be elucidated. Interactions
in the milk microbiome may influence factors such as AMR or
virulence in NAS species, leading to their success as colonizers of
the udder. Further investigations into the role of NAS as an AMR
reservoir for major andminor pathogens are needed. In addition,
more data is needed to clarify if NAS truly prevent other mastitis
pathogens from colonizing or infecting the udder.

It will also be worthwhile to elucidate the reason for
dominance of S. chromogenes with the NAS in many parts
of the world. This is particularly important as it is unclear
if S. chromogenes should be considered beneficial or harmful.
Given S. chromogenes’ dominance as NAS and IMI commensal
or pathogen in general and its potentially positive or negative
impacts, it seems that new strategies to support or eliminate S.
chromogenes from the bovine udder would go a long way in
reducing the prevalence and impact of mastitis in dairy herds.
It should be determined which other NAS species have the
same impact as S. chromogenes, in addition to which species
require less or no attention, as NAS may represent a natural
mechanism to reduce IMI with (other) mastitis pathogens, which
could be implemented as an intervention method. It is also
important to focus on strain differences related to interactions
of NAS with the udder, as they may override differences at the
species level.

Finally, for herds that have successfully controlled other
mastitis pathogens, controlling cases of NAS CM and SCM
may be an important step in further lowering bulk milk SCC.
While much has been reported to help define the ecology and
epidemiology of these bacteria, a clear understanding of how
existing mastitis control practices can be applied or where new
control measures are needed to mitigate IMI is needed.
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