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Phosphorus is one of the essential mineral elements of animals that plays an important

role in animal growth and development, bone formation, energy metabolism, nucleic acid

synthesis, cell signal transduction, and blood acid–base balance. It has been established

that the Type IIb sodium-dependent phosphate cotransporters (NaPi-IIb) protein is the

major sodium-dependent phosphate (Pi) transporter, which plays an important role in

Pi uptake across the apical membrane of epithelial cells in the small intestine. Previous

studies have demonstrated that epidermal growth factor (EGF) is involved in regulating

intestinal Pi absorption. Here we summarize the effects of EGF on active Pi transport

of NaPi-IIb under different conditions. Under normal conditions, EGF inhibits the active

transport of Pi by inhibiting the expression of NaPi-IIb, while, under intestinal injury

condition, EGF promotes the active absorption of Pi through upregulating the expression

of NaPi-IIb. This review provides a reference for information about EGF-regulatory

functions in Pi absorption in the animal intestine.
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INTRODUCTION

Phosphorus is one of the most abundant elements in mammals involved in a variety of physiologic
processes in the form of inorganic phosphates (Pi), including cellular signaling, energy metabolism,
and nucleotide biosynthesis, and is an important component of cell membranes and bones (1–4).
As an important site for Pi absorption, the small intestine plays a crucial role in Pi homeostasis,
which accounts for more than 70% of the Pi absorption (5). It is well-known that intestinal Pi
absorption by the paracellular route, a non-hormonally-dependent process that occurs mainly
through the tight junctions by passive diffusion and the transcellular pathway, occurs through
sodium-dependent phosphate co-transporters present in the cell membrane (6–8). Previous studies
have demonstrated that active absorption of Pi is mediated by the sodium-dependent transport,
SLC34 families, and type II sodium dependent phosphate cotransporters (NaPi-II) (9, 10). NaPi-
IIb-mediated Pi transport across the epithelial apical membrane is the main form of Pi uptake in
the small intestine (5, 11). NaPi-IIb was first found in mice by Hilfiker in 1998 and confirmed that
NaPi-IIb was mainly expressed in the brush border membranes (BBMs) of intestinal epithelial cells
(12). Subsequently, researchers have cloned NaPi-IIb in human (13), rat (14), goat (15), chicken
(16), and pig (5) and conducted comprehensive studies on the factors affecting its expression in the
small intestine.
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Epidermal growth factor (EGF), a small mitogenic polypeptide
comprising 53 amino acid residues, has been established as a
trophic factor for the epithelial cell homeostasis (17, 18) and
nutrient transport in the small intestine (19–23). Previous studies
have reported that EGF inhibited the expression of NaPi-IIb
(24–27), which implied that EGF inhibited the active absorption
of Pi. However, EGF is known to induce repair of oxidative
damage of pig small intestinal epithelial cells stimulated by
lipopolysaccharide (LPS) (18). In theory, the process of the
intestinal barrier repair is accompanied by increased DNA
and RNA syntheses, which leads to increased phosphorus
absorption in intestinal epithelial cells since phosphorus is the
main element in nucleic acid synthesis. Our previous study
has confirmed that EGF can promote the expression of NaPi-
IIb in LPS-induced injured porcine intestinal epithelial cells
(IPEC-J2) and LPS-induced injured intestine of piglets (27). It
indicated that EGF could promote the active absorption of Pi
under stress condition. In this review, we mainly reviewed the
effect of EGF on Pi absorption and its possible mechanism,
to provide a theoretical basis for the application of EGF in
animal production.

THE SLC34 FAMILY

Pi homeostasis is regulated by the coordinated interplay of the
intestine, kidneys, and bones (28, 29). The intestine absorbs Pi
from the diet, kidneys reabsorb Pi from the primary urine filtrate,
and the bones serve as a Pi pool, where it can be deposited
as hydroxyapatite or released in case Pi supply is low (30).
There are two genetically distinct families of sodium-coupled co-
transporters that mediate transport of Pi in mammals, namely,
the SLC20 family comprises SLC20A1 (PiT-1) and SLC20A2
(PiT-2), and the SLC34 family comprises SLC34A1 (NaPi-IIa),
SLC34A2 (NaPi-IIb), and SLC34A3 (NaPi-IIc) (3, 12, 31, 32)
(Figure 1). PiT-1 is widely expressed in soft tissue, small intestine,
and bone. PiT-2 is widely expressed in soft tissue, small intestine,
bone, and kidney. NaPi-IIa and NaPi-IIc are mainly expressed
in the kidney, and NaPi-IIb is mainly expressed in the small
intestine (32). However, only the physiological roles of SLC34
proteins have been extensively investigated and characterized.

SLC34 family comprises three subtypes of phosphate
transporters (Table 1). NaPi-IIa is encoded by the SLC34A1
gene, mainly expressed in the BBM of renal proximal tubular
epithelial cells and is regulated by dietary Pi level, parathyroid
hormone (PTH) and fibroblast growth factor (FGF23) (31–34).
NaPi-IIc is encoded by the SLC34A3 gene, which is expressed
exclusively in the kidney (32, 34). The expression of NaPi-IIc is
related to age, with the highest level at weaning stage, and then
gradually decreases with age (35). The expression of NaPi-IIc
is regulated by dietary Pi level, PTH, and FGF23 too (31–34).
Previous studies have shown that NaPi-IIa and NaPi-IIc are
responsible for the renal reabsorption of Pi (31–35). Beck et
al. (36) found that the NaPi-IIa gene knockout (NaPi-IIa−/−)
mouse would lead to a reduced sodium-dependent phosphorus
reabsorption by about 70% in the kidney. NaPi-IIa−/− mice lead
to increased NaPi-IIc expression, which mediates about 30%

phosphorus uptake (35, 37). However, the mechanism of renal
Pi reabsorption regulated by NaPi-IIa and NaPi-IIc is different.
NaPi-IIa is electrically charged and has a Na+:Pi ratio of 3:1,
while NaPi-IIc is electrically neutral and has a Na+:Pi ratio of 3:1
(3, 31–35).

NaPi-IIb is encoded by the SLC34A2 gene, which widely
expressed in lung, testicles, mammary glands, liver, salivary
glands, thyroid, and small intestine, and the small intestine
is the major expression site (3, 5). Like to NaPi-IIa, NAPI-
IIb is also electrically charged and has a Na+:Pi ratio of
3:1 (3, 31–35). NaPi-IIb protein is thought to be the major
sodium-dependent Pi transporter protein, since its ablation in
mice abolishes Na+-dependent uptake of Pi (38, 39). NaPi-IIb
accounts for 90% of transcellular sodium-dependent transport
(38, 40, 41), which plays an important role in the intracellular
Pi accumulation and Pi homeostasis. The NaPi-IIb expression
in vivo is regulated by many physiological factors, including
dietary Pi level (1, 42), calcitonin (43), 1.25(OH)2VD3 (44,
45), corticosterone (46), estrogen (47), B-RAF (48), EGF (24–
27), and so on. Inhibition of intestinal NaPi-IIb expression
would lead to an increased fecal phosphorus excretion,
resulting in a waste of resources (30). Thus, investigating the
regulatory factors of NaPi-IIb deeply is critically important
for improving intestinal phosphorus utilization, decreasing
manure phosphorus excretion, and reducing environmental
pollution (43).

EGF AND PI ABSORPTION

Biological Function of EGF
Dr. Stanley Cohen first discovered EGF more than half a century
ago (49). It is a small mitogenic polypeptide comprising 53 amino
acid residues and three intramolecular disulfide bridges and
widely exists in saliva, milk, amniotic fluid, urine, plasma, and
intestinal fluid (17, 50). EGF is heat and acid stable and resistant
to proteases digestion due to its special chemical structure (51),
which allows its delivery to the gastrointestinal tract to exert
trophic effects and makes it possible to be used in animal
feed. The biological functions of EGF are mediated through
binding to its receptor, EGF receptor (EGFR), a transmembrane
glycoprotein, abundantly located on the apical and basolateral
aspect of villus enterocytes (17, 52, 53). EGFR belongs to the
transmembrane receptor tyrosine kinase of the ErbB family,
with a molecular weight of 170 kDa consisting of a single
polypeptide chain (54). The binding of EGF at the enterocytes
surface induces dimerization of EGFR, which results in the
activation of receptor tyrosine kinase (RTK) and RTK auto-
phosphorylation, and subsequent activation of various signal
transduction pathways, including mitogen-activated protein
kinase (MAPK) (55), phosphoinositol 3 kinase (PI3K) (56),
nuclear factor erythroid 2-related factor 2/ Kelch-like ECH-
associated protein 1 (Nrf2/Keap1) (18), and mammalian target
of rapamycin protein (mTOR) (57). Previous studies have
demonstrated that EGF has many biological functions, including
promoting intestinal repair (18) and nutrient absorption (23, 58,
59).
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FIGURE 1 | The main organs and transporters involved in inorganic phosphate (Pi) homeostasis. Pi homeostasis is regulated by the coordinated interplay of intestine,

kidneys, and bones, and two families of sodium-coupled cotransporters, the SLC20 family (PiT-1, PiT-2) and the SLC34 family (NaPi-IIa, NaPi-IIb, and NaPi-IIc),

involved in Pi absorption.

TABLE 1 | The characteristics of SLC34 protein family.

Gene Protein Substrates Na+: Pi

stoichiometry

Electrically

charged

Main tissue

distribution

SLC34A1 NaPi-IIa HPO4
2− 3:1 + Kidney

SLC34A2 NaPi-IIb HPO4
2− 3:1 + Small intestine

SLC34A3 NaPi-IIc HPO4
2− 2:1 − Kidney

“+” means electrically charged, “−” means electrically neutral.

EGF Inhibits Active Transport of Pi Under
Normal Conditions
Phosphorus is an essential element for the growth and
development of animals. An important physiological regulator
of Pi absorption is EGF, which acts through modulation of
NaPi cotransporter activity (24–27, 60, 61). Early studies in rats
(60) and opossum kidney cells (61) showed that EGF inhibited
renal Pi uptake by modulating NaPi-IIa cotransporter protein
and mRNA levels. In intestine, previous studies have confirmed
that EGF also was an important physiological regulator of Pi
absorption (24–27). The study in rat and human CACO2 cells
from Xu et al. (24) showed that EGF significantly inhibited the
expression of NaPi-IIb gene. Consistent with Xu et al. (24), our
previous study also found that EGF downregulated NaPi-IIb
expression in IPEC-J2 cells (26), indicating the loss of active
transcellular transport of Pi in the small intestine. This suggested
that, under normal conditions, EGF inhibited the active transport

of Pi. However, the inhibition of NaPi-IIb expression would not
affect the Pi homeostasis, because the intestinal Pi absorption
is the consequence of transcellular transport plus paracellular
absorption (62, 63). Passive absorption through the paracellular
pathway may contribute to being an alternative transport
pathway to supply enough Pi for the body when a sufficient
gradient of Pi is established across the epithelium (30, 63).
Additionally, the compensatory mechanism of increased renal
reabsorption can also result in a normal plasma Pi (30).
The phenomenon of EGF promotes cell proliferation (18, 64–
67) and to some extent can also demonstrate that EGF can
promote phosphorus uptake. This because, in theory, during
cell proliferation, more phosphorus is needed to meet the
demand of DNA and RNA syntheses, but through a paracellular
pathway or activation of renal compensatory mechanisms, rather
than through the active transcellular transport of Pi mediated
by NaPi-IIb.

The Mechanism of EGF on NaPi-IIb
Expression Regulation
EGF, as a growth hormone, plays an important role inmodulating
intestinal Pi absorption. Xu et al. (24) reported that EGF
affected NaPi-IIb gene expression by inhibiting transcriptional
activation in CACO2 cells. Further study indicated that EGF
downregulated NaPi-IIb gene expression is through regulating
the binding of transcription factor c-myb and NaPi-IIb gene
promoter. The EGF response region was located in the promoter
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between −784 and −729 base pair (bp) of the promoter
of human, and the downregulation of promoter function is
mediated by EGF-activated protein kinase C/protein kinase A
PKC/PKA and MAPK pathways (25). Previous work in our
laboratory showed that the EGF response region was located
in the −1,092 to −1,085 bp region (5′-TCCAGTTG-3′) in
porcine intestinal epithelial cells, IPEC-J2 (26). Further studies
showed that EGF downregulated the expression of NaPi-IIb in
IPEC-J2 cells by activating signaling molecules such as EGFR,
PKA, PKC, P38, extracellular regulated protein kinases (ERK),
and c-Jun N-terminal kinase (JNK) (68). Although previous
studies had proved that EGF-activated MAPK, PKC, and PKA
pathways are all involved in the regulation of NaPi-IIb in
intestinal epithelial cells (25, 68), how their downstream signaling
molecules ultimately regulate the expression level of NaPi-IIb
remains unknown.

EGF Promotes Active Transport of Pi Under
Intestinal Injury Condition
The intestinal tract is not only the main part of animal
nutrition digestion and absorption but also acts as a physical
and immunological protective barrier against foreign antigens
and pathogens (17, 69–71). The integrity of intestinal is the
foundation of nutrition absorption for animals (72). However,
the intestinal epithelium homeostasis of animals is usually
affected by bacterial infection, endotoxin challenge, weaning
stress, and oxidative stress, which can lead to intestinal damage
and intestinal barrier function dysfunction (73–76). EGF has
been established as a trophic factor for epithelial cell homeostasis
(17, 18) and nutrient transport in the small intestine (22, 58, 66,
77, 78). Previous researches have demonstrated that EGFwas able
to attenuate the intestinal mucosal epithelial cells injury as well

as promotes the repair of damaged mucosa epithelium (18, 79–
82). In theory, during the process of injured intestine repairing,
more phosphorus is needed to meet the demand of DNA
and RNA syntheses. Previous studies had shown that in some
disease states, such as hyperphosphatemia induced by intestinal
ischemia/injury, serum Pi levels and EGF levels were increased
(83, 84), which indicated that EGF might play a role in regulation
of Pi homeostasis in response to intestinal injury. However, it
is not clear whether EGF mediates the active transport of Pi
by regulating the expression of NaPi-Iib, since the regulation of
Pi is a complex network, which is achieved by the combined
action of intestine, kidneys, and bones (10, 85–87). Our previous
study showed that EGF could promote the expression of NaPi-
IIb expression in LPS-induced IPEC-J2 cells and the jejunum
and ileum of LPS-induced piglets (27). It indicated that under
intestinal injury condition, EGF could release the inhibition of
NaPi-IIb and regulate the active absorption of Pi mediated by
NaPi-IIb to meet the body’s need for phosphorus and accelerate
the process of intestinal repair. However, there is still a lack of
researches on EGF regulation of intestinal Pi uptake under other
injury conditions, like intestinal ischemia/injury, inflammatory
bowel diseases, and necrotizing enterocolitis. In addition, the
mechanism of EGF on NaPi-IIb-mediated Pi uptake under
intestinal injury condition remains unclear, which needs to be
further research.

CONCLUSIONS

In summary, EGF is involved in regulating intestinal Pi
absorption, and the role of EGF in modulating intestinal Pi
absorption depends on the physiological status of the animal.
Under normal conditions, EGF inhibited the active transport

FIGURE 2 | Effects of EGF on active Pi-transport-mediated NaPi-IIb under different conditions. (A) EGF inhibited the active transport of Pi by inhibiting the expression

of NaPi-IIb under normal conditions. (B) EGF promoted the active absorption of Pi through upregulating the expression of NaPi-IIb under intestinal injury condition.
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of Pi through activating MAPK, PKC, and PKA pathways
to inhibit the expression of NaPi-IIb. While, under intestinal
injury condition, EGF could promote the active absorption of
Pi through upregulating the expression of NaPi-IIb (Figure 2).
Further studies could focus on how EGF regulates the expression
of NaPi-IIb under intestinal injury condition, thereby promoting
the active transport of intestinal Pi.
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