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Many infectious diseases in wildlife occur under quantifiable landscape ecological

patterns useful in facilitating epidemiological surveillance and management, though little

is known about prion diseases. Chronic wasting disease (CWD), a fatal prion disease

of the deer family Cervidae, currently affects white-tailed deer (Odocoileus virginianus)

populations in the Mid-Atlantic United States (US) and challenges wildlife veterinarians

and disease ecologists from its unclear mechanisms and associations within landscapes,

particularly in early phases of an outbreak when CWD detections are sparse. We

aimed to provide guidance for wildlife disease management by identifying the extent

to which CWD-positive cases can be reliably predicted from landscape conditions.

Using the CWD outbreak in Virginia, US from 2009 to early 2020 as a case study

system, we used diverse algorithms (e.g., principal components analysis, support vector

machines, kernel density estimation) and data partitioning methods to quantify remotely

sensed landscape conditions associated with CWD cases. We used various model

evaluation tools (e.g., AUC ratios, cumulative binomial testing, Jaccard similarity) to

assess predictions of disease transmission risk using independent CWD data. We further

examined model variation in the context of uncertainty. We provided significant support

that vegetation phenology data representing landscape conditions can predict and

map CWD transmission risk. Model predictions improved when incorporating inferred

home ranges instead of raw hunter-reported coordinates. Different data availability

scenarios identified variation among models. By showing that CWD could be predicted

and mapped, our project adds to the available tools for understanding the landscape

ecology of CWD transmission risk in free-ranging populations and natural conditions.

Our modeling framework and use of widely available landscape data foster replicability

for other wildlife diseases and study areas.
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INTRODUCTION

Effective wildlife disease management and control depends upon

epidemiological surveillance, though identifying geographic

locations where surveillance should be deployed can be

challenging and require extensive sampling regimes (1). More

recent advances in disease ecology and biogeography have
identified likely areas for pathogen presence from associations
between disease occurrence and landscape characteristics using
correlative methods (2, 3). Comprehensive protocols and
conceptual bases in landscape epidemiology have been well-
developed for diseases affecting humans and domestic animals
(4) but are still in development for wildlife (5). For example,
before the early 2010s, landscape epidemiology approaches
remained generally limited for prions (6). Prions are a group
of infectious pathogens that cause neurodegenerative diseases in
humans and animals (7). This perceived lag may be the result, at
least in part, to unclear origins of prion biology and the atypical
biological properties of prions with respect to other pathogens
(8). Moreover, because of their inextricable connection with hosts
and the unclear role of other animals in their propagation, prion
diseases remain a unique challenge in wildlife epidemiology (9).

Chronic wasting disease (CWD) is a prion disease of wildlife
(10). Identified in wild cervid populations in the western
United States (US) since the 1980s (11), CWDwas not detected in
eastern portions of the US until the early 2000s (12). High CWD
prevalences have been shown to diminish wild cervid population
viability (13, 14); therefore, monitoring and surveilling for the
highly contagious and invariably fatal disease is crucial for
wildlife management. Direct contact between susceptible and
infected cervids can transmit prions causing CWD (15, 16).
Also, prion contamination of the landscape through infected
hosts’ bodily fluids and tissues (9, 17) can indirectly transmit the
pathogen and complicate CWD control.

Most modeling efforts to reconstruct and predict CWD risk
factors related to CWD transmission have prioritized detailed
population-level assessments that have generated useful findings
for management (6, 18), which have led to unified, formalized
guidelines in the US (19). Importantly, recent work with agent-
based models have supported the use of management strategies
tailored to the phase of the CWD outbreak (20). Still, with respect
to population modeling, formal protocols for, and the role of,
the landscape has seen less attention in CWD epidemiology.
This disparity is probably because of high data demands for
manymodeling designs (6) and potential for regional or temporal
nuance (i.e., stage of the outbreak) to influence conclusions
on landscape risk factors and distributional predictions. For
example, recent research focused on the CWD cluster in the
Mid-Atlantic US (i.e., Maryland, Pennsylvania, Virginia, West
Virginia) identified forested landscapes to be negatively related
to CWD occurrence (12, 21); this finding contradicted patterns
in disease distributions found in the Midwestern US where CWD
was found to be positively related to forested landscapes (22,
23). Evans et al. (21) postulated that reduced CWD occurrence
in forested landscapes could be a CWD-landscape relationship
unique to the Mid-Atlantic or indicative of the early phase
of the outbreak, which may suggest that tailoring landscape

epidemiological modeling approaches to the phase of the
outbreak is warranted. Indeed, most CWD-landscapemodels rely
on contrasting environmental conditions from harvest locations
of both CWD-infected and CWD-not detected individuals
(6), which could make them sensitive to both diagnostic
imperfections and the stage of the outbreak (i.e., zero inflation).
Such sensitivities could potentially obscure our understanding of
CWD-landscape relationships and predicted distributions.

A black-box modeling framework in landscape epidemiology,
as discussed in Johnson et al. (24), is an analysis that aims
to detect major patterns or trends in disease phenomena even
if the mechanisms causing those patterns cannot be identified.
The framework uses locations of known disease cases as
occurrence data for model calibration and predicting disease
distributions when specific transmission mechanisms are not
entirely known and/or uncertainty exists in negative disease
results (24, 25), as is the case for CWD whereby positive
detections have better reliability (high specificity) than negative
results (26, 27). Often, data collected from remote sensing
technologies facilitate black-box landscape epidemiology by
acquiring environmental variables (e.g., vegetation phenology
data) (28) at local scales thatmay otherwise be unattainable in situ
or were not collected at the time of disease emergence (29–31).
There are three general components of black-box frameworks:
the epidemiological data (i.e., occurrence data), landscape data,
and the algorithm used to predict distributions (32), which
then require model evaluation of predictive performance. A
black-box framework is dependent on an algorithm being
selected, but the kind of algorithm selected should meet the
needs of the disease, data, and researchers’ questions. Black-
box frameworks rely on the assumption that recorded locations
of disease presence possess conditions associated with higher
risk for disease transmission, and thus can be used to predict
disease distributions. Nevertheless, black-box frameworks are
not immune to influence from sampling bias, similar to other
landscape models (33–36).

Presently, CWD is actively spreading in the Mid-Atlantic
US and refined guidance on CWD surveillance is critically
needed. For example, sustained active and passive surveillance
and monitoring effort throughout the state of Virginia has
identified increasing CWD burden in recent years (Figure 1).
We hypothesized that a black-box landscape epidemiology
framework can significantly predict areas suitable for CWD
transmission to guide prioritization of surveillance. In this
study, we test our hypothesis by utilizing an epidemiological
dataset from the state of Virginia and remote sensing vegetation
phenology data to identify the extent at which CWD in
Virginia can be reliably predicted. In light of sensitivity of
landscape models to sampling biases, we examined predictions
and model uncertainty under two assumptions from which
landscape conditions were determined: (i) observing vegetation
phenology variation at precisely reported harvest or sampling
locations, and (ii) evaluating phenology variation over a
generalized home range scale. With this analysis, we aim to
facilitate management decisions (e.g., disease management area
delineation), guide CWD surveillance, and assess the utility
of a widely accessible remote sensing variable using landscape
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FIGURE 1 | Natural history of chronic wasting disease in Virginia, US from 2007 to early 2020. (A) Virginia county colors represent average annual number of deer

samples ranging from no samples (white) to highest sampling intensity in Frederick County (dark red; ∼400 deer/year); mean cumulative number of samples is 143

white-tailed deer per county. In response to CWD detections, DWR increased sampling intensity and delineated disease management areas (dotted county lines). Our

case study area (dark gray rectangle) focused on the northern tip of Virginia and portions of Maryland, Pennsylvania, and West Virginia. (B) Stacked bar chart shows

sex ratios of CWD-positive cases from 2009 to 2019 hunting seasons. The apparent drop in the number of cases in 2019 is attributed to reallocation of DWR

resources to prioritize sampling in non-CWD endemic counties. (C) Bar chart shows prevalence in CWD endemic Frederick County from DMA1 increasing over time.

Details of higher prevalence values in some regions are lost due to administrative boundaries. (D) Horizontal bar chart shows hunter harvest as the predominant

sampling method, followed by testing roadkill and clinical suspect cases. Please note that hunting seasons begin in late calendar months (typically November) and

extend into early months of the following year.

epidemiology methods to predict a wildlife disease in the early
stages of a local outbreak.

MATERIALS AND METHODS

CWD in Virginia
Virginia Department of Wildlife Resources (DWR) began
testing free-ranging deer for CWD in 2002; however, active
surveillance was not formally initiated until 2005, after a
white-tailed deer (Odocoileus virginianus) tested positive for
CWD in neighboring West Virginia (37). Active, systematic
epidemiological monitoring has largely occurred in Virginia’s
disease management areas, which have been created in response
to CWD confirmations (Figure 1A). On the West Virginia

border, DWR detected the first CWD-positive deer in Virginia
in 2009, necessitating the creation of Disease Management Area
1 (DMA1). Presently, DMA1 located in northwestern Virginia, is
delineated by the political boundaries of Frederick, Shenandoah,
Clarke, and Warren counties (Figure 1A) (38). Subsequently,
DWR has identified increasing CWD incidence over time within
DMA1 (Figure 1B) with incidence being defined as the number
of new CWD-positive deer. More importantly, however, DWR
has documented increasing annual ratios of CWD-positive deer
to total deer tested, or prevalence, in localized, CWD-endemic
areas (i.e., locations over time within DMAs where DWR
determines CWD is established following review of cumulative
prevalence and distribution) (37) (Figure 1C), consistent with
the early phase of the outbreak (20). Sampling to date has been
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achieved through diverse sampling methods including active
surveillance via hunter harvest and roadkill sampling and passive
surveillance via the testing of clinically ill deer (Figure 1D).
In 2019, a second Disease Management Area (DMA2) was
developed in Culpeper, Madison, and Orange counties in
response to a CWD confirmation in Culpeper County.

Descriptions of Epidemiological and
Landscape Data
By March 2020, DWR reported 88 confirmed cases of CWD in
Virginia via postmortem extraction of medial retropharyngeal
lymph nodes (37) (Figure 1B). These data largely originated from
DMA1 hunting grids at 2.59 km2 spatial resolution. DWR also
confirmed the exact locations for each CWD-positive deer with
hunters and other reporting parties to reduce spatial uncertainty.
The majority of confirmed cases were collected from hunter
harvest; however, other sampling methods (e.g., clinical sign
euthanasia, roadkill, etc.; Figure 1D) identified a small number
of opportunistic confirmations. Preliminary CWD testing was
accomplished via using either enzyme-linked immunosorbent
assay (ELISA) or immunohistochemistry (IHC) for all samples
collected in Virginia. All confirmatory testing was accomplished
via IHC at the National Veterinary Services Laboratory, Ames,
Iowa (37, 39).

We used vegetation indices as surrogates of landscape
characteristics across space and time. Vegetation indices are
versatile remotely sensed metrics of photosynthetically active
radiation and vegetative evapotranspiration that consistently
identify and correlate with landscape patterns (40). More
specifically, we used the enhanced vegetation index (EVI)
due to its strong relationship with vegetative productivity,
elevation, temperature, precipitation, and soil characteristics
(41, 42), which have associations with CWD distributions.
Enhanced vegetation index also corrects for soil and atmospheric
interferences, while remaining sensitive to canopy-structured
evapotranspiration found in forested land cover types (30, 40,
43). We collected EVI-gridded raster data at 250-m spatial
resolution and 16-day temporal resolution from the MODIS
sensor in the Terra satellite of NASA using the MODIStsp R
package (44, 45). We collected EVI data from 2005 to early
2020, assuming CWD circulation at least 4 years before the first
detected case in Virginia (i.e., 2009), which corresponds to the
maximum incubation period in white-tailed deer (46).

Landscape Data Preparation
Spatial models in general are affected by the study area extent,
and should be meaningful in the context of the focal species
(47). Thus, we confined the case study area based on the
estimated movement potential (i.e., possible area accessible) of
CWD reservoirs (48). More specifically, we used dispersal, or
permanent movement away from a place of origin, due to its role
in extreme bouts of deer movement (49). Because the maximum
dispersal distance observed for white-tailed deer in Mid-Atlantic
US is 45 km (50), we used this distance as a radius around CWD-
positive cases, and took the dissolved union of circular buffers to
define the extent of our rectangular study area (Figure 2). Next,
we averaged individual 16-day EVI rasters to monthly pairs to

FIGURE 2 | Case study area delineation and current CWD distribution. Map

shows the case study area outline (gray rectangle) that was determined using

dissolved buffers (red line) of maximum dispersal distance (45 km) (50) around

positive cases (circles). Colored circles show quadrant organization of CWD

positives (n = 88) used in modeling in Virginia Department of Wildlife

Resources Disease Management Areas (DMA) 1 and 2 (gray polygons). This

case study area was used for acquiring landscape information (see modeling

workflow in Figure 3).

reduce data gaps in grid cells caused by cloud obstruction and
cropped rasters to the study area extent (Figure 3A).

We performed principal components analysis (PCA) on the
EVI raster data (Figure 3B) to reduce multicollinearity and
dimensionality in NicheA software (51). Principal component
analysis ensures orthogonality in predictor variables by
normalizing and transforming correlations found within data
into new synthetic dimensions called principal components
(PCs), which summarize both magnitude and direction of
variance by generating eigenvalues and eigenvectors, respectively
(52). Based on the long-term nature of our remote sensing data
(i.e., 176 months of EVI data), our PCA generated 176 PCs,
which were reduced to the first four statistically significant PCs—
explaining 67% of total variance—via the broken-stick method
(53). Significance was determined by whether the observed
eigenvalues exceed those generated from null theoretical
components (53–55). The first four PCs were used in our
modeling as rasterized dimensions in environmental space.

Epidemiological Data Preparation
Consistent withmentioned above, our black-box framework used
a data-driven identification of landscape conditions occupied by
confirmed CWD-positive cases (n = 88) in environmental space
(56). To validate models, we divided data into calibration (model
construction/training) and evaluation (model testing) sets in a
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FIGURE 3 | Workflow of black-box landscape epidemiology analysis. Workflow displays our black-box framework and evaluation procedure. (A) We collected

remotely sensed enhanced vegetation index (EVI) and cropped rasters to the extent of the maximum dispersal potential for our focal species as radii about disease

records (for details, see Figure 2). (B) We performed a principal component analysis on the EVI data to reduce multicolinearity and generate dimensions in analysis.

(C) Next, we selected only disease occurrence locations and partitioned data into geographic quadrants for calibration and evaluation datasets. (D) We extracted

principal component data from the PCA-generated raster stack at both Harvest Location (the single 250m × 250m raster pixel value corresponding to the precise

sampling coordinate) and Home Range scales (a summary of values from multiple 250m × 250m pixels surrounding precise sampling coordinate) inferred from the

home range size of focal species. (E) We developed 24 hypervolumes using Gaussian kernel density estimation and a one-class support vector machine for all six

quadrant combinations and both scales. (F) Each hypervolume was projected onto geography in the form of binary risk maps, but KDE hypervolumes were

additionally projected into continuous risk maps. (G) We used models to generate risk maps and evaluated models using methods appropriate for the projection:

cumulative binomial probability testing (for binary maps) (69) and partial ROC (for continuous maps) (68). To more rigorously test models, we penalized suitability

inherent to calibration data and restricted each map to evaluation dataset quadrants (represented by “×”).

50:50 ratio (Figure 3C). We partitioned our data geographically
rather than relying on random selection to avoid artificially
inflating models’ predictive performance (57). By partitioning
CWD cases into geographic quadrants using their reported
coordinates [i.e., 22 cases in each quadrant: northeast (NE),
northwest (NW), southeast (SE), southwest (SW); Figure 2], we
reduced spatial autocorrelation by ensuring spatial independence
between quadrants used in calibration and evaluation (58). We
tested all six combinations of paired quadrant arrangements in
unique iterations of model calibration and evaluation.

We investigated two scales fromwhich we extracted landscape
data from the four stacked rasters from the PCA, referred to
as Harvest Location1 and Home Range scales. For the Harvest
Location scale, we extracted CWD-associated landscape data
at the precise reported coordinates of CWD-positive deer
(i.e., eigenvalues of the PCs found in the 250×250m raster
cell containing the coordinate) for Harvest Location models

1Please note that the “Harvest Location” term simply describes the most precise

known location of sampled deer. The term was adopted because most cases

originated from hunter harvest, but in our use also includes positive cases

identified using other sampling methods (e.g., clinical sign euthanasia).

(Figure 3D). Yet, we assumed that simple harvest locations
might fail to encompass the range of landscape conditions
that motile white-tailed deer experienced, which could obscure
CWD-landscape relationships. In theHome Range scale—named
after the area most commonly inhabited for foraging, mating,
and parental care (59)—we constructed buffers of 1.2 km2 which
comprised multiple 250m × 250m raster cells surrounding
the same coordinates of CWD cases to represent local home
ranges (60) to capture a more generalized representation of
landscape relationships (Figure 3D). Then, we averaged the PCA
raster values found within the buffers constructed to generalize
variation at a broader scale. We used these averages at each
dimension as landscape data in Home Rangemodels.

Algorithm Selection and Model Calibration
We estimated the landscape conditions occupied by CWD-
infected deer based on detailed delineation of environmental
space occupied by cases (i.e., hypervolume), which can then
be projected onto geography (61). Hypervolume estimation
performance improves with use of a low number of continuous,
uncorrelated variables to avoid constraining its shape (62),
making our PCA landscape data preparation compatible with
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this algorithm selection in our black-box framework to identify
areas of disease transmission risk using only positive cases. We
determined the environments occupied by CWD cases using the
hypervolume package in R (63, 64).

We used the PCA data extracted at our two scales (i.e.,
Harvest Locations and Home Ranges) from all six possible
combinations of paired quadrants to be later evaluated with their
complementary evaluation datasets (Figure 3D). To determine
the environments occupied by cases, we developed hypervolume
models using two algorithms for more robust analysis: Gaussian
kernel density estimation (KDE) and one-class support vector
machines (SVM) (65). Both algorithms for hypervolumes
delineate environmental conditions where CWD transmission
would be more likely, influenced by the parameters for each
algorithm. In general, KDE uses kernel bandwidths, weighting
of the data, and quantile thresholds to perform a density
analysis in environmental space to delineate areas in the
hypervolume model with higher probability given the data
available (65). In contrast, SVM performs a cluster analysis
to fit a boundary around data in environmental space that
classifies conditions that should be similarly classified (i.e., “in”
and “out” of the hypervolume), but potentially unobserved,
requiring SVM to use smoothing parameter (γ ) and error rate (ν)
(65) (Figure 3E). Bandwidth selection in KDE determines how
tightly the estimated probability density function fits the data
in multivariate space (e.g., small bandwidth values yield high fit
to the data). We followed previous efforts supporting the use of
smoothed cross validation to determine KDE bandwidth for four
dimensional data (66), which also has been reported to reduce
predictive error in hypervolumes (65). Additionally, based on the
comprehensive surveillance of DWR, we allowed even weighting
of the data because we assumed each CWD case was equally
probable in describing environmental conditions. We assumed
a consistent quantile threshold of 95% (α = 0.05) to curtail the
KDE probability density to give the hypervolume its shape (2, 65).
Furthermore, we relied on the default SVMparameters of γ = 0.5
and ν = 0.1, based on their support found in literature (65).
Finally, we projected each of the 24 hypervolumes generated
from all quadrant combinations, algorithms, and scales (i.e., six
quadrant combinations at two scales for two algorithms) from
environmental space onto geographic space (Figure 3F) in the
form of risk maps for CWD transmission to evaluate models.

Model Evaluation
As mentioned above, model evaluations are needed to determine
the predictive abilities of algorithms in a black-box framework.
We evaluated predictive abilities in the 24 hypervolumes by
testing the hypothesis that, when projected in the form of risk
maps, hypervolume models are predicting CWD transmission
in landscapes that were independent of model calibration (i.e.,
evaluation quadrants) better than a random expectation. For
example, when the NE and SW quadrants were used for model
calibration, the NW and SE quadrants were used for evaluation,
and model predictions would be deemed statistically significant
if risk maps for evaluation quadrants appropriately predict risk
where known CWD cases have occurred (adopting α = 0.05)
(Figure 3G). We restricted risk map projections to the quadrants

independent of model calibration because model evaluation
methods that rely on the quantification of the proportion of areas
predicted as “suitable” for high risk (67) would be inherently
inflated in model calibration quadrants.

Evaluation methods were specific to type of geographic map
generated when projecting hypervolumes. Binary outputs (i.e.,
no risk = 0, risk = 1), for example, were the only option in
SVM-delineated hypervolumes due to the nature of classification;
however, we selected a fixed 95% threshold to generate binary
maps for hypervolumes delineated with KDE. For all binary
maps, we used a cumulative binomial probability distribution
accounting for the proportion of area predicted as “suitable”
for risk and the number of independent occurrence records
successfully being predicted by the map (2, 68). For model
projections of continuous probability from KDE, we used the
partial receiver operating characteristic (partial ROC) in the
ntbox RShiny application (69). Unlike more common ROC and
AUC evaluations dependent on presence/absence data, partial
ROC evaluates the relationship between model sensitivity in
relation to varying thresholds of proportional area predicted
with a user-defined error rate assumed from false negatives (67).
Specifically, we used 500 bootstrapping samples using 50% of
the complementary evaluation data of the models resampled
with replacement, accounting for a 5% error rate in omission
presumed from any errors in diagnostic methods. In partial
ROC, model evaluation interpretations are based on the ratio
between the model’s area under the partial ROC curve and a null
model, whereby ratio values >1 suggest model performance in
predicting independent data is better than a random expectation
(67). Furthermore, each bootstrap iteration resampling of the
evaluation data yields an AUC ratio; model performance is
determined to be better than random, and the null hypothesis
is rejected when ≥95% of the samples in this distribution
are >1 [for further clarification, software and example data,
please see (70)]. We compared predictive abilities between
scales by performing paired t-tests on the resampled AUC ratio
distributions, which allowed us to capture uncertainty among a
population of significance levels.

Uncertainty Estimation
To examine whether CWD occurred in consistent and
quantifiable vegetation phenology conditions, we examined
variation of hypervolume models from different data availability
scenarios as a proxy of uncertainty (55, 71, 72). More specifically,
we generated models with different magnitudes of CWD data to
determine whether CWD occurred in consistent environmental
conditions. This consistency was determined by measuring the
change in position and size of hypervolume models relative to
changes in CWD data. For both scales (Harvest Locations and
Home Ranges), we used an approach resembling a jackknife
(i.e., leave-one-out) by building multiple hypervolume models
iteratively removing single occurrence records (i.e., n – 1), which
is generally used in statistics to assess model variation (52, 58)
(Supplementary Figure 1A). To assess variation in hypervolume
models, we compared all leave-one-out hypervolume models
against a model using the full CWD dataset as a baseline. In
other words, a weak similarity (overlap) in the position and size
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TABLE 1 | Evaluation of binary suitability maps generated from both algorithms under all quadrant and scale combinations.

Calibration quad. Evaluation quad. Scale Successes Trials Proportion of suitable area p-value

KDE SVM KDE SVM KDE SVM

NE and NW SE and SW Harvest 38 19 44 0.675 0.167 0.001 <0.001

NE and SW NW and SE Harvest 40 21 44 0.707 0.251 <0.001 <0.001

NE and SE NW and SW Harvest 42 17 44 0.711 0.234 <0.001 0.007

NW and SW NE and SE Harvest 38 27 44 0.767 0.260 0.038 <0.001

NW and SE SW and NE Harvest 41 21 44 0.715 0.208 <0.001 <0.001

SW and SE NW and NE Harvest 44 22 44 0.710 0.289 <0.001 <0.001

NE and NW SE and SW Range 35 10 44 0.458 0.070 <0.001 <0.001

NE and SW NW and SE Range 33 15 44 0.527 0.147 0.001 <0.001

NE and SE NW and SW Range 34 13 44 0.495 0.127 <0.001 <0.001

NW and SW NE and SE Range 36 20 44 0.599 0.176 0.001 <0.001

NW and SE SW and NE Range 34 12 44 0.443 0.111 <0.001 <0.001

SW and SE NW and NE Range 34 13 44 0.467 0.133 <0.001 0.001

Cumulative binomial testing [following (68)] use the number of successes (i.e., number of coordinates of CWD cases that successfully occur within modeled suitable landscapes for

transmission risk), trials (i.e., total number of coordinates of CWD cases being tested from quadrants found in “Testing Quad”), and proportion of the area suitable for transmission

risk relative to the overall area to generate significance levels (i.e., p-values). Results from models that were delineated using two algorithms: kernel density estimation (KDE) and one-

class support vector machines (SVM) can be found within their respective columns. Note that all combinations of quadrants (rows) from data partitioning yielded statistically significant

predictions better than by random expectation (p < 0.05). Scale specifies whether models were delineated from data at Harvest Locations (HARVEST) or Home Ranges (RANGE) (for

explanation, see Figure 3).

between a leave-one-out hypervolume to the baseline would
indicate the removed record had strong influence in describing
phenology conditions for the baseline model. These similarity
metrics were determined using the Jaccard similarity index,
which calculates intersection of two hypervolume models (i.e.,
full data vs. leave-one-out) relative to their union, where values
of 0 indicate dissimilar models and 1 indicate identical models
(73) (Supplementary Figure 1B). Also, because similarity
metrics depend on their volume occupied in environmental
space, we examined variation in hypervolume model size by
calculating the volume for each leave-one-out hypervolume. By
assembling leave-one-out hypervolume models via averaging, we
generated single continuous risk maps at each scale that identify
areas where high-risk predictions were consistent among all
data availability scenarios for DWR use. Finally, we explored
differences in EVI signatures in consistent high risk areas
(i.e., areas where more than half of the leave-one-out models
identified probable risk) and less consistent risky areas (i.e., less
than half of the leave-one-out models identified probable risk)
by comparing mean and standard deviation of EVI over time.

RESULTS

Model Evaluation Results
Upon evaluation of the algorithms used in our black-box
framework, we found that both KDE and SVM algorithms
generated similarly statistically significant predictions of CWD
cases according to cumulative binomial probability testing
(Table 1). That is, for all iterations of different quadrant
combinations, model-generated binary maps predicting
CWD risk identified the areas where CWD-positive cases
which were independent from model calibration better
than random. Notably, models were statistically significant

at both scales despite the proportion of area projected as
suitable being higher in hypervolumes delineated from Harvest
Locations (Table 1). Similarly, when evaluating KDE-delineated
hypervolume projections of continuous risk outputs, partial
ROC and bootstrapping manipulations identified that most data
resampling resulted in models with AUC ratios >1 in all paired
quadrant combinations signifying predictive abilities clearly
better than random with respect to the estimated uncertainty
(Figure 4). Hypervolume models calibrated from Home Ranges
yielded significantly higher AUC ratios to those from Harvest
Locations [µ = 1.318 and 1.305, respectively; t(5,531) = 3.949,
p < 0.001]. The lowest AUC ratios observed occurred in the
iteration where the landscape conditions from CWD-positives
in the NE and NW quadrants at the Harvest Locations scale
were used in calibration. This iteration still had a mean AUC
ratio >1 (µ = 1.1), but as a whole did not predict better than
random expectation (p > 0.05) as >5% of the AUC ratios from
bootstrapping were <1 (Figure 4).

Uncertainty Estimation
We found considerable overlap in environmental space,
represented in Jaccard similarity among hypervolume models
with different magnitudes of CWD data (µ = 0.94 for Harvest
Locations and µ = 0.95 for Home Ranges; Figure 5A). Still,
Jaccard values of overlap were variable among iterations of data
availability scenarios (i.e., n – 1) both within and between scales,
where Jaccard values from Home Ranges were significantly
higher than Harvest Locations [t(87) = 3.632, p < 0.001]. We also
observed differences in calculated volumes in environmental
space (Figure 5B). Size (i.e., volume) from models built using
Home Ranges were generally smaller in volume [t(87) =−246.38,
p < 0.001] compared with Harvest Locations (Figure 5B). Next,
maps assembled from the leave-one-out hypervolume models
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FIGURE 4 | AUC ratio evaluation from partial ROC of continuous suitability maps in each geographic partition. Model evaluation according to different quadrants

configuration used for calibration. Half-violin and raw data distribution plots denote bootstrapped AUC ratios obtained from the evaluation quadrants (not used in

model calibration) for models based on Harvest Locations (gray) and Home Ranges (blue). Note that most configurations have AUC ratios >1, which is above the

threshold for random expectation (red line; p < 0.001), except for one Harvest Location model calibrated with the northeast and northwest quadrants with

non-significant predictions (p > 0.05). Ribbon abbreviations follow cardinal directions (i.e., NE, northeast; NW, northwest; SE, southeast; SW, southwest).

revealed areas of consistently predicted CWD transmission risk
was heterogeneous across the study area and between scales
(Figure 6). In general, mapped hypervolume models delineated
with data at Harvest Locations predicted CWD transmission
risk across broader extents of the study area (Figure 6). From
our exploratory analysis of EVI, we identified nearly identical
mean EVI values between areas predicted with consistent
high risk and those with less consistent risk, but we found
generally higher mean EVI values during the 129 Julian day
(early May) and lower standard deviation in EVI in areas with
consistent CWD transmission risk throughout most of the year
(Supplementary Figure 2).

DISCUSSION

Predicting where wildlife diseases may occur next is a challenging
pursuit that relies on careful collection of predictor variables,
epidemiological data, and consideration of the ecology of the
host species. Here, our black-box framework demonstrated
that using remotely sensed vegetation phenology data alone
can predict CWD transmission risk with statistical significance,
suggesting EVI could serve as another tool for predicting CWD
distributions in early outbreaks. Furthermore, we highlighted
that consideration of the ecology of the host species represented
through a home range can enhance understanding for a free-
ranging wildlife disease.

By using a method that accounts for independent evaluation
data and the area predicted with respect to the area available
(i.e., AUC ratio), we found quantitative support for the use
of landscape information to trace CWD transmission risk.
We quantified the extent to which CWD could be reliably
predicted on the landscape using our data-driven hypervolume
models delineated with both KDE and SVM. This predictive
ability was determined using the proportion of areas predicted
as risky under both binary and continuous risk projections.
We found that Home Range models that acknowledged the
host species’ ecology generated significantly different outcomes
in performance via AUC ratios than those developed from
landscape determinants at Harvest Locations. Specifically, Home
Range models yielded higher AUC ratios. We suspect this
finding is either a result of summarizing the heterogeneity in
EVI surrounding each CWD case in a framework compatible
with the landscape ecology of chronic diseases or compensates
for any discrepancies in spatial uncertainty related to hunting
grid resolution.

In the context of CWD in Virginia, our jackknife analysis
identified that every CWD case influences the amount of risk
predicted. Hypervolumes never reaching a complete overlap
(i.e., a Jaccard index value of 1) could suggest that variation
seen in environmental space with new CWD cases could
stem from disease non-equilibrium, meaning CWD current
distribution may not be exhausting its potential occupancy
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FIGURE 5 | Hypervolume variation and characteristics by scale. (A) Plots

show Jaccard’s similarity index between hypervolume sets of the full

CWD-positive dataset (n = 88) and those created from iteratively removing

one occurrence record (leave-one-out). Note that the models never reach a

Jaccard similarity index values at 1 denoted with dashed horizontal line, which

indicates a failure to reach complete overlap and identical position and size in

environmental space. (B) Half-violin plots and raw data distribution represent

volumes extracted from hypervolumes created from leave-one-out iterations.

Colors represent the scale for whether models were delineated from data at

Harvest Locations (gray) or Home Ranges (blue). Note that hypervolumes from

home ranges generally occupied smaller volumes in environmental space

despite equal sample sizes.

of environmental conditions (74). Under this finer-population
scale, this would not be surprising given what is known about
nearby CWD cases outside of Virginia withheld from this
analysis, the range of landscape conditions that CWD has
been identified worldwide (e.g., Scandinavia) (75), and the
environmental hardiness of prions in general. Results from our
uncertainty analysis identify that landscape conditions associated
with consistent high CWD transmission risk have been observed
consistently in portions of DMA1 and DMA2, where DWR has
conducted comprehensive sampling.

Consistently high-risk areas distant from known CWD cases
could suggest new landscapes for potential CWD establishment
assuming host dispersal is plausible, though human-associated
movement of infected cervids or tissues still threaten unpredicted
areas (13). Notably, we identified EVI variation associated with

consistent high CWD risk in Rappahannock County, which
remained outside disease management area delineation during
our study period (harvest seasons 2009–2019), and thus has
seen historically lower surveillance effort relative to neighboring
counties within DMAs (µ = 6 samples/year from 2007 to
2019). In light of these results, we would suggest that increased
surveillance during future harvest seasons with selective removal
of high-risk demographic groups or promoting convenience
sampling (e.g., roadkill deer) in consistently risky counties
could be prudent for management consideration and narrowing
surveillance within the geographic extent of the predicted risk
area (34, 76); the former action would also remain predicated
on public support considering its potential controversy among
hunters. We found some differences in EVI between consistent
high-risk and less consistent risk areas. Relative to less consistent
risk areas, consistent high-risk areas had marginally lower
variation in EVI in the late winter and higher mean EVI values
in the period in later spring. These periods are consistent with
the time of year corresponding to green-up and peak vegetative
maturity following green-up, respectively (77). Although formal
descriptive analysis to understand the mechanisms of green-
up and how it relates to CWD extended beyond the scope
of our predictive analysis, the avenue of research appears
important given what is known about how green-up relates
to ungulate behavior and biology (78, 79) and inspires future
research directions.

The strength of black-box approaches lies in their nature
of modeling the disease outbreaks sensu stricto, which can
elucidate landscape relationships for poorly known diseases
in humans and animals. Critical starting points in landscape
epidemiology of orthopoxviruses and filoviruses (31, 80) have
relied on black-box frameworks to support public health
interventions, for example. Still, despite the unclear ecology
of prions in the environment relative to other pathogens
(9), we found analysis of CWD outbreaks were surprisingly
withheld from black-box frameworks. This gap is likely related
to our team’s finding that landscape ecological approaches
in general have been less common relative to population-
level models in CWD research (6). In Virginia, our use
of EVI identified and predicted CWD distribution using
relatively few samples. Our approach might be particularly
constructive for elucidating high-risk areas in newly established
outbreaks when combined with weighted surveillance strategies
(20, 81), although identifying the minimum sample size
required with our approach remains beyond the scope of our
analysis. Through our work here, we provide evidence for
a complementary method that may precede more complex,
descriptive models focused on comparing relative influences of
specific landscape risk factors (e.g., logistic regression models,
Bayesian hierarchical models, and generalized linear models)
(21, 82, 83) that may depend on large sample sizes or well-
informed prior inferences (84). We further support the value
of n-dimensional hypervolumes in this landscape ecological
and landscape epidemiological research, which is a subject area
surprisingly withheld from the technique to our knowledge,
despite hypervolume’s functionality in ecological modeling of
species distributions and niches (61).
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FIGURE 6 | Maps of projected CWD transmission risk from uncertainty analysis. Risk maps identify areas determined with more consistent probable risk (red) and less

consistent risk (blue) for CWD transmission from jackknife analysis. We found more homogenous and widespread transmission risk being consistent among models

using (A) Harvest Locations compared with (B) Home Ranges. Note that counties with considerable transmission risk include Rappahannock County (white outlined

polygon). Lines indicate boundaries of states (thick black) and counties (thin black), while points (yellow circles) represent known CWD cases (n = 88). Overall, the

amount of area predicted as consistently risky was higher in models generated from Harvest Locations.

Our work presents methodology that is novel to CWD and
prion diseases in general. Yet, we recognize some inherent
limitations to our modeling. For example, hypervolume models
are data driven, therefore additional data from new CWD
cases could identify different patterns. Similarly, because of the
nature of black-box approaches, predictors could estimate risk
differently in different areas, but more research is needed to
understand mechanisms related to these differences. Relative to
other algorithms (i.e., Maxent), hypervolume algorithms also do
not provide strong extrapolation capabilities to areas outside of
the study area. Nevertheless, ourmethodology selection permits a
reduced number of parameters and their respective assumptions.
Furthermore, our data are reliant on diagnostic tests with
sensitivity noted for false negatives (39); however, the current
data yield patterns that can facilitate management decisions
and emphasize the strength of our presence-only modeling
protocol. We recognize the assumption of inferring home range
sizes surrounding CWD cases for model construction may be
simplistic relative to empirical data (e.g., GPS-collaring cervids,
integrating demographic differences in home ranges). Clearly,
such data demand resources, logistics, and ethical considerations
that may be prohibitive, sensitive to seasonality, restricted
to finer-scale landscapes, and contradictory to management
objectives (e.g., permitting CWD-infected cervids on the
landscape to understand changes in home range sizes and
dispersal) (85).

Past CWD landscape ecology research utilized numerous,
often static data sources for associating disease risk factors (e.g.,
national land cover datasets, human population densities) (6),
which generate useful results for descriptive modeling. Our
predictive case study serves to utilize a dataset spanning over
one decade with corresponding moderate spatial and temporal
resolution remote sensing data to predict CWD transmission
risk among dimensions of variation in environmental predictors.
Our finding that model performance improved from testing
broader-scale landscape conditions associated with a chronic
and cryptic disease represented as conditions present in potential
home ranges suggests an avenue for future research. For
instance, the occurrence of spatial “outlier” cases in CWD
epidemics could possess similar spatiotemporal conditions
in environmental space, or landscape models calibrated from
harvest locations may harbor bias in landscape relationships
similarly found in population-level studies (e.g., prevalence
estimates) (35). We show here that CWD was able to be
mapped using tools effective for other organisms, even
though CWD is caused by a very poorly known pathogen
(86). Indeed, until unified protocols to study the landscape
epidemiology of prion diseases are identified or even possible
to be generalizable, previous approaches have demanded
large, often prohibitive sample sizes to identify relationships
between CWD-positive and CWD not-detected cervids.
If modeling intentions are strictly predictive, our project
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provides evidence of the capacities of widely available and
standardized satellite-derived landscape data to reconstruct
CWD transmission risk in free-ranging populations under
natural conditions.
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