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Purpose: This study was conducted to develop a deep learning-based automatic

segmentation (DLBAS) model of head and neck organs for radiotherapy (RT) in dogs,

and to evaluate the feasibility for delineating the RT planning.

Materials and Methods: The segmentation indicated that there were potentially 15

organs at risk (OARs) in the head and neck of dogs. Post-contrast computed tomography

(CT) was performed in 90 dogs. The training and validation sets comprised 80 CT

data sets, including 20 test sets. The accuracy of the segmentation was assessed

using both the Dice similarity coefficient (DSC) and the Hausdorff distance (HD), and

by referencing the expert contours as the ground truth. An additional 10 clinical test sets

with relatively large displacement or deformation of organs were selected for verification

in cancer patients. To evaluate the applicability in cancer patients, and the impact of

expert intervention, three methods–HA, DLBAS, and the readjustment of the predicted

data obtained via the DLBAS of the clinical test sets (HA_DLBAS)–were compared.

Results: The DLBAS model (in the 20 test sets) showed reliable DSC and HD values;

it also had a short contouring time of ∼3 s. The average (mean ± standard deviation)

DSC (0.83 ± 0.04) and HD (2.71 ± 1.01mm) values were similar to those of previous

human studies. The DLBAS was highly accurate and had no large displacement of head

and neck organs. However, the DLBAS in the 10 clinical test sets showed lower DSC

(0.78 ± 0.11) and higher HD (4.30 ± 3.69mm) values than those of the test sets. The

HA_DLBASwas comparable to both the HA (DSC: 0.85± 0.06 andHD: 2.74± 1.18mm)

and DLBAS presented better comparison metrics and decreased statistical deviations

(DSC: 0.94 ± 0.03 and HD: 2.30 ± 0.41mm). In addition, the contouring time of

HA_DLBAS (30min) was less than that of HA (80 min).

Conclusion: In conclusion, HA_DLBAS method and the proposed DLBAS was highly

consistent and robust in its performance. Thus, DLBAS has great potential as a single or

supportive tool to the key process in RT planning.

Keywords: radiation therapy, deep-learning-based automatic segmentation, head and neck cancer, dog head and

neck, artificial intelligence
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INTRODUCTION

Radiation therapy (RT) is one of the methods for cancer
treatment that utilizes beams of intense energy to eliminate
cancer cells. The use of RT in clinical practice has evolved over

a long period (1). Veterinary facilities are both small in size and

number when compared to that of human medicine facilities.

Nevertheless, the clinical utilization of RT has increased in recent
decades (2, 3).

Several procedures are used in RT, and organ segmentation

is a prerequisite for quantitative analysis and RT planning
(4). Organ segmentation is achieved by delineating along the
boundaries of the organs at risk (OARs) and clinical target
volumes (CTVs). The delineating process is commonly referred
to as contouring (5). Currently, segmentations are manually
achieved by experts during RT planning, especially, the three-
dimensional conformal and intensity-modulated RT, as they
require more accurate delineation of the CTVs and OARs (3,
6). However, delineation is challenging and time-consuming
owing to the complexity of the structures involved. Moreover,
this procedure requires considerable attention to detail and
expertise in anatomy and imaging modality. Thus, this limits
the sample size that can be analyzed properly (3, 6, 7).
Furthermore, the outcome strongly depends on the skill of
the observer, and hence a significant amount of inter-observer
variation exists (8). A previous study showed that the contours
from multiple observers overlapped with up to 60% of volume
variations that could lead to substantial variations in RT
planning (9). Practitioners in human medicine have overcome
these limitations by using auto-segmentation techniques, which
have gained significant attention for their potential use in
routine clinical workflows (3). The current main research
focus of RT is deep-learning-based auto-segmentation (DLBAS);
this is the most recent method for automatic segmentation
(3, 10–21).

In this study, DLBAS was conducted on the head and neck
of dogs and subsequently compared to that of humans. Head
and neck cancers in dogs and humans are relatively common
and are often critical. Although the types of tumors developed
frequently differ, the resulting cancer is still common. In dogs,
it accounts for 7.2% of the tumors that occur. In humans, it
was the seventh most common cancer globally in 2018. In the
United States, it constitutes 3 and 1.5% of all cancer cases and
deaths, respectively (22–24).

In human medicine, treatment of the head and neck
cancer involves a surgical approach, RT and chemotherapy.
These are performed either alone or in various combinations.
Depending on the stage of the disease, anatomical site, or
surgical accessibility, different treatments are chosen to ensure
the optimal outcome and survival rate. In most cancer cases,
RT is an essential option (23–27). In veterinary medicine,
RT is also indicated in cancers where surgical access is
difficult, with head and neck cancer accounting for a large
proportion. Therefore, there are also some previous RT studies
in veterinary medicine. However, unlike these previous studies,
this study focuses on segmentation, the prerequisite process
of RT (22, 28–31). This is because studies of automatic

FIGURE 1 | Measurement of the cephalic index. For measuring the cephalic

index, skull width is measured between the left and right zygomatic arch. The

skull length is measured from the nose tip to the occipital protuberance. The

cephalic index is calculated as skull width/skull length. Here, the cephalic

index of this dog is 0.57.

segmentation in dogs, particularly DLBAS, are insufficient
(10–13, 15, 16).

The study developed an auto-segmentation tool using deep
learning and evaluated the feasibility of the DLBAS method used
for delineating RT planning for head and neck organs in dogs.

MATERIALS AND METHODS

CT Image
The study was performed on the head and neck organs of
90 dogs referred to the Veterinary Medical Teaching Hospital,
Konkuk University, from August 2015 to January 2021. The
computed tomography (CT) data of 80 dogs were collected
using a 4-channel helical CT scanner (LightSpeed R©, GE
Healthcare, Milwaukee, Wisc., USA). The CT data of 10 dogs
were transmitted from other animal hospitals; the data were
collected using 16-channel helical CT scanners. Post-contrast
CT data were selected for this study. Dogs were positioned
in sternal recumbency. Images were obtained with controlled
respiration to minimize the artifacts caused by breathing. The
acquisition parameters were as follows, depending on the
size of the dog: kVp, 120; mA, 100–300; slice thickness and
interval, 1.25–2.5 mm.

Classifications included are ages, body weight, skull patterns,
cephalic index, and the presence of lesions in head and neck
organs. Skull patterns of dogs were further divided into three
categories: brachycephalic, mesocephalic, and dolichocephalic.
The cephalic index was added as a criterion for a more
objective evaluation.

Head width and length were measured to calculate the
cephalic index; cephalic index = head width/head length
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FIGURE 2 | The architecture of the proposed fully convolutional DenseNet.

(Figure 1). All cephalic index values were measured using the
reconstructed image of the head based on CT data.

The segmentation list for this study was prepared by
considering potential organs at risk (OARs) in the heads and
necks of dogs. It included various types of OARs: the eyes, lens,
cochlea, temporomandibular joint, mandibular salivary gland,
parotid salivary gland, pharynx and larynx, brain, and spinal
cord. The region of interest (ROI) of this study was the second
cervical vertebral level.

Deep Learning-Based Automatic
Segmentation
In this study, CT data from a total of 90 dogs were used. To
develop the DLBAS algorithm, data from 80 dogs were included,
60 as training and validation sets and 20 as test sets. In addition,
10 clinical test sets were included for the evaluation of clinical
feasibility. The expert contours used as ground truth for the
90 dogs were manually delineated by a single radiologist who
has completed a master course in veterinary medical imaging.
Radiologist worked as a radiologist for 2 years. For the 10 clinical
test sets, two radiologists were added for the study. One of the
radiologists completed a doctoral course in veterinary medical
imaging and worked as a radiologist for 4 years and teaches
veterinary anatomy at Konkuk University in Korea. Another
radiologist is in the doctoral course of veterinarymedical imaging
and completed a master’s course in veterinary surgery. This
radiologist worked as a surgeon and radiologist for 4 and 2
years, respectively.

To ensure a robust network, the network fully matched
the resolution of the CT image and adjusted the Hounsfield

unit ([−100, 700] to [−1.0, 1.0]). The CT image was
normalized to 1.0× 1.0× 3.0 mm3.

A two-step, three-dimensional (3D) fully convolutional
DenseNet was developed to automatically contour the target
structures, as originally proposed by Jegou et al. (32). The fully
convolutional DenseNet network was trained on a computer
equipped with a graphic processing unit (NVIDIA TITAN RTX
GPU) with Tensor-flow 2.4.1 in Python 3.6.8. The two-step
segmentation is namely localization and ROI segmentation. In
the first step, each OAR was cropped concurrently through
multilabel segmentation around each ROI in the preprocessed
images. The localization model is preformed automatically. In
the localization process, x, y, z directions were downsampled
to half the reduction of image resolution. In the second step,
each label segmentation was used for OAR from the first step.
To minimize the margin of outside volume, all the x, y, z
sizes were calculated, and each ROI segmentation volume was
cut off. In the end, single-label segmentation was trained with
the ROIs.

The fully convolutional DenseNet architecture consists of
dense blocks similar to the residual blocks in a U-Net architecture
(Figure 2). Following the convolution layer, the transition down
layers consists of batch normalization, rectified linear units,
1 × 1 convolution, dropout (p = 0.2), and a 2 × 2 max-
pooling operation. The skip connection components represent
the concatenation of the feature maps from the downsampling
path with those in the upsampling path, thereby ensuring a high-
resolution output. Finally, the transition up layers consists of 3×
3 deconvolutions with a stride of two to progressively recover the
spatial resolution.
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Comparison Metrics
To test the accuracy of each segmentation model, 20 test sets
and 10 clinical test sets were assessed with the Dice similarity
coefficient (DSC) and the 95% Hausdorff distance (HD). A single
radiologist delineated the manual contours; these were used as
ground truths. The DSC metric quantifies the closeness of the
automated and expert contours by dividing double the overlap
of the two contours by the sum of their volumes (33), as follows:

DSC =
2(A ∩ B)

|A| + |B|

The range of DSC is [0,1]. A DSC of zero indicates no spatial
overlap between two contours while one indicates an impeccable
match. In this study, a minimal DSC of 0.75 was considered an
acceptable match.

H(A,B) = max{h(A,B), h(B,A)}

The surface distance of two contours at metric space is measured
by the HD by calculating the maximum distance between a point
in one contour and the closest point in the other contour.

The calculation of the 95th percentile of the distances between
one contour and the other contour is denoted as HD95 (34).

Evaluation of Clinical Feasibility
The DLBAS was trained on ground truth from annotator one.
The proposed DLBAS was also evaluated for availability in cancer
patients. The 10 clinical test sets were formed with a relatively
large displacement of segmentations with mass or inflammation
for verification in cancer patients. These clinical test sets were
used to verify the network by comparing the results of DLBAS
with the ground truth.

The proposed DLBAS was assessed by using comparison
metrics, these were the DSC and HD metrics. The mean values
and standard deviations (SD) were recorded for evaluation.

The clinical test sets were delineated by three radiologists
as human annotators. Annotator one delineated segmentations
manually; these were used as ground truth for the evaluation. In
addition, segmentations delineated by the other annotators were
assessed as HAs.

Three methods were included for this evaluation, the DLBAS
predictions, the two HAs, and the two HAs with additional
readjustments to the DLBAS predictions (HA_DLBASs). The
DLBAS predicted the segmentations of 10 clinical test sets
based on the ground truth. The HA_DLBASs were conducted
by two annotators based on the predicted data of DLBAS.
The two annotators only readjusted data that the DLBAS
predicted inaccurately.

For analysis, DLBAS predictions, two HAs, and two
HA_DLBASs were evaluated with comparison metrics.
Comparison metrics included the DSC, HD, and contouring
time. The accuracy and consistency were evaluated with mean
values and SD, respectively.

The production times of DLBAS, HAs, and HA_DLBASs
were recorded for the overall 15 OARs for efficacy evaluation.
The production time of each method was measured in a
different process.

TABLE 1 | Distribution of numbers and proportions according to variables.

Variables Number (%)

Total Training &

validation set

Test set Clinical

test set

90 60 20 10

Age (years)

0 ∼ 3 14 (15.6) 10 (16.7) 3 (15.0) 1 (10.0)

3 ∼ 6 10 (11.1) 8 (13.3) 1 (5.0) 1 (10.0)

6 ∼ 10 45 (50.0) 30 (50.0) 11 (55.0) 4 (40.0)

10 ∼ 21 (23.3) 12 (20.0) 5 (25.0) 4 (40.0)

Weight (kg)

1 ∼ 10 71 (78.9) 47 (78.3) 15 (75.0) 9 (90.0)

10 ∼ 20 11 (12.3) 7 (11.7) 4 (20.0) -

20 ∼ 30 6 (6.6) 4 (6.7) 1 (5.0) 1 (10.0)

30 ∼ 2 (2.2) 2 (3.3) - -

Cephalic index

(W/L)

0.4 ∼ 0.5 4 (2.2) 2 (3.3) 2(10.0) -

0.5 ∼ 0.6 31 (36.7) 24 (40.0) 3 (15.0) 4 (40.0)

0.6 ∼ 0.7 35 (38.9) 27 (45.0) 5 (25.0) 3 (30.0)

0.7 ∼ 20 (22.2) 7 (11.7) 10 (50.0) 3 (30.0)

Skull pattern

Mesocephalic 59 (65.6) 41 (68.3) 11 (55.0) 7 (70.0)

Brachycephalic 17 (18.9) 6 (10.0) 9 (45.0) 2 (20.0)

Dolichocephalic 14 (15.5) 13 (21.6) - 1 (10.0)

Presence of lesions

Absence 63 (80.0) 54 (95.0) 9 (45.0) 0 (0.0)

Presence 27a (20.0) 6b (5.0) 11c (55.0) 10d (100.0)

W/L, skull width/skull length; aoral tumor, n = 7; nasal tumor, n = 6; otitis, n = 4; cervical

tumor, n = 2, ear canal tumor, n = 2; mandibular tumor, n = 1; maxillary tumor, n = 1;

orbital tumor, n = 1; sialadenitis, n = 1; sialocele, n = 1; zygomatic none tumor, n = 1;
boral tumor, n = 3; otitis, n = 2; ear canal tumor, n = 1; coral tumor, n = 4; cervical tumor,

n = 1; maxillary tumor, n = 1; nasal tumor, n = 1; orbital tumor, n = 1; otitis, n = 1;

sialadenitis, n = 1; zygomatic bone tumor, n = 1; dcervical tumor, n = 1; ear canal tumor,

n = 1; mandibular tumor, n = 1; nasal tumor, n = 5, otitis, n = 1; sialocele, n = 1.

(1) DLBAS: Only the time for running each OAR was recorded;
the time spent for pre-processing and training was excluded.

(2) HAs: The time recorded started at the beginning of the
contouring and finished at the end of the CT image.

(3) HA_DLBASs: Based on the DLBAS predicted contours, we
recorded the time spent to correct the contours.

RESULTS

This study included two variables, depending on the skull
shape, cephalic index, and skull patterns. For the skull pattern,
more than half of the dogs (59) had mesocephalic skulls,
while 17 and 14 dogs had brachycephalic and dolichocephalic
skulls, respectively. The cephalic index of 90 dogs measured
ranged from 0.46 to 0.91, with an average value of 0.6.
According to the cephalic index, data were divided into four
ranges, with intervals of 0.1. The modal range (35) was
0.6–0.7 (Table 1).
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TABLE 2 | Accuracy correlation according to variables in the test set.

Variables Score (mean ± SD)

DSC HD (mm)

0.83 ± 0.01 2.71 ± 0.31

Age (years)

0 ∼ 3 0.83 2.91

3 ∼ 6 0.83 2.75

6 ∼ 10 0.83 2.68

10 ∼ 0.83 2.63

Weight (kg)

1 ∼ 10 0.83 2.75

10 ∼ 20 0.84 2.56

20 ∼ 30 0.82 2.61

30 ∼ - -

Cephalic index (W/L)

0.4 ∼ 0.5 0.83 2.44

0.5 ∼ 0.6 0.62 1.99

0.6 ∼ 0.7 0.84 2.80

0.7 ∼ 0.75 2.48

Skull pattern

Mesocephalic 0.84 2.69

Brachycephalic 0.82 2.73

Dolichocephalic - -

Lesion

Presence 0.83 2.76

Absence 0.83 2.67

SD, standard deviation; DSC, Dice similarity coefficient; HD, Hausdorff distance; W/L, skull

width/skull length.

Table 2 showed that most of the relations of the variables had
no difference compared to mean DSC and mean HD (Table 2).
The average DSC and HD values were 0.83 ± 0.01 and 2.71
± 0.31mm, respectively. All the age ranges had the same DSC
of 0.83. It also showed approximate results for a mean HD of
2.71. Most of the other variables, such as weight, skull pattern,
and presence of lesion also showed no significant difference
from the average. On the other hand, the cephalic index was
significantly different (0.21) from the mean DSC (0.62) for
the range 0.5–0.6. Furthermore, the mean HD also showed a
significant difference (0.72).

The right eye among 15 OARs showed the highest accuracy.
The mean DSC was 0.93 and the mean HD was 1.80. The lowest
accuracy was recorded for the left parotid salivary gland, with
0.72 and 3.88. The DLBAS model showed reliable DSC, HD
values, and also a short contouring time of∼3 s for all OARs. The
performance of the DLBAS is shown in many slices (Figure 3).
The average DSC, HD, and SD about each OAR are displayed in
the boxplots (Figure 4). The average DSC and HD values were
0.83± 0.01 and 2.71± 0.31mm, respectively.

In this study, except for the right cochlear and bilateral parotid
salivary gland, all OARs exceeded the DSC value of 0.79. In
addition to the bilateral parotid salivary gland, three OARs, the
brain, pharynx and larynx, and spinal cord showed an inaccurate
HD value of 3.18.

Using the proposed DLBAS, DSC and HD values were
obtained for all clinical test sets (Tables 3, 4). All variables were
calculated using the manual contours of HA one as the ground
truth. The DLBAS of the clinical test sets showed lower DSC
(0.78 ± 0.11) and higher HD (4.30 ± 3.30mm) values compared
to the test sets. The lowest accuracy recorded among the OARs
for the DSC and HD was right cochlear (0.50 ± 0.28) and left
parotid salivary gland (7.01± 8.67mm), respectively. The highest
accuracy recorded for the DSC and HD was the brain (0.90 ±

0.11) and the right eye (2.00± 0.71mm), respectively.
The results were split into two groups. Group 1 showed low

accuracy, while group 2 showed high accuracy. Group 1 included
four out of the ten clinical test sets, while the other six were
included in group 2. Group 1 showed an average DSC of 0.66 and
an average HD of 7.57. Group 2 scored 0.86 and 2.10 for the DSC
and HD, respectively. Comparing the two groups, the difference
of the DSC is 0.2 while for the HD it is 5.47.

The difference between ground truth, DLBAS, and the HAs in
groups 1 and 2 are shown in Figure 5. For the DLBAS of group
1, most of the predicted contours were in a different position,
compared to those of group 2. Furthermore, in group 1, the
positions of OARs changed owing to cancer and inflammation.
However, for group 2, most of the organs remained in their
original positions. The difference between the ground truth and
HAs was difficult to ascertain, however differed to the predictions
DLBAS. In addition, the difference between the two HAs was
insignificant. When all the contours are combined, group 1 is
identified by multiple lines, unlike group 2.

The overall results of HA, DLBAS, HA_DLBAS are
summarized in Tables 5, 6. The results were obtained by
comparing results to the ground truth. The HA_DLBAS
presented the most reliable DSC and HD values (DSC: 0.94 ±

0.04 and HD: 2.3 ± 0.56mm). Next were HA (DSC: 0.85 ±

0.07 and HD: 2.74 ± 1.11mm) and DLBAS (DSC: 0.78 ± 0.11
and HD: 4.29± 3.30 mm).

There was a significant time reduction when comparing
DLBAS to the HAs, HA_DLBAS for contouring of 15 OARs
(Table 7). The average time spent for HA, DLBAS, and
HA_DLBAS was 80, 0.05, and 30min, respectively. Using
DLBAS, the contouring time was expected to be reduced 1,800
times. Using HA_DLBAS, the highest DSC and the lowest HD
values were recorded, and the contouring time was reduced by
more than half. For the HA_DLBAS procedure, most of the
predicted images of DLBAS needed a short time to readjust the
segmentation. However, those in group 1 segmentation needed
at least five times more time than those in group 2.

DISCUSSION

Medical image processing technology based on artificial
intelligence has evolved from simple image detection technology
to advanced automatic image processing technology. These
technologies are advantageous as they can reduce the workload
and save time for tasks that require human intervention.
In particular, the manual delineation for segmentation of
anatomical structures in RT planning procedure is not only a
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FIGURE 3 | Examples of the ground truth and deep-learning-based automatic segmentation in a test set (DLBAS). Segmentations can be identified in each slice. For

the DLBAS, it is difficult to identify a significant difference. Slice #175 shows the eye (red, lime green), lens (yellow, purple), and brain (yellow, green). Slice #163 and

#162 show the brain (yellow, green), cochlear (orange, green), temporomandibular joint (sky blue, purple), and pharynx and larynx (pink). Slice #157 and #154 show

the mandibular salivary gland (sky blue, yellow), parotid salivary gland (pink, lime green), pharynx and larynx (blue), and spinal cord (red). There are visible differences

between the temporomandibular joint (purple) in Slice #163 and the spinal cord (red) in slice #157. Especially, the predicted DLBAS spinal cord (red) region in slice

#157 overlapped with the brain (green).

tedious task, but also inherently difficult for experts (7). Although
not for RT planning, automatic segmentation methods have
been evaluated, including atlas-based automatic segmentation
and triple cascaded convolutional neural networks for mice and
rats (7, 35). Incorporating a more advanced form of DLBAS into
RT planning has not yet been applied to veterinary medicine.
This study is the first to apply methods based on deep learning
technology to RT planning in dogs. Furthermore, the results of
this study confirm that automatic segmentation can be achieved
with high accuracy and a short contouring time.

To avoid unnecessary irradiation to critical anatomical
structures and OARs, establishing an accurate segmentation
is an important factor in RT planning. However, considering
individual differences or the various head shapes and sizes of
dogs, it can be sufficiently predicted that the segmentation
accuracy will be affected (36). Thus, in the process of setting up 80
training and validation sets, various skull shapes were included,

and it was predicted to have been learned accurately during
the deep learning process. In this study, the results of DLBAS
showed reliable accuracy regardless of differences in skull shapes.
Although the accuracy was relatively low when the cephalic index
range was 0.5–0.6, there was no significant difference. In addition,
it was found that age, weight, and the presence of lesions did not
affect the deep learning results.

The DLBAS proved to be robust and reliable in automatic
segmentation as the results were very similar to the ground
truth. The mean DSC and HD values of this study are similar
to those recorded in previous human studies (DSC = 0.79
and HD = 3.18mm) (31). In the case of OARs with high
accuracy, the boundaries were distinctly common and the
variation among the test sets was small. In particular, the brain
was surrounded by skulls with distinct differences in contrast,
and this allowed accurate predictions of the segmentation.
In contrast, OARs with low accuracy were in small volume
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FIGURE 4 | Boxplots of the Dice similarity coefficient and Hausdorff distance in each organ at risk are obtained from deep-learning-based automatic segmentation.

(A) right organs, (B) left organs, and (C) other OARs. DSC, Dice similarity coefficient; HD, Hausdorff distance; OAR, organ at risk; MSG, mandibular salivary gland;

TMJ, temporomandibular joint; PSG, parotid salivary gland; P & L, pharynx, and larynx.
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TABLE 3 | Dice similarity coefficient of each clinical test set obtained from deep-learning-based automatic segmentation.

OAR Group 1 Group 2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Lens (L) 0.64 0.70 0.70 0.89 0.89 0.89 0.89 0.89 0.90 0.87

Lens (R) 0.90 0.93 0.93 0.66 0.86 0.87 0.86 0.78 0.88 0.85

Eye (L) 0.85 0.90 0.90 0.64 0.94 0.95 0.94 0.92 0.95 0.93

Eye (R) 0.95 0.24 0.24 0.55 0.95 0.94 0.93 0.93 0.95 0.94

Cochlear (L) 0.68 0.41 0.41 0.64 0.64 0.63 0.47 0.71 0.60 0.87

Cochlear (R) 0.65 0.05 0.05 0.27 0.57 0.65 0.65 0.71 0.59 0.84

TMJ (L) 0.52 0.90 0.70 0.90 0.92 0.90 0.85 0.86 0.89 0.88

TMJ (R) 0.41 0.31 0.31 0.61 0.87 0.87 0.87 0.71 0.88 0.86

MSG (L) 0.68 0.55 0.55 0.50 0.90 0.93 0.93 0.73 0.93 0.85

MSG (R) 0.74 0.82 0.82 0.90 0.90 0.92 0.95 0.72 0.94 0.82

PSG (L) 0.35 0.84 0.84 0.85 0.85 0.91 0.83 0.86 0.89 0.81

PSG (L) 0.48 0.68 0.68 0.43 0.43 0.90 0.82 0.91 0.88 0.78

Pharynx

& larynx

0.83 0.96 0.77 0.77 0.94 0.95 0.95 0.89 0.95 0.84

Brain 0.63 0.77 0.89 0.90 0.97 0.97 0.97 0.94 0.97 0.95

Spinal cord 0.74 0.89 0.71 0.71 0.90 0.90 0.88 0.81 0.89 0.89

Total 0.67 0.66 0.63 0.68 0.83 0.88 0.85 0.83 0.87 0.87

OAR, organ at risk; TMJ, temporomandibular joint; MSG, mandibular salivary gland; PSG, parotid salivary gland; L, left; R, right; C1–C10, clinical test set 1–10.

TABLE 4 | Hausdorff distance of each clinical test set obtained from deep-learning-based automatic segmentation.

OAR Group 1 Group 2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Lens (L) 0.81 39.53 1.67 3.69 2.69 1.69 1.89 0.69 0.83 1.89

Lens (R) 0.81 1.73 7.70 2.09 2.69 1.69 1.86 0.69 0.83 1.86

Eye (L) 0.81 2.52 3.38 9.26 3.09 1.69 1.94 1.43 0.83 1.94

Eye (R) 0.81 1.97 2.89 2.09 3.35 1.69 1.95 1.93 1.38 1.93

Cochlear (L) 1.15 2.08 3.32 2.09 2.69 1.69 1.64 0.99 2.66 1.47

Cochlear (R) 0.81 6.27 2.49 2.09 2.69 1.69 1.57 0.69 0.83 1.65

TMJ (L) 5.01 1.34 10.13 5.37 2.69 1.69 1.92 0.69 0.83 1.85

TMJ (R) 2.53 20.28 2.83 5.86 2.69 1.69 1.87 0.69 0.83 1.87

MSG (L) 15.10 7.11 9.47 7.46 2.69 4.77 1.90 0.69 3.71 1.93

MSG (R) 12.29 3.76 6.67 8.14 2.69 4.37 1.90 0.69 1.38 1.95

PSG (L) 11.90 5.29 5.82 29.91 2.98 1.69 1.85 1.94 6.86 1.83

PSG (L) 8.49 8.15 4.44 17.95 2.99 10.59 1.43 3.72 2.72 1.82

Pharynx

& larynx

10.00 3.93 9.83 8.51 3.29 1.99 1.94 2.74 0.83 1.95

Brain 8.53 4.05 8.09 30.49 6.20 2.00 1.97 1.76 0.83 1.97

Spinal cord 1.28 4.20 8.79 38.90 2.98 1.69 1.90 0.69 1.17 1.88

Total 5.36 7.48 5.83 11.59 3.09 2.71 1.83 1.34 1.77 1.85

OAR, organ at risk; TMJ, temporomandibular joint; MSG, mandibular salivary gland; PSG, parotid salivary gland; L, left; R, right; C1–C10, clinical test set 1–10.

and varied across the different shapes among the test sets.
The cochlear was present in up to three slices on the CT
images, therefore, it was difficult to distinguish its exact location
in all segmentation methods in this study. Furthermore, the
parotid salivary glands were the most diverse in shape, and

thus reduced the consistency in the training process of deep
learning. This study further goes on to support that the
DLBAS methods used in human medicine are likely more
accurate and faster than the atlas-based automatic segmentation
method (3). Therefore, even in dogs, DLBAS is superior to
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FIGURE 5 | Examples of ground truth deep-learning-based automatic segmentation, and human annotations used in clinical test sets in groups 1 and 2. All contours

of the three methods are combined and displayed on each slice. Slice #65 shows the eye (aqua, aquamarine), and lens (blue, orange). Slice #107 shows the brain

(red), cochlear (purple, pink), parotid salivary gland (lime, blue), and pharynx and larynx (green). Slice #80 shows the eye (red, yellow), and lens (aqua, pink). Slice #128

shows the brain (aquamarine), mandibular salivary gland (red, yellow-green), parotid salivary gland (green, purple), and pharynx and larynx (orange). CT, computed

tomography; DLBAS, deep learning-based automatic segmentation; HA, human annotation.

other automatic segmentation methods including atlas-based
automatic segmentation.

The DLBAS method was applied to tumor patients in test
sets, resulting in a successful automatic segmentation. Therefore,
the DLBAS method confirmed that there was no significant
difference in the accuracy of automatic segmentation with
or without tumors. However, the mean DSC value decreased
significantly in the three clinical sets whose cephalic index
values ranged from 0.5 to 0.6. As a result of checking
the CT image of clinical sets, it can be determined that
the displacement or deformity of the anatomical structure
is more likely owing to the tumor lesion than the cephalic
index. Therefore, further evaluations were needed to determine
whether the application of DLBAS was possible if the
displacement and deformation of the organs due to lesions
were severe.

Despite the presence of displacements and deformations of
organs in the clinical test set, DLBAS was identified as a reliable
segmentation method and showed similar accuracy to ground
truth. However, the accuracy decreased significantly in group 1
owing to two main reasons. First, unclear segmentation, such as
when the surroundings respond to inflammation and tumors,
or when contrast enhancement was insufficient. For example,
insufficient contrast enhancement intensity of the salivary gland,
which is usually lower than the average HU value, can affect
the accuracy of the segmentation. Second, the left and right
asymmetry of the CT scan. This is because of the displacement
of OARs or inaccurate CT scan posture by large lesions. Thus,
this resulted in inaccurate localization during the two-step
segmentation process, leading to reduced accuracy. Failure to
localize one or more OARs also led to lower accuracy. However,
despite these conditions, DLBAS has proven to be remarkably
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TABLE 5 | Dice similarity coefficient by three contouring methods of the clinical

test set.

OAR DSC (mean ± SD)

HA DLBAS HA_DLBAS

Lens (L) 0.85 ± 0.04 0.83 ± 0.10 0.87 ± 0.04

Lens (R) 0.85 ± 0.07 0.85 ± 0.08 0.93 ± 0.06

Eye (L) 0.93 ± 0.09 0.89 ± 0.09 0.92 ± 0.02

Eye (R) 0.93 ± 0.07 0.76 ± 0.30 0.95 ± 0.09

Cochlear (L) 0.81 ± 0.08 0.61 ± 0.14 0.92 ± 0.06

Cochlear (R) 0.73 ± 0.18 0.50 ± 0.28 0.94 ± 0.03

TMJ (L) 0.77 ± 0.15 0.83 ± 0.13 0.88 ± 0.08

TMJ (R) 0.80 ± 0.11 0.67 ± 0.24 0.81 ± 0.07

MSG (L) 0.89 ± 0.04 0.76 ± 0.18 0.98 ± 0.02

MSG (R) 0.89 ± 0.05 0.85 ± 0.08 0.99 ± 0.03

PSG (L) 0.83 ± 0.05 0.80 ± 0.16 0.97 ± 0.03

PSG (R) 0.79 ± 0.19 0.70 ± 0.19 0.95 ± 0.04

Pharynx

& larynx

0.87 ± 0.04 0.89 ± 0.08 0.99 ± 0.01

Brain 0.97 ± 0.09 0.90 ± 0.11 0.99 ± 0.02

Spinal cord 0.88 ± 0.07 0.83 ± 0.08 0.97 ± 0.02

Total 0.85 ± 0.07 0.78 ± 0.11 0.94 ± 0.04

OAR, organ at risk; HA, human annotation; DLBAS, deep-learning-based automatic

segmentation; HA_DLBAS, human annotation with additional readjustments to DLBAS

predictions; SD, standard deviation; TMJ, temporomandibular joint; MSG, mandibular

salivary gland; PSG, parotid salivary gland; L, left; R, right; C1–C10, clinical test set 1–10.

accurate in its evaluation of clinical feasibility. Therefore, the
DLBAS tool proposed herein is capable of high accuracy in
automatic segmentation while also completing the segmentation
quickly with minimal intervention from experts.

There is a process to evaluate the additional clinical feasibility
of DLBAS with expert interventions. The HA_DLBAS method
showed higher accuracy and consistency compared to that of
DLBAS and HAs. In addition, a comparison of contouring
times shows that HA_DLBAS takes less time than the HAs.
A previous study shows that the results of segmentation from
multiple observers overlapped with up to 60% volume variations
that could lead to substantial differences in RT planning (9).
Therefore, whether expert intervention can lead to higher
accuracy and improve interobserver consistency was evaluated.
This was confirmed by the better comparison metrics and small
SD in the HA_DLBAS method. These results imply that DLBAS,
as a supplementary tool, can also be highly efficient.

This study has several limitations. First, additional verification
of pre-contrast CT data is required. A previous study has
shown that using post-contrast CT data can achieve higher
accuracy in both manual and automatic segmentation (7). For
this reason, only post-contrast CT data were selected for this
study. However, because insufficient contrast enhancement could
have reduced accuracy, as shown in group 1, further studies
are needed to demonstrate the effect of contrast. Second, the
number of data used for this study was insufficient. More CT
data of dogs were initially collected. However, a number of
these data were found to be defective during the screening

TABLE 6 | Hausdorff distance by three contouring methods of the clinical test set.

OAR HD (mean ± SD, mm)

HA DLBAS HA_DLBAS

Lens (L) 2.94 ± 3.47 5.54 ± 11.98 1.95 ± 0.52

Lens (R) 1.94 ± 0.22 2.20 ± 2.04 1.90 ± 1.48

Eye (L) 1.73 ± 0.46 2.69 ± 2.46 2.79 ± 0.51

Eye (R) 1.71 ± 1.04 2.00 ± 0.71 2.30 ± 0.35

Cochlear (L) 1.44 ± 0.77 1.98 ± 0.74 1.61 ± 0.30

Cochlear (R) 1.41 ± 2.14 2.08 ± 1.63 2.31 ± 0.69

TMJ (L) 2.80 ± 1.76 3.15 ± 2.93 2.40 ± 0.53

TMJ (R) 2.10 ± 1.91 4.11 ± 5.86 2.43 ± 0.42

MSG (L) 2.63 ± 2.07 5.48 ± 4.41 1.38 ± 1.12

MSG (R) 3.30 ± 1.03 4.38 ± 3.65 2.18 ± 0.43

PSG (L) 3.32 ± 2.01 7.01 ± 8.67 2.11 ± 0.03

PSG (R) 4.82 ± 2.27 6.23 ± 5.16 2.62 ± 0.04

Pharynx

& larynx

4.90 ± 0.57 4.50 ± 3.53 3.30 ± 0.46

Brain 3.32 ± 0.86 6.59 ± 8.84 3.54 ± 1.24

Spinal cord 2.72 ± 1.15 6.35 ± 11.98 1.72 ± 0.22

Total 2.74 ± 1.11 4.29 ± 3.30 2.30 ± 0.56

OAR, organ at risk; HA, human annotation; DLBAS, deep-learning-based automatic

segmentation; HA_DLBAS, human annotation with additional readjustments to DLBAS

predictions; SD, standard deviation; TMJ, temporomandibular joint; MSG, mandibular

salivary gland; PSG, parotid salivary gland; L, left; R, right; C1–C10, clinical test set 1–10.

TABLE 7 | Comparison of contouring times.

Contouring method Contouring time (min)

DLBAS 0.05 ± 0.01

HA 80 ± 25.00

HA_DLBAS 30 ± 12.28

DLBAS, deep-learning-based automatic segmentation; HA, human annotation; human

annotation with additional readjustments to DLBAS predictions.

process and had to be excluded. In addition, cases showing
complete loss of OARs due to lesions were excluded. Cases
with prosthetic implants were excluded owing to CT contrast
differences in the eyeball. Thirdly, there are head and neck
organs that were not included in the segmentation. The incidence
of head and neck cancers in dogs is relatively high in the
oral cavity, skull, and nasal cavity, and should have been
included in segmentation (22). However, this study excluded
these segmentations because of software limitations that failed to
set thresholds.

CONCLUSION

In conclusion, this study shows that DLBAS is capable of
automatic segmentation of organs present in the heads and necks
of dogs and can be utilized as a useful RT segmentation tool.
The proposed algorithm itself proved to be robust and provided
reliable automatic segmentation results. Therefore, DLBAS has

Frontiers in Veterinary Science | www.frontiersin.org 10 September 2021 | Volume 8 | Article 721612

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Park et al. Deep Learning Segmentation in Dogs

great potential as a single or supporting tool for key processes of
RT planning, making it a useful tool for optimizing the clinical
workload and reducing labor load.
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