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Musculoskeletal injuries remain a global problem for the Thoroughbred racing industry

and there is conflicting evidence regarding the effect of age on the incidence of injuries.

The ideal time to commence race training is strongly debated, with limited supporting

literature. There is also conflicting evidence regarding the effect of high-speed exercise on

musculoskeletal injuries. There is a strong interest in developing training andmanagement

strategies to reduce the frequency of injuries. The types of musculoskeletal injuries

vary between 2-year-old and older horses, with dorsal metacarpal disease the most

common injury in 2-year-old horses. It is likely that risk factors for injury in 2-year-old

horses are different than those for older horses. It is also likely that the risk factors

may vary between types of injury. This study aimed to determine the risk factors for

musculoskeletal injuries and dorsal metacarpal disease. We report the findings of a large

scale, prospective observational study of 2-year-old horses in Queensland, Australia.

Data were collected weekly for 56-weeks, from 26 trainers, involving 535 2-year-old

Thoroughbred racehorses, 1, 258 training preparations and 7, 512-weeks of exercise

data. A causal approach was used to develop our statistical models, to build on the

existing literature surrounding injury risk, by incorporating the previously established

causal links into our analyses. Where previous data were not available, industry experts

were consulted. Survival analyses were performed using Cox proportional hazards or

Weibull regression models. Analysis of musculoskeletal injuries overall revealed the

hazard was reduced with increased exposure to high-speed exercise [Hazard ratio (HR)

0.89, 95% Confidence Interval (CI) 0.84, 0.94, p < 0.001], increased number of training

preparations (HR 0.58, 95% CI 0.50, 0.67, p < 0.001), increased rest before the training

preparation (HR 0.89, 95% CI 0.83, 0.96, p = 0.003) and increased dam parity (HR

0.86, 95% CI 0.77, 0.97, p = 0.01). The hazard of injury was increased with increasing

age that training commenced (HR 1.13, 95% CI 1.06, 1.19, p < 0.001). Analyses were
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then repeated with the outcome of interest dorsal metacarpal disease. Factors that

were protective against dorsal metacarpal disease and musculoskeletal injuries overall

included: increased total cumulative distance (HR 0.89, 95% CI 0.82, 0.97, p = 0.001)

and total cumulative days exercised as a gallop (HR 0.96, 95% CI 0.92, 0.99, p =

0.03), the number of the training preparations (HR 0.43, 95% CI 0.30, 0.61, p < 0.001).

The age that training commenced was harmful for both dorsal metacarpal disease (HR

1.17, 95% CI 1.07, 1.28, p < 0.001 and overall musculoskeletal injuries.). The use of

non-ridden training modalities was protective for dorsal metacarpal disease (HR 0.89,

95% CI 0.81, 0.97, p = 0.008), but not musculoskeletal injuries overall. The male sex

increased the hazard of DMD compared to females (HR 2.58, 95% CI 1.20, 5.56, p =

0.02), but not MSI overall. In summary, the hazard of musculoskeletal injury is greatest for

2-year-old horses that are born from uniparous mares, commence training at a later age,

are in their first training preparation, have undertaken little high-speed exercise or had

limited rest before their training preparation. The hazard of dorsal metacarpal disease

is greatest for 2-year-old horses that are males, commence training at a later age,

are in their first training preparation, have undertaken little high-speed exercise or had

limited use of non-ridden training modalities. Close monitoring of these high-risk horses

during their training program could substantially reduce the impact of MSI. Furthermore,

an understanding of how training methodologies affect the hazard of MSI facilitates

modification of training programs to mitigate the risk impact of injury. The strengths of

this study include a large sample size, a well-defined study protocol and direct trainer

interviews. The main limitation is the inherent susceptibility to survival bias.

Keywords: racehorse, training, epidemiology, 2-year-old, musculoskeletal injury, causal model, Weibull, time-

varying

INTRODUCTION

Musculoskeletal injuries (MSI) remain a global problem for
the Thoroughbred racing industry, resulting in serious injury
and/or death of horses (1–4) and riders (5, 6). There is
conflicting evidence regarding the effect of age on MSI and
the risk of MSI is different between 2-year-old horses and
older horses (7–11). The types of MSI are also different
between 2-year-old and older horses, with dorsal metacarpal
disease (DMD) the most common type reported in 2-year-old
horses (12–15). The ideal time for racehorses to commence
training is strongly debated, with limited supporting literature.
Mason et al. (16) reported a relationship between unsoundness
and open distal radial epiphyses, however, there has been
no further research to support these findings. In contrast, a
series of experimental studies found that early race training
facilitated superior tissue adaptation and was beneficial (17–
26). Furthermore, longevity of racing career and improved
performance is associated with starting horses at 2-years of
age (27, 28). As yet, there have been no prospective studies
evaluating whether early race training is beneficial or harmful to
immature horses.

There is a strong interest in developing training and
management strategies to reduce the impact of MSI. It is
highly likely that the risk factors for MSI in 2-year-old horses
are different than those for older horses, due to commencing

race training prior to skeletal maturity. Skeletal maturity is
frequently estimated by closure of the distal radial physis, and
this occurs at around 2-years of age (16, 29). However, many
other factors apart from growth influence the occurrence of
MSI. These include high-speed exercise (HSE), cardiovascular
fitness, tissue loading, rest and tissue adaptation (23, 25, 29, 30).
It is also likely that the risk factors may vary between types
of MSI.

High-speed exercise is likely to be a principal risk factor for
MSI, although there is conflicting evidence regarding the effect
of HSE on MSI. Some studies report that HSE increases the risk
of MSI (31–40), while others report that it decreases (8, 40–
47) or does not affect (8, 48–50) the risk of MSI. Other studies
report a non-linear effect of HSE on the risk of MSI, whereby
the risk initially decreases with increasing exercise, plateaus, then
increases again (8, 36, 45, 47). The effect of HSE on MSI will also
vary with type of injury (9, 35, 45, 51, 52).

Many MSI cases and fatalities occur during training rather
than during racing (31, 33, 51–54). Therefore, studies analysing
only race day MSI will miss a large proportion of cases that occur
during training. These studies will also not capture MSI cases
that are not apparent on the day of racing and are discovered
later (54, 55). By combining racing and training data the true
effect of risk factors on MSI may be more accurately represented.
Furthermore, modifications to reduce the impact of MSI are
more readily implemented at the training level.
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Thus, there is a need for further research to investigate the
risk factors for 2-year-old horses, with a focus on the age that
training commences and the training strategies that may affect
the risk of MSI. There is also a need to be able to identify at-
risk individuals, so that these horses may be closely monitored
during their training and the appropriate interventions applied.
We address these knowledge gaps through a prospective cohort
study of 2-year-old Thoroughbred racehorses in training. Our
aims were: (1) to use survival analysis to determine the hazard
of MSI for a number of horse and training-related risk factors,
through a causal approach to model building and (2) Determine
whether these hazards and risk factors were different for DMD
than for other types of MSI.

MATERIALS AND METHODS

Recruitment of Participants
This study was performed concurrently with a study investigating
the overall incidence and types of MSI in Thoroughbred
racehorses of all ages in Queensland, Australia. The recruiting
process has been described previously in more detail (15).
Human (2017001248) and animal (SVS/384/17) ethics approvals
were obtained from The University of Queensland Science
Low and Negligible Risk Human Ethics Sub-committee and
the University of Queensland Animal Ethics Units, respectively.
Trainers from the Brisbane Racing Club (BRC) were invited
to participate in this weekly prospective study. Recruitment of
horses was performed by recruiting trainers and enrolling all the
2-year-old horses from their training stables.

Study Design
A prospective cohort study was conducted between November
2017 and December 2018. This time period was considered
to best represent the 2-year-old racing season, because the
first 2-year-old race in Queensland is at the end of October
(https://www.racingqueensland.com.au/racing-and-results/full-
calendar/2017/12). Detailed injury, training and exercise data
were collected through personal structured interviews with
participating trainers or their forepersons. Structured personal
interviews facilitated accurate and complete data collection.
Details of the interview are described in Appendix A1 in
Supplementary Material.

Data Collection
Two-Year-Old Horses
A horse was defined as a “2-year-old” until 1 August of its
third year of life. August first is the date where Thoroughbred
horses in Australia officially increase 1-year in age regardless of
their actual date of birth. This definition includes all racehorses
2-years of age and younger, as racehorses in Australia are
usually <2-years when they commence race training. All 2-year-
old horses under the care of each recruited, licenced trainer
were enrolled. Trainers were not able to select which horses
contributed data. Horses were identified by both the name
registered with Racing Australia (https://www.racingaustralia.
horse/RoR/AboutROR.aspx) and microchip number. Sex was
recorded as female or male. Males included both entire and

castrated horses as males were frequently castrated during the
study and following castration status was not feasible. The dam
age at the time of the enrolled horses’ birth and the dam parities
were obtained from the Australian Stud Book (https://www.
studbook.org.au/default.aspx). Horses were censored on August
1, 2018, when they turned 3-years of age, if they left the trainer
and at study completion, December 2018.

Musculoskeletal Injuries
Time to failure was recorded in weeks. Data was recorded for
recurrent event analysis; whereby individual horses could have
more than one failure recorded. A failure was defined as anyMSI,
incorporating either orthopaedic or soft tissue injuries which
prevented the horse from training for at least 7 days. A 7 day
period was chosen to be consistent with previous studies (9, 54).
This definition included any MSI that occurred whilst the horse
was in training, whether the actual injury occurred during a race,
training or following an accident in the stable. Osteochondritis
dissecans, cervical stenotic myelopathy and other developmental
orthopaedic conditions were included if the horse was in training,
sound and later developed a clinical lameness or gait abnormality
that prevented them from training. Musculoskeletal injuries
were diagnosed by a veterinarian to minimise measurement and
ascertainment bias. Horses in the study were under the close care
of racetrack veterinarians registered in Queensland.

Exercise Variables as Putative Risk Factors for

Musculoskeletal Injury
The key exercise variables examined as putative risk factors
for MSI included exposure to high-speed exercise, pre-training
before each preparation, the number of the training preparation,
the rest period before each preparation, exposure to non-ridden
exercise modalities and exposure to low-speed exercise. Daily
training information was collected at weekly intervals. A training
preparation was defined as the uninterrupted period that a horse
is actively participating in race training. Horses could have rest
days during a training preparation, but the preparation was
considered complete if there were seven ormore consecutive days
of rest.

Exposure to High-Speed Exercise
The following four measures of exposure to high-speed exercise
were calculated for each week from the daily exercise history:

1) The total distance (kilometres) travelled at a gallop (>13
s/furlong; 15 m/s; 900 m/min; 55 km/h). This consisted of
the combined distance of track gallops, jump-outs (non-
official trials), official trials and races. The official trial and
race data was cross-checked with the Racing Australia Online
Database (https://racingaustralia.horse/home.aspx).

2) The total number of days exercised at a gallop.
3) The total distance exercised at three-quarter pace (15

s/furlong; 13 m/s; 800 m/min; 48 km/h).
4) The total number of days exercised at three-quarter pace.

The weekly totals were then added to provide the total cumulative
distance or days for each training preparation. Data from each
training preparation were entered in multiple record format, to
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provide a total cumulative exposure to each of these variables
over the study duration.

Pre-training Before Each Preparation
This was defined as the time (in weeks) that a horse undertook
ridden exercise at a facility other than the racetrack before the
training preparation. This information was collected from the
trainer or foreperson during the structured interview. Horses
commencing their first racing preparation were considered to
have had 3-weeks of ridden pre-training exercise, because pilot
studies with industry experts revealed marked variation in the
time taken for non-ridden education during the “breaking
in” process due to unmeasured factors including the horse’s
temperament, weather, the breaker used and the demands on the
breakers’ services. Expert consensus was that 3-weeks accurately
represented the actual ridden exercise undertaken prior to
beginning the first training preparation.

Number of the Training Preparation
The sequential number of the current training preparation
was also completed for each horse, with the first preparation
beginning when the horse first entered race training. This was
not necessarily the same as the number of training preparations
that the horse had completed during the study. For example, if
a horse had completed two training preparations before entering
the study, the first number of the training preparation recorded
for that horse would be three. When a horse entered the study,
the age that the horse commenced race training and the number
of training preparations that the horse had previously completed
was obtained from the trainer or foreperson.

Rest Period Before Each Training PREPARATIONS
Horses had rest periods in between training preparations. The
length of time that the horse was rested after completion
of one training preparation, prior to commencing the next
preparation, was calculated in weeks. Horses commencing their
first racing preparation were considered to have had no rest
before their first preparation, as they had not undertaken any race
training exercise.

Exposure to Non-ridden Exercise Modalities
The total number of days that the horse was exercised
using non-ridden modalities was determined for each training
preparation from the daily exercise data. This included walking
exercise, and exercise using a water-walker, swimming pool
or treadmill. Walking was defined as when horses were
only exercised on the walking machine or led by hand.
This did not include warm-up exercise on the walker prior
to exercise on the racetrack, nor exercise on the walker
in the afternoon in addition to morning exercise at the
racetrack. Water-walkers were defined as walking machines in
a shallow swimming pool, with the water up to approximately
the level of the horses’ chest. Treadmills were defined
as stationary exercise machines with continuous belts that
facilitate exercise at low or high speeds with or without
an incline.

Exposure to Low-Speed Exercise
The total number of days that the horse was exercised at low-
speed (slower than 15 s/furlongs; 13 m/s; 800 m/min; 48 km/h)
was determined for each training preparation from the daily
exercise data.

Power Calculations
Power calculations were based on the findings of a previous
study (35), which reported a hazard ratio of 2.7 (95%CI 1.87–
3.89) for every furlong increase in high-speed exercise distance.
Sample size was estimated using the power module in Stata for
cox regression, with the event of interest defined as involuntary
spell of ≥7 days duration associated with a musculoskeletal
injury. A sample size of 400 was sufficient to achieve 80%
statistical power (alpha=0.05) for detection of a hazard ratio
of 1.5 or more and with an expectation that 50% of the study
population would develop the event during the study period
with the remainder (50%) being right censored at the end of the
study period.

Data Analysis

Causal Approach to Model Building
A causal approach (56), was used to inform parameterization
of statistical models, incorporating published information and
expert opinion on putative causal factors. This causal approach
has advantages over rule-based methods of statistical model
building and is becoming more widely used in analytical
epidemiological studies (56–62). In particular, a causal approach
enables consistent estimation of total or direct effects (as desired)
and avoids stratification or collider bias, which results from
inappropriate adjustment of variables and can lead to biassed
estimates (56–62).

Explanatory Variables and Development of Directed

Acyclic Graph
Directed acyclic graphs demonstrate the causal inter-
relationships between explanatory variables (risk factors) as
well as the causal associations of risk factors with an outcome
variable (56, 57, 62). The measured explanatory variables were
selected following discussion between epidemiologists and
statisticians, veterinary surgeons and clinicians and industry
experts. Discussions focused on identifying relevant putative
causal variables for measurement; whether there were potentially
important unmeasured variables; and the presence, absence
and direction of each possible causal link between variables.
Conclusions were based on scientific evidence where available
and expert opinion if scientific literature was not available
(Table 1). Potential biologically plausible interactions were also
considered from the directed acyclic graphs (75). The resulting
directed acyclic graph is presented in Figure 1.

Minimum sufficient adjustment sets (the minimum sets
of covariates that, when adjusted for, blocked all the back-
door paths between the exposure and the outcome) were then
determined from the directed acyclic graphs using Dagitty R©, a
graphical tool to estimate the total effects of each explanatory
variable on each outcome of interest (56, 57, 62). The series of
models and minimum sufficient adjustment sets are described
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TABLE 1 | The causal relationships between explanatory variables (risk factors) for the time to musculoskeletal injuries and supporting evidence for these relationships.

Variable Direct causal effects on Nature of effect References

Exposure to high-speed exercise Non-ridden modalities Increased used of non-ridden modalities when low volumes

high-speed exercise required- pre-training and rehabilitation

(63)

Exposure to low-speed exercise Reduced low speed exercise on days fast work undertaken *

Time to MSI Reduced MSI in preparations which had a race start (45)

Time to MSI Reduced MSI with increased volume high-speed exercise (8, 40–47)

Time to MSI Increasing cumulative racing distances were associated with an

initial reduction in the odds of MSI that then levelled out and

increased again as distance continued to increase

(8, 36, 45, 47)

Time to MSI Increased MSI with increased distance high-speed exercise (14, 31–40,

64)

Pre-training before each

preparation

Exposure to high-speed exercise Increased exposure to high-speed exercise with longer

pre-training duration

*

Exposure to low-speed exercise Lower volume low-speed exercise when longer pre-training

duration

*

Time to MSI Lower risk of MSI with longer pre-training duration *

Number of training preparations Exposure to high-speed exercise Increased rate of starts with increasing number of preparations (64)

Exposure to high-speed exercise Increased high-speed exercise volume with increasing number of

training preparations

*

Pre-training before each

preparation

Less pre-training is required when horse has had fewer training

preparations as track education prioritised and pre-training

required for fitness when older rather than education

*

Exposure to low-speed exercise Increased low-speed exercise volume with fewer number of

training preparations

*

Time to MSI Reduced odds of MSI as training preparation number increases (45)

Non-ridden exercise modalities Increased use of non-ridden modalities with increased number of

training preparations

*

Age training commenced Number of training preparations The earlier the age training commences the higher potential

number of training preparations as a 2-year-old

*

Rest before each preparation Horses starting at a younger age are given less rest before the

next training preparation as they have been identified as

2-year-old types and are more likely to cope with exercise

intensity and do not require same recovery time

*

Time to MSI Early race training facilitates superior tissue adaptation and could

reduce risk MSI

(17–25)

Rest before each preparation Pre-training before each

preparation

More pre-training is required after a longer rest period *

Exposure to high-speed exercise Larger high-speed exercise volumes are undertaken after shorter

rest periods

*

Non-ridden exercise modalities Higher non-ridden exercise volume when longer rest periods *

Time to MSI Increased rest increases the risk of MSI due to greater

osteoclastic activity weakening bone structure

(65–67)

Non-ridden exercise modalities Time to MSI Decrease the incidence of MSI (68)

Time to MSI Mechanical walking increased the risk MSI (69)

Exposure to low-speed exercise Non-ridden exercise modalities Increased used of non-ridden modalities to replace low-speed

exercise required- pre-training and rehabilitation

(39, 63)

Time to MSI Increased volume low-speed exercise increases risk MSI (35)

Sex Time to MSI Males increased risk of MSI (49, 50, 64,

70–73)

Rest before each preparation Males spent more time training and less time spelling (64)

Exposure to high-speed exercise Females increased rate of race starts than males (64)

Non-ridden exercise modalities Increased used of non-ridden modalities in females (63)

Dam age Dam parity Dam parity is limited by the age of the dam (74)

Time to MSI MSI decreased with increasing dam age (74)

Dam parity Time to MSI First foals lower MSI than subsequent foals (74)

*Consensus from panel of experts in the field when scientific literature was not available.

Frontiers in Veterinary Science | www.frontiersin.org 5 November 2021 | Volume 8 | Article 698298

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Crawford et al. Survival Analysis of Training Methodologies

FIGURE 1 | Directed acyclic graph depicting the postulated causal associations between putative risk factors for the time to musculoskeletal injury and dorsal

metacarpal disease in 2-year-old Thoroughbred racehorses.

in Table 2. There were no interactions that were considered
appropriate for inclusion in the models.

Statistical Analysis
Data were analysed using Stata 15.1 R© (Statacorp, College
Station, TX, USA). The analysis time was the study period,
which represents the 2-year-old racing season in Queensland.
A multiple record format was used with horses entering and
exiting the study according to training preparations and rest
periods. A multiple record format also enables data to be
collected and analysed for recurrent events and using time-
varying covariates. Time-varying explanatory covariates can
change in an inconsistent or unpredictable manner throughout
the study period, which best represents the pattern of 2-year-old
training methodologies (76). The explanatory variables that we
analysed as time-varying covariates were exposure to high-speed
exercise, the pre-training before each preparation, the number
of the training preparation, the rest before each preparation, the
use of non-ridden exercise modalities and the exposure to low-
speed exercise. The age that training commenced, sex, dam age
and dam parity were not analysed as time-varying covariates, as
these variables did not change throughout the study period.

Descriptive statistics were reported for all failures because
there were insufficient recurrent events for statistical analysis.

Explanatory variables were summarised, stratified according to
injury status. A Cox proportional hazards or Weibull regression
model was run for each putative risk factor of interest with all
variables in the minimum sufficient adjustment set required to
estimate the total effect of that variable included in the model.

For Cox proportional hazards analysis, a clustered model
was used to adjust for differences between trainers (14, 39,
77). The scale of continuous variables was examined using
martingale residuals (77). Once the linear relationship to the
log hazard was confirmed, variables were centred to the mean.
The proportional hazards assumption was checked using scaled
Schoenfeld residuals plotted over time (77). Goodness of fit
was confirmed by plotting the Cox Snell residuals as failure
times against the Nelson Aalen cumulative hazard function (77).
Potential influential observations were checked by plotting Df-
Beta residuals against time (77).

When the proportional hazards assumption was not met, or
the goodness of fit was poor, a parametric accelerated failure
time model was used. The appropriate accelerated failure time
model was selected by firstly fitting a Weibull regression model
because this model has a shaping parameter which allows the
hazard to vary over time (77). The Wald test of the significance
of the shaping parameter was evaluated to determine whether
this model was more appropriate than the Exponential model,
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TABLE 2 | The series of models and associated minimum sufficient adjustment

sets used to estimate the total effects of each putative risk factor on

musculoskeletal injuries and dorsal metacarpal disease.

Model Putative risk factor Minimum sufficient adjustment set

1 Exposure to high-speed exercise Number of training preparations

Age training commenced

Rest before each preparation

Sex

Pre-training before each preparation

2 Pre-training before each

preparation

Number of training preparations

Age training commenced

Rest before each preparation

Sex

3 Number of training preparations Age training commenced

4 Age training commenced Nil

5 Rest before each preparation Age training commenced

Sex

6 Non-ridden exercise modalities Exposure to high-speed exercise

Number of training preparations

Age training commenced

Rest before each preparation

Sex

Pre-training before each preparation

Exposure to low-speed exercise

7 Exposure to low-speed exercise Number of training preparations

Age training commenced

Rest before each preparation

Sex

Pre-training before each preparation

Exposure to high-speed exercise

8 Sex Nil

9 Dam age Nil

10 Dam parity Dam age

which has a constant hazard over time (77). Goodness of fit was
evaluated by plotting the predicted estimates of the cumulative
hazard against the Weibull model estimate of the cumulative
hazard (77).

All variables were analysed as continuous variables, apart from
sex, which was categorised into males and females. Polynomial
terms (squared and cubic) for high-speed exercise variables were
also tested in the models. Akaike’s Information Criteria (AIC)
and Bayesian Information Criteria (BIC) were used to compare
models with and without polynomial terms. Significance was set
at α= 0.05 for all statistical tests. Risk estimates were presented as
hazard ratios for the time to MSI. Hazard ratios for estimates of
interest represent the rate of risk at any point in time for each unit
increase above the mean of continuous variables compared to the
baseline hazard. Hazard ratios of <1 are “protective,” and hazard
ratios >1 are “harmful.” For example, a hazard ratio of 0.8 can be
interpreted as a 20% reduction in the rate of risk for every unit
increase of the hypothesised risk factor, and conversely a hazard

TABLE 3 | The putative risk factors stratified by injury status in 535 2-year-old

Thoroughbred racehorses in Queensland, Australia.

Putative risk factor Horses with injury

(N = 97)

Horses without injury

(N = 438)

Median (IQR)

Exposure to high-speed

exercise

Total cumulative kilometres of

gallop

1.6 (0.6, 3.6) 3.1 (0.4, 8.0)

Total cumulative days of gallop 5 (2, 8) 8 (2,16)

Total cumulative kilometres of

three-quarter pace

3.0 (1.6, 5.2) 5 (2.2, 9.8)

Total cumulative days of

three-quarter pace

7 (3, 11) 11 (5, 20)

Pre-training before each

preparation (weeks)

3 (0, 3) 2 (0, 3)

Number of training

preparations

2 (1, 2) 2 (1, 3)

Age training commenced 20 (18, 22) 20 (18, 22)

Rest before each preparation

(weeks)

6 (3.5, 8) 7 (4, 9)

Total cumulative days using

non-ridden exercise

modalities

0 (0, 6) 1 (0, 14)

Total cumulative days

low-speed exercise

29 (18, 45) 47 (27, 75)

Sex

Males N (%) 55 (57) 206 (47)

Females N (%) 42 (43) 232 (53)

Dam age 9 (7, 11) 10 (8, 13)

Dam parity 3 (2, 4) 4 (2, 6)

ratio of 1.2 can be interpreted as a 20% increase in the rate of risk
for each unit increase of the hypothesised risk factor.

The hazards of MSI and DMD over the study period
were depicted graphically for statistically significant explanatory
variables as cumulative hazard functions for continuous
variables. The default cumulative hazard function determined
from the Weibull and Cox models represents the cumulative
hazard at specified values of the main explanatory variable and
the mean values of all continuous adjusting variables (77). A
Kaplan Meier Curve was presented for the effect of sex. The
specified values depicted for explanatory variables in our models
were the 25th, 50th, and 75th percentiles because the median
and interquartile range is the most appropriate way to present
non-parametric data (59). Sensitivity analyses were conducted for
high-speed exercise variables within strata of the age that training
commenced and the stage of training, due to the possibility of
survivor bias affecting the results. Analyses were then repeated
for all models with the outcome defined as failure due to DMD.

RESULTS

The trainers who participated in this study also contributed
to a concurrent study of musculoskeletal injuries and trainer
characteristics have been described in detail previously (15).
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TABLE 4 | The series of univariable and multivariable models used to estimate the total effects of each putative risk factor on musculoskeletal injuries and dorsal metacarpal disease in 2-year-old Thoroughbred

racehorses in Queensland, Australia.

Putative risk factor Musculoskeletal injuries overall Dorsal metacarpal disease

Univariable Adjusted Univariable Adjusted

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Exposure to high-speed exercise

Total cumulative distance galloped (km) 0.84 (0.80, 0.88) <0.001 0.89 (0.84, 0.94) <0.001 0.79 (0.74, 0.84) <0.001 0.89 (0.82, 0.97) 0.001

Total cumulative distance three-quarter pace (km) 0.88 (0.83, 0.93) <0.001 0.94 (0.90, 0.99) 0.04 0.87 (0.80, 0.93) <0.001 0.96 (0.90, 1.03) 0.25

Total cumulative days galloped 0.92 (0.89, 0.95) <0.001 0.95 (0.92, 0.98) 0.001 0.89 (0.86, 0.93) <0.001 0.96 (0.92, 0.99) 0.03

Total cumulative days three-quarter pace 0.93 (0.90, 0.95) <0.001 0.93 (0.93, 0.99) 0.01 0.92 (0.88, 0.96) <0.001 0.98 (0.94, 1.02) 0.26

Pre-training before each preparation (weeks) 1.24 (1.07, 1.44) 0.01 1.05 (0.82, 1.34) 0.71 1.39 (1.14, 1.70) 0.001 1.13 (0.81, 1.59) 0.47

Number of the training preparation 0.55 (0.46, 0.66) <0.001 0.58 (0.50, 0.67) <0.001 0.40 (0.27, 0.58) <0.001 0.43 (0.30, 0.61) <0.001

Age training commenced (months) 1.13 (1.06, 1.19) <0.001 n/a n/a 1.17 (1.07, 1.28) <0.001 n/a n/a

Rest before each preparation (weeks) 0.87 (0.80, 0.95) 0.002 0.89 (0.83, 0.96) 0.003 0.89 (0.77, 1.03) 0.12 0.91 (0.80, 1.03) 0.12

Non-ridden exercise modalities (days) 0.98 (0.96, 0.98) <0.001 0.98 (0.96, 1.00) 0.05 0.89 (0.85, 0.94) <0.001 0.89 (0.81, 0.97) 0.008

Exposure to low-speed exercise (days) 0.99 (0.98, 1.00) 0.16 0.97 (0.96, 0.99) <0.001 0.99 (0.97, 1.00) 0.25

Sex

Females Reference Reference

Males 1.22 (0.89, 1.66) 0.07 n/a n/a 2.58 (1.20, 5.56) 0.02 n/a n/a

Dam age (years) 0.96 (0.91, 1.00) 0.06 n/a n/a 0.98 (0.88, 1.09) 0.70 n/a n/a

Dam parity 0.90 (0.84, 0.97) 0.01 0.86 (0.77, 0.97) 0.01 0.92 (0.80, 1.06) 0.26 0.84 (0.64, 1.11) 0.21

n/a, not applicable.
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FIGURE 2 | The flow of horses and injuries through the study investigating time to musculoskeletal injury in 535 2-year-old racehorses in training in Queensland,

Australia.

Briefly, 27 out of 40 eligible trainers (68%) agreed to participate.
Data were collected every week for 56-weeks from November
2017 to December 2018 for 26/27 (96%) of trainers. One trainer
did not train any 2-year-old horses for the study duration.
Another trainer only contributed 6months of data before retiring
from training. Trainers provided exercise data for 535 2-year-old
horses, who completed 1,258 training preparations over 7,512-
weeks. Individual trainers had between 1 and 43 (median 14, IQR
6, 23) 2-year-old horses in training.

Descriptive Statistics for Recurrent
Failures
We recruited a total of 535 2-year-old horses which provided
exercise data for 1,258 training preparations over 7,512-weeks.
There were 103 failures occurring in 97 horses. Of the 97 horses
with a first failure event, 51/97 (53%) returned to the study after
injury while they were still eligible at 2-years of age. No further
failure was experienced in 45/51 (88%) of these horses, that
returned to training for a mean period of 12-weeks, prior to being
censored when turning 3-years of age, or at study completion.
However, 6/51 horses (12%) returned to training for a mean of
11-weeks before sustaining a second failure. No horses sustained
a third failure. The flow of horses and injuries through the study
is presented in Figure 2.

Failure Events Due to Musculoskeletal
Injuries
Data were analysed as single-failure-per-subject rather than as
recurrent events, because there were too few recurrent events
recorded (n = 6) (77, 78). The 97 single-failure events occurred
among the 535 horses over 1, 206 training preparations. The
97 single-failure events exceeded the minimum number for the
predictor variables in all models (78). The survival function

decreased to 75% at 17-weeks. Median survival (50%) was not
reached by the conclusion of the 56-week study period.

Failure Events Due to Dorsal Metacarpal
Disease
There were 39 single-failure events, which occurred among 477
horses over 936 training preparations. The probability of survival
did not decrease to 75% during the study period, thus median
survival times are not presented.

Risk Factors for Musculoskeletal Injury
The putative risk factors, stratified by injury status are
presented in Table 3. Weibull regression models were used
to evaluate the effect of exposure to high-speed exercise,
pre-training before each training preparation, the rest before
the training preparation, non-ridden exercise modalities and
exposure to low-speed exercise on the time to failure. Cox
proportional hazards regression models were used to evaluate
the number of the training preparation, the age that training
commenced, sex, dam age and dam parity on the time
to failure. The results of all analyses are summarised in
Table 4.

Factors That Were Protective Against

Musculoskeletal Injury
Increased exposure to all four measures of high-speed exercise
reduced the hazard of MSI over the duration of the study
(Figure 3). Incorporation of squared and cubic polynomial
terms for high-speed exercise did not decrease the AIC or
BIC. Sensitivity analyses were then performed within strata
of the age that training commenced, and the coefficients
did not change between strata. However, when analyses were
repeated within strata according to the length of time that
horses had been in training, the risk of injury decreased with
increasing time in training (Early stage: HR = 1.14, 95% CI
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FIGURE 3 | Cumulative hazard functions of musculoskeletal injury for the 56-week study period. Hazard functions are derived from Weibull multivariable regression

models for four measures of the exposure to high-speed exercise: (A) Total cumulative kilometres of gallop, (B) Total cumulative kilometres of three-quarter pace, (C)

Total cumulative days of gallop and (D) Total cumulative days of three-quarter pace. Graphs of the models are presented at the 25th, 50th, and 75th percentiles of

each high-speed exercise measure.

FIGURE 4 | Cumulative hazard functions of musculoskeletal injury for the 56-week study period. Hazard functions are derived from Cox proportional hazard models

(A,C) and Weibull (B) multivariable regression models for (A) The number of the training preparation, (B) The rest before the training preparation and (C) Dam parity.

Graphs of the models are presented at the 25th, 50th, and 75th percentiles of each explanatory variable.

0.95, 0.99, p = 0.12; Mid stage: HR = 0.99, 95% CI 0.97,
1.02, p = 0.86; Late stage: HR = 0.97 95% CI 0.95, 0.99
p= 0.02).

Increased number of the training preparation, rest before the
training preparation and dam parity also reduced the hazard of
MSI (Figure 4).
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FIGURE 5 | Cumulative hazard functions of musculoskeletal injury for the

56-week study period. Hazard functions are derived from Cox proportional

hazard regression models for the age that training commenced. Graphs of the

models are presented at the 25th, 50th, and 75th percentiles of each

explanatory variable.

Factors That Were Harmful for Musculoskeletal Injury
The age that training commenced increased the hazard of MSI
(Figure 5).

Factors That Had No Apparent Association With the

Risk of Musculoskeletal Injury
There was no evidence of a moderate or large effect of the amount
of pre-training before each training preparation (HR 1.05, 95%CI
0.82, 1.34, p = 0.71) or the exposure to low-speed exercise (HR
0.99, 95% CI 0.98, 1.00, p = 0.16) on the hazard of MSI. There
was weak evidence that the use of non-ridden training modalities
(HR 0.98, 95% CI 0.96, 1.00, p = 0.05) and dam age (HR 0.96,
95% CI 0.91, 1.00, p= 0.06) affected the hazard of MSI, although
this was not significant. The point estimate for the hazard of sex
on MSI was too imprecise to enable a conclusion to be reached
(HR males 1.22, 95% CI 0.89, 1.66, p= 0.07).

Risk Factors for Dorsal Metacarpal
Disease
Factors That Were Protective Against Dorsal

Metacarpal Disease and Musculoskeletal Injuries

Overall
Increased total cumulative distance (HR 0.89, 95% CI 0.82, 0.97,
p = 0.001) and total cumulative days exercised as a gallop (HR
0.96, 95% CI 0.92, 0.99, p= 0.03) and the number of the training
preparations (HR 0.44, 95% CI 0.32, 0.62, p < 0.001) reduced the
hazard of DMD (Figure 6).

Factors That Were Harmful for Dorsal Metacarpal

Disease and Musculoskeletal Injuries Overall
Increasing the age that training commenced increased the hazard
of DMD (Figure 7).

Factors That Had No Significant Association With the

Risk of Dorsal Metacarpal Disease or

Musculoskeletal Injury
There was no evidence of a moderate or large effect of the
exposure to low-speed exercise (HR 0.99, 95% CI 0.97, 1.00, p =
0.25) on the hazard of DMD. The point estimates for the amount
of pre-training before each preparation (HR 1.13, 95% CI 0.81,
1.59, p = 0.47) and dam age (HR 0.98, 95% CI 0.88, 1.09, p =

0.70) were too imprecise to enable conclusions to be reached.

Factors That Were Protective Against Dorsal

Metacarpal Disease but Not Musculoskeletal Injuries

Overall
Increased use of non-ridden training modalities decreased the
hazard of DMD, but not MSI overall (Figure 8).

Factors That Were Harmful for Dorsal Metacarpal

Disease but Not Musculoskeletal Injuries Overall
The male sex increased the hazard of DMD compared to females,
but not MSI overall (Figure 9).

Factors That Had No Apparent Association With the

Risk of Dorsal Metacarpal Disease but Were

Significant for Musculoskeletal Injuries Overall
There was no evidence of a moderate or large effect of the
cumulative distance (HR 0.99, 95% CI 0.98, 1.01, p = 0.25) and
cumulative days (HR 0.98, 95% CI 0.94, 1.02, p = 0.26) travelled
at three-quarter pace on the hazard of DMD. The point estimates
for the amount of rest before each preparation (HR 0.91, 95% CI
0.81, 1.03, p= 0.13) and dam parity (HR 0.84, 95% CI 0.64, 1.11,
p= 0.23) were too imprecise to enable conclusions to be reached.

DISCUSSION

This paper used a causal approach to investigate the effect of
detailed trainingmethodologies and other putative risk factors on
MSI and DMD. This causal approach has many advantages over
the traditional rule-based method of statistical model building
and is now becoming more widely used in human and veterinary
analytical epidemiological studies (56–62). The most important
advantages of the causal approach over the traditional rule-
based method of model building are that the causal approach
enables consistent estimation of total or direct effects (as desired)
and avoids stratification or collider bias, which results from
inappropriate adjustment of variables and can lead to biassed
estimates (56–62).

Our finding that high-speed exercise exposure reduced the
hazard of MSI based on all four measures evaluated and reduced
the hazard of DMD for total cumulative distance and days of
gallop is consistent with previous studies reporting a decreased
risk of MSI with increasing high-speed exercise (8, 40–47). These
findings are also biologically plausible because a level of high-
speed exercise is required for bone (42, 65, 66, 79–83) and
tendon or ligament (17, 19, 29, 62, 84–87) adaptation necessary
to prevent injury. The protective effect of high-speed-exercise
observed in this study suggests that the high-speed exercise
volume undertaken was still within the range required for tissue
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FIGURE 6 | Cumulative hazard functions of dorsal metacarpal disease for the 56-week study period. Hazard functions are derived from Weibull (A,B) and Cox

proportional hazard regression models (C) multivariable regression models for (A) The total cumulative kilometres of gallop exercise, (B) The total cumulative days of

gallop exercise and (C) The number of the training preparation. Graphs of the models are presented at the 25th, 50th, and 75th percentiles of each explanatory

variable.

FIGURE 7 | Cumulative hazard functions of dorsal metacarpal disease for the

56-week study period. Hazard functions are derived from Cox proportional

hazard regression models for the age that training commenced. Graphs of the

models are presented at the 25th, 50th, and 75th percentiles of each

explanatory variable.

adaptation, as increasing the high-speed exercise volume beyond
the level required for adaptation increases the risk of MSI (8, 36,
45, 47). This may be due to selection bias, whereby those trainers
that agreed to participate in the study may be more concerned
about MSI than trainers that did not participate and were less
likely to exercise their horses at a harmful level (59, 88). There
is also likely to be an effect of survival bias, whereby those horses
that are injured earlier are removed from the population before a
large exposure to high-speed exercise is accumulated, and those
remaining are at reduced risk of injury (59, 88). Our sensitivity
analyses confirmed that survival bias was likely to be influencing
the results of this study. Horses in the earlier stage of training
were more likely to be injured than those in the mid or late stages
of their training.

The hazard of all types of MSI and specifically DMD were
reduced with increased number of training preparations within
the study period. An increasing number of preparations may be
due to a larger number of short training preparations, rather than

FIGURE 8 | Cumulative hazard functions of dorsal metacarpal disease for the

56-week study period. Hazard functions are derived from Weibull regression

models for the total cumulative days of non-ridden exercise. Graphs of the

models are presented at the 25th, 50th, and 75th percentiles of each

explanatory variable.

a smaller number of long preparations, although this could not
be evaluated using survival analysis, due to the right-censoring of
data. We postulate that a higher number of shorter preparations
in the early stages of training reduce the hazard of injury by
providing sufficient stimulus to facilitate bone adaptation but
alternating this with rest minimises fatigue and enables tissue
repair before microdamage progresses. Providing short periods
of rest in training programs has been recommended to minimise
fatigue and injuries in military recruits (89) and elite ballet
dancers (90). Survival bias may accentuate these findings (59, 88).

The age that training commenced also affected the hazard
of MSI and DMD, with increasing age associated with a higher
hazard of injury. This finding is consistent with a previous study
reporting a higher hazard of DMD in horses that commenced
training at 21 months and above older than (91). In contrast,
another study reported that the age that training commenced did
not affect the hazard of DMD (35). The difference in findings
may be due to the case definition of DMD. The case definition of
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FIGURE 9 | Kaplan Meier survival curves for dorsal metacarpal disease in

males and females over the 56-week study period.

DMD in the study by Verheyen et al. (35) included all incident
cases of DMD, regardless of the number of training days lost.
The case definitions reported by Jackson et al. (91) and the
current study were at least five and seven consecutive days lost
to training, respectively.

An increased hazard of MSI and DMD associated with
increasing age that training commenced is also biologically
plausible. The tendons and ligaments of foals and young horses
can adapt to exercise in response to the mechanical forces
imposed, whereby the volume and cross-sectional area increases
(17, 19, 29, 62, 84–87). However, the tendon structure is mature
by 2-years of age, after which there is no further adaptation to
exercise and training and tendon structural deterioration occurs
synergistically with increasing age and exercise (17, 29, 70, 84–87,
92). It is plausible that commencing training at an increased age
reduces the narrow opportunity for tissue adaptation. Similarly,
commencing race training at a young age has been shown to
improve cortical bone density and hyaline cartilage of the third
carpal bone (21), third metacarpal and metatarsal bones (22)
and condyle size (22). Positive effects of early race training on
gait and kinematic parameters have also been reported (21, 23).
It is important that the loads encountered during racing are
experienced during training, to permit the functional adaptation
required for protection against injury (42, 93, 94).

Increasing the amount of rest before the training preparation
reduced the hazard of MSI. Whilst there are no other reports
specifically describing the association between rest periods and
MSI hazard, previous research has shown that when training has
resumed before the formation phase of remodelling is complete,
the hazard of injury is increased (67). This is due to reduced bone
strength because osteoclastic activity has weakened the structure
prior to the osteoblastic phase and deposition of replacement
bone (65, 66).

Increased use of non-ridden training modalities reduced the
hazard of DMD, but we failed to detect an effect on all MSI. The
difference in significance between injury types may because the
weight of the rider is a more important risk factor for DMD than

other types of MSI. Unfortunately, we were not able to measure
the weight of the riders. Other studies have also reported that
non-ridden exercise may reduce the hazard of MSI (63, 69, 95).

Males were significantly more likely than females to develop
DMD, although they were not at increased hazard of MSI overall.
Other studies have also reported a higher risk of DMD in
males (64). This finding is biologically plausible because males,
particularly entire colts, differ in body composition from females
being in general heavier and having proportionately greater
muscle mass than females. They are more likely to overwork
or misbehave during training, which increases the forces on the
dorsal cortex of the third metacarpal bone. The dorsal metacarpal
bonemay bemore susceptible to these increased forces than other
bones and joints.

Increasing dam parity also reduced the overall hazard of MSI,
although we failed to detect an effect for DMD. In contrast,
the only other study investigating dam parity as a risk factor
reported that the risk of fracture was lower for first foals (74). The
difference in findings may be attributed to the analytical methods
used. Verheyen et al. (74) used multivariable Poisson regression
analysis, adjusted for high-speed exercise, whereas in the current
study we used survival analysis, and the causal approach negated
adjustment for high-speed exercise. Furthermore, Verheyen et
al. (74) commented in their discussion that this finding was
contrary to their hypothesis. It is biologically plausible that
increasing dam parity could decrease the risk of MSI through
increasing birthweight and, therefore, increasing volumetric
bone mineral density. Multiparous mares are known to produce
foals with heavier birthweight than primiparous mares (96).
Heavier bodyweight is associated with a higher volumetric bone
density in human children (97), although this information is
not available for horses. Increased volumetric bone density is
protective for MSI in humans (98) and horses (99, 100).

The main strength of this study was detailed, high quality data
for a large number of risk factors, resulting from access to a l large
number of the trainers through personal interviews. Personal
interviews ensured that the data collected was both complete
and accurate, rather than relying on trainers to complete
standardised questionnaires (9, 101, 102). The prospective study
design with weekly data collection minimised the inherent
recall bias commonly associated with case-control studies (88).
Using a causal approach also provides appropriate adjustment of
variables in the statistical modelling approach (57, 58, 62).

The main limitation of this study is the inherent survival bias.
Furthermore, this population of 2-year-old horses represents
a subset of the Australian racing industry and our results
may not be globally applicable. Furthermore, our findings are
only applicable within the reported range of the exposure
variables. Extrapolating findings beyond this measured range is
inappropriate and potentially harmful.

CONCLUSION

The overall hazard of MSI was reduced with increasing
exposure to high-speed exercise, increased number of training
preparations, rest before the training preparation and increasing
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dam parity. The hazard of MSI was increased with increasing
age that training commenced. Thus, in this population, the
hazard of musculoskeletal injury is greatest for a subset of 2-
year-old horses that are born from uniparous mares, commence
training at a later age, are in their first training preparation, have
undertaken little high-speed exercise or had limited rest before
their training preparation. The hazard of DMDwas reduced with
increasing exposure to high-speed exercise, increased number of
training preparations and increased use of non-ridden exercise
modalities, while DMD hazard was increased with increasing
age that training commenced, and for males. Thus, in this
population, the hazard of dorsal metacarpal disease is greatest
for a subset of 2-year-old horses that are males, commence
training at a later age, are in their first training preparation,
have undertaken little high-speed exercise or had limited use
of non-ridden training modalities. Close monitoring of these
high-risk horses during their training program combined with
appropriate intervention could substantially reduce the impact
of MSI in 2-year-old Thoroughbred racehorses. Furthermore, an
understanding of how training methodologies affect the hazard
of MSI facilitates modification of training programs to mitigate
the impact of injury.
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