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Robust and reproducible protocols to efficiently reprogram adult canine cells to induced

pluripotent stem cells are still elusive. Somatic cell reprogramming requires global

chromatin remodeling that is finely orchestrated spatially and temporally. Histone

acetylation and deacetylation are key regulators of chromatin condensation, mediated

by histone acetyltransferases and histone deacetylases (HDACs), respectively. HDAC

inhibitors have been used to increase histone acetylation, chromatin accessibility, and

somatic cell reprogramming in human and mice cells. We hypothesized that inhibition of

HDACs in canine fibroblasts would increase their reprogramming efficiency by altering

the epigenomic landscape and enabling greater chromatin accessibility. We report that

a combined treatment of panobinostat (LBH589) and vitamin C effectively inhibits HDAC

function and increases histone acetylation in canine embryonic fibroblasts in vitro, with

no significant cytotoxic effects. We further determined the effect of this treatment on

global chromatin accessibility via Assay for Transposase-Accessible Chromatin using

sequencing. Finally, the treatment did not induce any significant increase in cellular

reprogramming efficiency. Although our data demonstrate that the unique epigenetic

landscape of canine cells does not make them amenable to cellular reprogramming

through the proposed treatment, it provides a rationale for a targeted, canine-specific,

reprogramming approach by enhancing the expression of transcription factors such

as CEBP.

Keywords: canine iPSC, embryonic fibroblasts, cellular reprogramming, HDAC inhibitors, ATAC sequencing

INTRODUCTION

Naturally occurring disease in companion dogs is a valuable resource for translational regenerative
medicine research. Pet dogs suffer from complex and multifactorial diseases such as diabetes
mellitus, cardiomyopathy, and cancer that mirror key clinical–pathological aspects of human
diseases (1, 2). Like humans, dogs have a diverse genetic background within the overall population,
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with certain diseases being more prevalent in specific breeds that
have greater genetic homogeneity (3). Moreover, pet dogs are
exposed to similar environmental factors as their owners, such
as a sedentary lifestyle, industrialized diets, and environmental
toxins that are key in the development of spontaneous diseases
(4). Finally, modern veterinary medicine offers an advanced
platform to conduct translational research partnering with dog
owners that are committed to providing excellent medical care
to their pets and veterinary medical professionals that are highly
specialized and have access to cutting-edge medical technology,
mirroring the human healthcare system. As such, spontaneous
diseases in dogs offer a realistic and complex translational
model system.

The discovery of induced pluripotent stem cells (iPSC) in
2006 was a major breakthrough that opened new approaches
to regenerative medicine by providing an unlimited source for
cell therapy, drug discovery, and disease modeling (5). iPSC
technology is well established in human and standard laboratory
animal (e.g., mouse and rat) cells; however, the induction and
stable maintenance of canine iPSCs is suboptimal and poorly
understood. Although reprogramming of canine somatic cells
to putative iPSCs has been described by several groups (6–10),
published protocols are inconsistent and poorly reproducible.
Moreover, resulting iPSCs are often poorly characterized and are
likely to represent partially reprogrammed cells, as only a few of
the canine iPSC publications demonstrate spontaneous in vivo
differentiation (i.e., teratoma formation), and the contribution of
canine iPSC to chimera formation has not been reported. Finally,
although in our hands and others, canine embryonic fibroblasts
(CEFs) are reprogrammable; adult fibroblasts remain resistant to
OCT4-SOX2-KLF4-MYC (OSKM)-induced reprogramming (11,
12). We found that adult fibroblasts have a more restrictive
genomic accessibility landscape compared with CEF that “locks”
adult cells in their somatic fate and prevents their reprogramming
and phenotypic switch (11).

In the course of reprogramming, the pioneering transcription
factors OSKM initiate the reprogramming process, which entails
marked chromatin remodeling (13). Reprogramming-associated
chromatin-remodeling induces cell-fate changes through initial,
middle, and maturation steps (14). Chromatin dynamic oscillates
from open to closed (OC) and closed to open (CO) at
different loci. To change the cell fate from somatic to a
pluripotent cell, loci that are associated with somatic fate
need to close (i.e., OC), whereas loci that are associated with
the pluripotency fate need to open (i.e., CO). Conditions
that alter the OC–CO dynamics impede reprogramming (15).
Chromatin accessibility is a crucial foundation for gene
expression changes during reprogramming. Histone acetylation
is a common form of posttranslational modification that
modulates gene expression. Acetylation results in a change in
chromatin conformation, which provides a potential for the
recruitment of different transcriptional factors. Mechanistically,
acetylation of core histones by histone acetyltransferases
weakens their interaction with DNA and results in increased
chromatin accessibility, whereas deacetylation of histones by
histone deacetylase (HDACs) increases the positive charges
on histones and, hence, strengthens histone–DNA interaction

and represses transcription (16). Histone lysine acetylation
is a dynamic process balanced by the enzymatic activity of
histone acetyltransferases and HDACs (16, 17). Acetylation of
histone H3K9, which inhibits the methylation of the same
residue, promotes H3K4 methylation. This process results in
chromatin relaxation and transcriptional activation. Conversely,
deacetylation of H3K9 by HDACs inhibits H3K4 methylation,
which results in transcriptional repression. Also, the acetylation
of histone H3K27 is an important enhancer mark that is
associated with active promoters inmammalian cells (18). Hence,
HDAC activity not only facilitates histone deacetylation but also
impacts the overall posttranslational lysine modification (16).
Various chromatin modification agents have been successfully
used to enable and/or improve the reprogramming of somatic
fibroblasts to iPSC in different species, including mice, pigs,
and humans (19–23). We hypothesized that inhibition of
histone deacetylation in canine fibroblasts enables efficient
reprogramming by altering the epigenomic landscape and
enabling greater chromatin accessibility. To test our hypothesis,
we screened several HDAC inhibitors (HDACis) and determined
their cytotoxic effect and their capacity to inhibit HDAC
activity and promote histone acetylation without negatively
impacting the proliferative rate. We identified that a low
dose of panobinostat (LBH589) effectively inhibited HDAC
activity without cytotoxicity. We determined how such a
treatment impacts global chromatin accessibility via Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-
seq). Our data revealed that chromatin accessibility in genomic
areas associated with biological processes such as signal
transduction, multicellular organism development, and DNA
binding transcription factor activity was most affected. Finally,
the proposed treatment did not increase the efficiency of
CEF reprogramming, likely reflecting the need for a more
refined approach. ATAC-seq data analysis further highlights
the numerous pathways and transcription factors altered
by our treatment and suggests a rationale for a targeted,
canine-specific, reprogramming approach. Overall, although
reprogramming efficiency was not increased, our data show that
panobinostat and vitamin C treatment induces wide chromatin
remodeling and that reprogramming may be enhanced by
CEBP, a reprogramming enhancing transcription factor that was
inhibited by our treatment and which its depletion was suggested
as a barrier to canine somatic cell reprogramming (11).

MATERIALS AND METHODS

All methods were carried out in accordance with relevant
guidelines and regulations. No in vivo experiments were included
in this study.

Cell Lines
CEF cell lines were derived from discarded embryos from
terminated pregnancies upon spaying procedure at the
University of California (UC), Davis, School of Veterinary
Medicine exactly as previously described by our group (11).
All protocols and procedures in this study were approved by
the University of California, Davis, Institutional Animal Care
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and Use Committee. Briefly, embryonic sacs were incised with
scalpels, the heads and viscera were removed, and the remaining
stromal tissue was minced. The minced tissue was digested
using 0.05% trypsin/ethylenediaminetetraacetic acid (Gibco) at
37◦C for 45min. The digested tissue was plated in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco) supplemented with
20% fetal bovine serum (Corning), 0.1-mM nonessential amino
acids (Gibco), 2-mM GlutaMax (Gibco), 100 U/ml penicillin,
and 100µg/ml streptomycin (Gibco). Cells were expanded and
frozen in liquid nitrogen.

Cytotoxicity Assay
CEFs (1 × 105) per condition were plated in duplicate
in 12-well plates. The next day, cells were treated with
different concentrations of HDACis ranging from nanomolar
to millimolar concentrations for 48 h. HDACis that were used
in this experiment were as follows: L-ascorbic acid (Sigma),
trichostatin A (Sigma), valproic acid sodium salt (Sigma),
sodium butyrate (Sigma), and panobinostat (LC Laboratories).
Cell number and viability were determined with a Muse Cell
Analyzer (Millipore), using theMuse Count and Viability dye per
manufacturer’s instructions.

MTS Assay: Colorimetric Quantification of
Viable Cells
CEFs (1 × 105) were plated in duplicate, in 12-well plates.
The next day, cells were treated with selected concentrations
of different HDACis for 72 h. To quantify cell proliferation, we
used the CellTiter 96 AQueous One Solution Cell Proliferation
Assay MTS (Promega) kit per the manufacturer’s instructions.
Briefly, after 72 h, 400 µl of MTS solution was added to each
well, plates were gently shaken to distribute the dye, and plates
were incubated at 37◦C for 1 h. Supernatant from each well was
transferred to black clear bottom 96-well plates to record the
absorbance at 490 nm using a 96-well plate reader (Molecular
Device Spectramax M2e). A standard curve for each experiment
was run, and the cell count was obtained by fitting the optical
density measurement into the standard curve equation.

Western Blot
Protein lysates from CEF cultures were prepared using
radioimmunoprecipitation assay lysis and extraction buffer
(both Thermo Scientific Pierce Protein Biology) supplemented
with Halt Protease Inhibitor Cocktail (Thermo Scientific
Pierce Protein Biology). Protein lysates were quantified using
colorimetric assay dye (Protein Dye Concentrate, Bio-Rad) and
were flash-frozen in liquid nitrogen (LN2) and stored at −80◦C
until further use. All protein samples (22 µg each) were routinely
separated in a 4–12% NuPAGE Bis-Tris mini-gel (Invitrogen)
using MOPS Running Buffer (Invitrogen) at 200V for 2 h
and then transferred to a polyvinylidene difluoride membrane
at 30V for 2 h. Membranes were blocked for 1 h with One
Block Western-CL Blocking Buffer (Genesee Scientific) and then
probed overnight at 4◦C, with the primary antibody in 5% bovine
serum albumin in Tris-buffered saline buffer. The following day,
blots were washed with Tris-buffered saline with 0.1% Tween-
20 detergent buffer and incubated in secondary antibodies in the

same blocking buffer for 1 h. For Histon H3, blots were stripped
with stripping buffer (Thermo Fisher) for 10min at room
temperature and blocked for 1 h followed by primary antibody
incubation as mentioned earlier. Primary (24–27) and secondary
(28) antibodies used are listed in Table 1. Blots were visualized
using a ProteinSimple Fluorchem E Imager. Immunoblots all
experienced the same transfer conditions, primary/secondary
antibody concentrations, and exposure times.

Lentivirus Production
OCT4-KLF4-SOX2-IRES-MYC (OKSIM) (29) plasmid, a gift
from José Cibelli (Addgene plasmid # 24603), was used
for lentivirus production. Plasmid identity was confirmed by
restriction enzyme digestion, and lentivirus packaging was
performed by the UC Davis Vector Core Facility (Stem Cell
Program, UC Davis Medical Center) using helper plasmids
Tat/Rev/Gag-Pol (psPAX2), VSV-G (pMD2.G), and Lonza
Ultraculture Packaging Media.

Histone Deacetylase Activity Assay
CEFs were treated with HDACi compounds for 48 h, as
described earlier. Nuclei were isolated and extracted from
1 × 107 cells according to the manufacturer’s instructions
(HistoneDeacetylase Activity kit, Abcam, ab156064) (30). Briefly,
cells were resuspended in 1ml of lysis buffer followed by
centrifugation over a 30% sucrose solution. Nuclei pellets
were washed and resuspended in an extraction buffer. Samples
were sonicated for 30 s (EpiShear Q120AM probe sonicator,
Active Motif) followed by a 30-min incubation on ice. The
supernatants (i.e., crude nuclear extracts) were flash-frozen in
LN2 and stored at −80◦C until further use. Small aliquots of
the supernatants were used to determine protein concentration
by the Bradford method using protein dye concentrate. All
experiments were carried out according to the manufacturer’s
instructions, following the two-step method and using the
controls provided by the kit. The fluorescence intensity was
measured in amicroplate fluorescence reader (Molecular Devices
FilterMax F3) at Excitation/Emission= 350–380/440–460 nm.

Reprogramming of Canine Embryonic
Fibroblast
CEF cells (0.6 × 105) (passage ≤ 2) were plated in six-well
plates on day−1 postinfection (pi). Cells were transduced on
day 0 with lentivirus (OKSIM), at a multiplicity of infection =

80 with 10 µg/ml Polybrene (Millipore) in complete DMEM
(Gibco) media. Media was replaced everyday pi with DMEM/F12
(Gibco) supplemented with 20% KnockOut Serum Replacement
(Gibco), 0.1-mM nonessential amino acid, 2-mM GlutaMax,
100 U/ml penicillin, and 100 µg/ml streptomycin (Pen/Strep),
0.075-mM β-mercaptoethanol (Sigma-Aldrich), 8 ng/ml bFGF,
and 10 ng/ml of LIF (Peprotech) with or without treatment
(panobinostat 1 nM and vitamin C 150 µM). Upon confluency,
between day 6 and 7 pi, cells were dissociated with TRypLE
Express (Gibco), and 2 × 105 cells were plated on each 10 -m
tissue culture plate with a feeder layer of 1 × 106 fresh irradiated
mouse embryonic fibroblast (iMEF) and the media replaced.
Colonies were counted between days 14 and 21 pi.
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TABLE 1 | Antibodies used for western blots.

Target Manufacturer Catalog no. Type Concentration

Primary antibodies

β-tubulin Cell signaling technology 2,146 Rabbit Monoclonal 1:1,000

Histone H3 Cell signaling technology 9,715 Rabbit Monoclonal 1:1,000

Lamin B1 Cell signaling technology 13,435 Rabbit Monoclonal 1:1,000

Acetyl-Histone H3 (Lys27) Cell signaling technology 9,927 Rabbit Monoclonal 1:1,000

Acetyl-Histone H3 (Lys9) Cell signaling technology 9,927 Rabbit Monoclonal 1:1,000

Secondary antibodies

Anti-rabbit IgG, HRP-linked antibody Cell signaling technology 7,074 1:5,000

Assay for Transposase-Accessible
Chromatin Using Sequencing Library
Preparation
CEF cells were plated in 10-cm plates overnight. One day after,
the media was replaced with DMEM complete medium with
or without treatment for 48 h. DNA libraries were prepared
exactly as previously described (11). Briefly, 5 × 104 cells
were lysed in cold lysis buffer, and the isolated nuclei pellets
were resuspended in the transposase reaction mix (Illumina)
and incubated for 60min at 37◦C, with agitation at 300 rpm.
Samples were purified using a MinElute column (Qiagen), and
the libraries were polymerase chain reaction-amplified using
SsoFast EvaGreen Supermix (Bio-Rad Laboratories) and Nextera
polymerase chain reaction primers. We determined optimal
library amplification exactly as previously described (11). All
libraries were amplified for a total of 15–21 cycles, as described
previously (11, 31, 32). We used Agencourt AMPure XP beads
(Beckman Coulter) to clean the libraries. Finally, libraries were
quantified in a BioAnalyzer 2100 (Agilent Technologies) and
sequenced in an Illumina HiSeq4000 system in a paired-end 150-
bp run. All the experiments were carried out two times and with
three different CEF cell lines.

Assay for Transposase-Accessible
Chromatin Using Sequencing Data
Analysis
The data preprocessing step, including fragment cleaning,
duplicate removal, adapter trimming, and pair-ended reads
overlapping, was done using HTStream (33). We kept only
unique reads mapping to a single genomic location and strand
in the CanFam3.1 canine genome assembly using Burrows–
Wheeler Alignment tools for alignment, SAMtools (34) for
filtering, and macs2 (35) for peak calling, as previously described
(11). Quality control was performed with HTStream and MultiQ
(36). We used deeptools (37) for creating BigWig files and npz
matrix files for the construction of principal component analysis
plots as previously described (11).

After alignment, the DiffBind (version 2.12.0) (38) package
in R was used, along with edgeR (version 3.26.8) (39) to call
differential binding sites (between treatment and control) while
taking the replicates into consideration. GREAT (version 4.0.4)
(40) was used to find the regulatory domains for each site and
then BEDTools (version 2.29.2) (41) to intersect those domains

with annotated genes. For differential openness analysis, the
binding sites were split into three categories for each comparison:
Sites with a positive log-fold change having a false discovery rate
(FDR) adjusted p < 0.05, sites with a negative log-fold change
having an FDR adjusted p < 0.05, and sites with an FDR adjusted
p ≥ 0.05.

We performed Pearson correlation distance calculation of
the differential openness data with Cluster 3.0 (42) and used
Java TreeView (43) for visualization to create the hierarchical
clustering graph as we previously described (11). Gene ontology
(GO) enrichment analyses of differential openness results were
conducted using Kolmogorov–Smirnov tests, as implemented in
the Bioconductor package topGO (44). Analyses were conducted
for the biological process, molecular function (MF), and cellular
component GO ontologies. We graphed the first 15 GO
terms with p < 0.05 from each of these major ontologies to
represent a view of the top GO terms enriched in our dataset.
Next, we used PANTHER (45) for GO term reclassification
of the genes annotated within the following GO terms of
interest: “Wnt-signaling pathway, “stem cell development,”
“histone H4 acetylation,” “regulation of cell differentiation,” “cell
population proliferation,” “regulation of telomere maintenance,”
“regulation of somatic stem cell population maintenance,”
“cell differentiation,” “histone binding,” and “signaling receptor
binding.” Genes with adjusted p < 0.05 were reclassified within
the “Pathway/TGF-β,” “Pathway/Wnt,” “Pathway/PDGF,” and
“MF/transcription regulator activity” GO classifications.

Transcription factor (TF) motif enrichment was examined
in the peaks that reached statistical significance (adjusted p <

0.05) for the differential openness analysis. Genomic sequence
was extracted for each site, per category, using BEDTools. The
extracted genomic sequence from the sites with a p ≥ 0.05 was
used as background data in an enrichment analysis performed
with HOMER (34) (version 4.10), running findMotifs.pl with
FASTA files (-fasta). We kept the first 25 enriched motifs found
with both p < 0.0001 and fold enrichment (FE = % target/%
background) over 1.2. We used GraphPad Prism 8 andMicrosoft
Powerpoint version 16.42 for figure presentation.

Alkaline Phosphatase Staining
Alkaline phosphatase (AP) activity was assessed using the
Alkaline Phosphatase Staining Kit II (StemGent) (46), according
to the manufacturer’s protocol. Images were captured under a
light microscope (Olympus) using ToupView software.
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Statistical Analyses
Data were evaluated for normal distribution using commercially
available software (GraphPad Prism 8). For data sets that
followed a normal distribution pattern, a one-way analysis of
variance with the Geisser–Greenhouse correction was used. A
nonparametric method, the Kruskal–Wallis test, was used for
data sets that did not follow a normal distribution pattern. The
two-stage step-up method of Benjamini, Krieger, and Yekutieli
(47) for controlling the FDR was used for multiple comparison
corrections across all the data sets. For all statistical tests, the FDR
adjusted p of <0.05 was considered statistically significant.

RESULTS

Identification of Noncytotoxic
Concentration Ranges of Histone
Deacetylase Inhibitors Compounds in
Canine Fibroblasts
To determine optimal HDAC inhibition, we first tested a wide
range of HDACi compounds and concentrations to identify
and narrow the range of concentrations in which the tested

compounds do not have a detrimental cytotoxic effect (Figure 1).
Concentrations higher than 1 × 101-nM panobinostat, 1 ×

106-nM valproic acid sodium salt (VPA), and 1 × 105-nM
sodium butyrate induced significant cytotoxicity. Trichostatin A
(TSA) was cytotoxic at all concentrations (Figure 1). We then
followed up with additional proliferation assays to define the
cytotoxic threshold more precisely (Figure 2). We found that 1-
nM panobinostat did not inhibit cell proliferation significantly
and was considered for further analysis.

Panobinostat Effectively Inhibits
Endogenous Histone Deacetylase and
Promotes Chromatin Acetylation
After determining CEF-specific cytotoxic concentrations, we
aimed to determine if these reported HDACi compounds
have an effective HDAC inhibitory effect in CEF. Our data
show that all the tested panobinostat concentrations (1, 5,
and 10 nM), as well as TSA concentrations (12.5, 25, and
50 nM), significantly reduced HDAC activity, whereas VPA and
sodium butyrate did not inhibit endogenous HDAC in the
tested concentrations (Figure 3). To compare acetylated histone

FIGURE 1 | Identification of noncytotoxic concentration ranges of HDACi compounds in CEF. CEFs were treated with a wide range of HDACi concentrations for 48 h.

Cells were counted, and data were normalized to non-treated control. Each experiment was conducted six times using three different CEF lines. Data are presented

as mean ± SEM. Two-stage step-up method of Benjamini, Krieger, and Yekutieli for controlling false discovery rate was used for multiple comparison corrections.

*False discovery rate adjusted p < 0.05.
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FIGURE 2 | Identification of a narrow range of HDACi concentration that does

not impact CEF proliferative rate. CEFs were treated with a narrow range of

HDACi concentrations for 72 h. Each experiment was conducted six times

using three different CEF lines. Data were normalized to non-treated control.

Data are presented as mean ± SEM. Two-stage step-up method of Benjamini,

Krieger, and Yekutieli for controlling false discovery rate was used for multiple

comparison corrections. *False discovery rate adjusted p < 0.05.

abundance between samples, we chose to determine H3K9 and
H3K27 acetylation due to their relevance to reprogramming.
Acetylated H3K27 (H3K27ac) distinguishes active from inactive
enhancers (48). Also, acetylation of H3K9 (H3K9ac) in
promoter areas has been broadly reported to facilitate gene
transcription (49). Our data illustrate that histone acetylation
was increased in CEF treated with TSA and panobinostat in
all tested concentrations (Figure 4). Altogether, although TSA
effectively inhibited endogenous HDAC and promoted histone
acetylation, only panobinostat treatment (1 nM) did not blunt
cell proliferation while effectively inhibiting HDAC activity and
promoting histone acetylation.

As a high proliferative rate facilitates cellular reprogramming,
we further investigated if the combination of vitamin C (ascorbic
acid) and panobinostat 1 nM promotes canine somatic cell
reprogramming. Vitamin C improves the speed and efficiency
of both mouse and human somatic cell reprogramming by
alleviating senescence and affecting the epigenetic landscape of
the adult cells. Specifically, it enhances the catalytic activity of
Jumonji-C domain-containing histone demethylases and ten-
eleven translocations and therefore promotes histone and DNA
demethylation in somatic cells. These events allow pluripotency
genes to be turned on while simultaneously erasing the epigenetic
memory of the adult cell state (50–52). We first tested a wide
range of concentrations of vitamin C, ranging from 1 nM to
100mM, and chose a range that was not only nontoxic but
also increased cell proliferation in CEF compared with the non-
treated control (Supplementary Figure 1). We further aimed
to determine if combining vitamin C with 1-nM panobinostat
could still promote cell proliferation, a key feature that is
supportive of effective reprogramming. We determined that
the combination of vitamin C and 1-nM panobinostat did not
decrease the proliferation rate. We hypothesized that treatment
of primary canine fibroblasts with HDACis increases global

histone acetylation and, subsequently, reprogramming efficiency.
Therefore, we investigated if adding vitamin C to the media
impacts the HDAC activity and histone acetylation alone and,
when combined with panobinostat, in the tested concentrations.
Adding the vitamin C to the media in the presence of 1-nM
panobinostat did not affect the HDAC activity and the histone
acetylation compared with 1-nM panobinostat without vitamin
C (Supplementary Figure 2).

Assay for Transposase-Accessible
Chromatin Using Sequencing Analysis
Identifies Consistent and Reproducible
Chromatin Accessibility Remodeling Upon
Treatment of Canine Embryonic Fibroblast
With Panobinostat and Vitamin C
We hypothesized that HDAC inhibition and augmented
chromatin acetylation would lax chromatin structure and enable
greater chromatin accessibility. To test our hypothesis, we studied
the changes in the chromatin accessibility landscape of CEF upon
treatment via ATAC-seq. We sequenced three different CEF cell
lines in duplicates, treated vs. non-treated.

The nucleosomal pattern of the sequenced ATAC-seq
library showed periodical peaks representing the expected
enrichment of mono-, di-, and tri-nucleosomes (∼200, 400,
and 600 bp, respectively, Figure 5A). Unsupervised hierarchical
clustering and heatmap comparisons of the ATAC-seq results
from control CEF vs. treated CEF suggested that consistent
chromatin accessibility changes occurred in response to
treatment (Figure 5B). The principal component analysis plot
illustrated that treated samples are mostly mapped on the right
side of the cartesian space and display a consistent distance
between non-treated controls and treated samples (Figure 5C).
GO term analysis demonstrated that the most significantly
overrepresented GO terms in treated samples were related
to cell differentiation, multicellular organism development,
regulation of transcription factors, DNA binding, and DNA
binding transcription factor activity (Supplementary Figure 3).
We investigated if the treatment group had a significantly
more accessible chromatin structure relative to the control
group across regulatory regions as previously described (40).
We reclassified the GO terms and reported a list of genes
associated with peaks with a significant adjusted p ≤ 0.05. Of
specific importance was the transforming growth factor (TGF)-β
superfamily secreted ligands TGFB1 and BMP4 that were
significantly more closed in the treatment group (Figure 5D).

TF bindingmotif analysis showed that several reprogramming
and cell identity-associated TF bindingmotifs, including TEAD4,
TEAD3, AP1, NFAT: AP1, AP2, CEBP, MEIS2, and NF-κB,
were enriched upon treatment (Figure 5E). Overall, our data
demonstrate that vitamin C and panobinostat treatment changed
the chromatin accessibility landscape of CEF consistently.
Moreover, it appears that our treatment uniquely targeted GO
terms and transcription factor binding motifs that may be critical
for cellular reprogramming, such as differentiation, development,
and regulation of transcription factors.
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FIGURE 3 | Assessment of HDAC activity in CEF upon HDACi treatment. HDAC activity of crude nuclear extract from 1 × 107 cells was determined in untreated cells

and HDACi treated CEF. Data are normalized to untreated control. Each experiment was conducted four times using two different CEF lines. Data are presented as

mean ± SEM. Two-stage step-up method of Benjamini, Krieger, and Yekutieli for controlling false discovery rate was used for multiple comparison corrections. *False

discovery rate adjusted p < 0.05.

Vitamin C and Panobinostat Treatment Did
Not Change the Reprogramming Efficiency
of Canine Embryonic Fibroblast
We had previously reported on the OSKM-mediated
reprogramming of CEF to putative canine iPSC using a
lentiviral vector (11). Given our findings, we wanted to
determine if panobinostat and vitamin C treatment can enhance
OSKM-mediated reprogramming efficiency in CEF. We treated
the lentivirus-infected CEF at three different time points. The
“Treatment” group was treated with vitamin C (150 µM) and
panobinostat (1 nM), vitamin C (150 µM) only, or panobinostat
(1 nM) only from day 1 pi and until the end of the experiment
when primary colonies were counted (14 to 15 days pi). The
“Early treatment group” was treated with the same compounds
and concentrations from day 1 to day 6 or 7 pi until cells were
passed on to an iMEF feeder layer. The “Late treatment” group
was treated with the same compounds and concentrations, but
treatment began after the cells were passed on to iMEF and
until the time point in which primary colonies were counted
(14 to 15 days pi). We did not see any significant difference in
reprogramming efficiency in any of our treatment protocols

(Figure 6). Our attempts to use panobinostat and vitamin C
treatment to facilitate OSKM-mediated reprogramming of adult
canine fibroblasts were further unsuccessful (data not shown).

DISCUSSION

Canine-specific somatic cell reprogramming regulators are
poorly understood, hindering the generation of robust and
reproducible canine somatic cell reprogramming protocols. Very
recently, two groups described the generation of canine iPSC and
have demonstrated teratoma formation (10, 53). Interestingly,
although both groups used very different reprogramming
protocols, both have used forskolin, a cAMP activator, in their
reprogramming media. Changing the chromatin landscape with
small molecule inhibitors of HDACs, DNA methyltransferases,
and histone methyltransferases all increased reprogramming
efficiencies in somatic cells of mice and humans (21, 51, 54).
Huangfu et al. reprogrammed primary human fibroblasts using
VPA, class I HDACi (55), and retroviral constructs harboring
the pluripotency TF OCT4, SOX2, and KLF4. They reported that
VPA treatment not only increased the number of iPSC colonies
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FIGURE 4 | HDACi effectively increases H3K9 and H3K27 histone acetylation in CEF. (A) All compounds showed an increase in acetylation of H3K9 (top) and

H3K27(bottom) by Western blot comparing with non-treated control band (red arrows are pointing at bands related to non-treated controls). β-tubulin was used as a

loading control. Blots were repeated two times using two different CEF lines. (B) Panobinostat 1-, 5-, and 10-nM treatment increased H3K9, H3K27 acetylation

compared with non-treated control (red arrows are pointing at bands related to non-treated controls). Total H3 and Lamin B1 were used as loading controls.

by 50-fold but also allowed efficient induction of iPSC cells
without the need to deliver c-MYC, a fundamental oncogene and
member of the classic OSKM reprogramming TFs.

Panobinostat is a pan-HDACi (55), specifically against classes
I, II, and IV, with low IC50. Panobinostat has been investigated
as an anticancer therapy for hematologic and solid tumors
in preclinical models and clinical use (55, 56). Dias et al.
investigated the cytotoxic effect of panobinostat in different
canine lymphoma cell lines (57). Consistent with our data, they
showed that both panobinostat and TSA exhibit antiproliferative
and cytotoxic activity at concentrations lower than their IC50,
5 and 67 nM, respectively (57). They also confirmed that
panobinostat treatment increases histone acetylation in vitro
(57). Here, we show that panobinostat treatment increased
histone acetylation on lysine 9 and 27. Within this framework,
we aimed to find a concentration of panobinostat that effectively
inhibits the HDAC activity without compromising cellular
proliferation. Our data confirm that the 1-nM concentration of
panobinostat is the optimal concentration to achieve our aim. To
improve the effectiveness of the treatment, we supplemented the
media with 150-µM vitamin C as many of the chemically defined
media contain vitamin C for its antioxidant properties, which
supports cell growth. Esteban et al. reported that adding vitamin
C to the culture medium alleviates cellular senescence during
reprogramming and, when combined with VPA, generated more
iPSC colonies. They concluded that vitamin C enhanced the
reprogramming of somatic cells to iPSCs in both mice and
humans (58). To the best of our knowledge, vitamin C does not
affect histone acetylation directly. To make sure adding vitamin
C does not negatively affect panobinostat’s HDACi activity,
we tested the proliferation rate, HDAC activity, and histone

acetylation when vitamin C was combined with panobinostat in
the tested concentrations (Supplementary Figure 2).We noticed
that adding vitamin C to our media helped the growth of canine
primary fibroblast. Because cell proliferation rate is important for
reprogramming, we kept the vitamin C in the composition of the
media. Consistent with the notion that chromatin accessibility
often coincides with an increase in gene expression in eukaryotes
(59, 60) and following the mouse and human somatic cell
trajectory toward reprogramming (15, 61, 62), we hypothesized
that HDACi treatment alters the global chromatin landscape,
increasing its accessibility and flexibility.

TF binding motif enrichment analysis of our data revealed
that upon the treatment, there was an enrichment of several
TF binding motifs, which play important roles in the process
of reprogramming. Some TF binding motifs that were enriched
in CEF after treatment, such as TEAD4 (63), TEAD3 (15), AP1
(15, 64), NFAT: AP1 (65), AP2 (66), CEBP (67, 68), MEIS2
(69), and NF-κB (70, 71) are involved in the establishment of
pluripotency. Specifically, the AP-1 family has previously been
reported to impede somatic cell reprogramming (15). Our data
indicate that panobinostat and vitamin C treatment closed the
AP-1 family binding motifs and opened AP-2 binding motifs.
Pastor et al. reported that AP-2 TF binding motifs are enriched
at the naïve pluripotent stage (72). They further reported that the
OCT4 enhancer region was enriched for one of the AP-2 family
member (TFAP2C) binding motifs, indicating that TFAP2C not
only established and maintained naïve pluripotency in human
cells but also regulated OCT4 expression (72).

Moreover, Di Stefano et al. described that CEBP co-expression
with OSKM increased the reprogramming efficiency of mouse B
cells to iPSCs by 11-fold (68). Our data demonstrate that CEBP
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FIGURE 5 | Remodeling chromatin accessibility upon treatment of CEF with panobinostat and vitamin C. (A) Nucleosomal pattern of sequenced library. (B)

Unsupervised hierarchical clustering and heatmap comparisons of ATAC-seq peaks from CEF vs. treated CEF. (C) Principal component analysis plot showing that

direction of data changed (two replicates, three CEF cell lines) upon treatment. (D) GO terms of interest reclassification by PANTHER. Genes with adjusted p < 0.05

reclassified within “Pathway/TGF-β,” “Pathway/Wnt,” “Pathway/PDGF,” and “MF/transcription regulator activity” GO classifications. Red: Genes of interest that

became closed upon treatment. Green: Genes of interest that became more open upon treatment. (E) TF motifs enrichment upon treatment.

binding motifs were closed by treatment, suggesting a decrease in
the functional capacity of this critical TF. Previous work from our
lab indicated that accessible CBEP binding motifs are enriched in

CEF and canine iPSC compared with adult fibroblasts, suggesting
that enhancing CBEP activity may promote canine somatic cell
reprogramming (11).
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FIGURE 6 | Panobinostat and vitamin C treatment did not change reprogramming efficiency of CEF. (A) Reprogramming efficiency as determined by number of

primary iPSC colonies formed, normalized to number of CEF plated. Data are presented as mean ± SEM. Experiment was conducted five times using two different

CEF cell lines for panobinostat 1 nM and vitamin C treatment group. Experiments were conducted three times for groups treated with panobinostat 1 nM only and

vitamin C only. We had three different treatment groups based on time that cells received treatment as follows: 1— “All the time T” group was treated with vitamin C

(150 µM) and panobinostat (1 nM) from day 1 pi and until end of experiment when primary colonies were counted (14–15 days pi). 2— “Early T” group was treated

with same compounds and concentrations from day 1 to 6 and 7 pi, until cells were passed on to an irradiated mouse embryonic fibroblast (iMEF) feeder layer. 3—

“Late T” group was treated with same compounds and concentrations, but treatment began after cells was passed on to iMEF and until time point in which primary

colonies were counted (14–15 days pi). (B) Top row: Morphology of ciPSC colonies comparing treatment at different time points. Bottom row: alkaline phosphatase

staining of ciPSC colonies treated at different timepoints.

Recently, Xing et al. demonstrated the role of TEAD4 as
an effector of reprogramming. Depletion of TEAD4 decreased
reprogramming efficiency and established the pivotal role of
TEAD4 at the intermediate and late stages of reprogramming
(63). Our data indicate that panobinostat and vitamin C
treatment closed TEAD4 binding motifs. Overexpression of
TEAD4 could potentially enable more efficient reprogramming
of the CEF.

TF-induced reprogramming has to achieve two key tasks,
namely the extinction of the somatic program, which is
maintained by counteracting TFs, and the induction of a stable
pluripotent state. Our study illustrates that panobinostat and
vitamin C treatment of CEF contributes to the openness and
closeness of related TF binding motifs that are crucial in
pluripotency. As such, our data create a roadmap proposing
potential candidate genes for inhibition or activation to improve
the reproducibility of canine iPSC reprogramming.

Finally, treatment of CEF with HDACi did not improve
CEF reprogramming efficiency, indicating that global HDAC
inhibition does not promote somatic cell reprogramming in the
dog and that a more targeted approach is required. Consistent
with our findings, Kim et al. showed that treating canine oocytes
with suberoylanilide hydroxamic acid, an HDACi, in an effort to

increase somatic cell nuclear transfer efficacy in the context of
cloning, increased the acetylation of H3K9 but did not improve
cloning efficiency (73). These collective observations may suggest
that although histone acetylation can be readily enhanced in
canine cells, other factors (i.e., such as histone/DNAmethylation)
or activation of specific genomic targets are likely to be required
for canine somatic cell reprogramming.

Overall, these findings indicate that the exposure of CEF
to panobinostat and vitamin C alters the expression of DNA-
binding, chromatin-binding, and signaling factors, many of
which are associated with the acquisition of pluripotency.
Interestingly, this alteration in chromatin accessibility landscape
did not increase the reprogramming efficiency, exemplifying
the unique canine epigenomic landscape. Our data further
highlight candidate pathways and specific TFs that function as
reprogramming barriers, which could be targeted to enhance
canine-specific somatic cell reprogramming in future studies.
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