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The recent spreading of African swine fever (ASF) over the Eurasian continent has

been acknowledged as a serious economic threat for the pork industry. Consequently,

an extensive body of research focuses on the epidemiology and control of ASF.

Nevertheless, little information is available on the combined effect of ASF and ASF-related

control measures on wild boar (Sus scrofa) population abundances. This is crucial

information given the role of the remaining wild boar that act as an important reservoir

of the disease. Given the high potential of camera traps as a non-invasive method for

ungulate trend estimation, we assess the effectiveness of ASF control measures using

a camera trap network. In this study, we focus on a major ASF outbreak in 2018–2020

in the South of Belgium. This outbreak elicited a strong management response, both

in terms of fencing off a large infected zone as well as an intensive culling regime.

We apply a Bayesian multi-season site-occupancy model to wild boar detection/non-

detection data. Our results show that (1) occupancy rates at the onset of our monitoring

period reflect the ASF infection status; (2) ASF-induced mortality and culling efforts jointly

lead to decreased occupancy over time; and (3) the estimated mean total extinction rate

ranges between 22.44 and 91.35%, depending on the ASF infection status. Together,

these results confirm the effectiveness of ASF control measures implemented in Wallonia

(Belgium), which has regained its disease-free status in December 2020, as well as the

usefulness of a camera trap network to monitor these effects.
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INTRODUCTION

African swine fever (ASF), a viral disease that causes high
mortality among domestic pigs (Sus scrofa domesticus) and wild
boar (Sus scrofa), originates from East Africa and is regarded
as one of the most important threats to the European pig
industry. Recently, ASF has been re-introduced to the wild
boar populations on the European mainland, presumably due
to infected meat spills in the environment (1). Most likely,
this spillage mediated the recent spread of ASF through a new
epidemiological cycle, designated the wild boar-habitat cycle,
which involves both direct and indirect viral transmissions.
Direct transmissions occur through contacts among wild boar,
whereas indirect cases result from viral reservoirs in the
environment, such as ASF-infected carcasses (2). This new role of
wild boar in the epidemiology of ASF has led to newmanagement
guidelines of wild boar populations in infected areas (3, 4).
Management strategies include continuous carcass removal from
the infected zone, coupled with intense culling of wild boar
within a buffer zone (5). Together, these strategies are expected
to effectively reduce ASF transmission by removing viral sources
from the environment in the infected zone and by depleting the
susceptible wild boar population in the buffer zone. The latter is
essential, since the number of individuals remaining in the host
population of the buffer zone will determine the probability of the
spread to a non-infected area, i.e., host threshold density. In the
infected zone, after the epidemic phase, culling of the remaining
wild boar will determine the probability for the disease to become
endemic, i.e., critical community size (6). To evaluate measures
aimed at counteracting ASF, sound information on the joint effect
of the disease and culling efforts on population trends of wild
boar within the managed areas is crucial (3).

Over the last decade, the use of remote cameras, henceforth
referred to as camera traps (CTs), has become popular when
monitoring trends in medium-size to large-size mammals,
including wild boar (7, 8). Photographic captures (i.e., detections)
by CTs can be translated into information on the distribution
and density of a focal species. However, density estimation
by CTs is still hindered by imperfect detection in many cases
(i.e., not detecting a focal species, when present) (9). Given
the elusiveness and nocturnality of wild boar, it is among the
species subjected to severely limited detectability. Moreover,
traditional density estimation methodology requires individual
identification, hence cannot be applied to many common
species that lack natural markings, including wild boar (10, 11).
Statistical frameworks such as the random encounter model
(REM) allow for density estimation of unmarked populations,
while accounting for imperfect detection, using CTs (12, 13).
However, the need for auxiliary data collection restricts the use
of REM in many cases (14). Occupancy models on the other
hand overcome both imperfect detectability and the need for
individual recognition of animals, without requiring additional
information. They proceed by simultaneously estimating site-
occupancy and the probability of detecting a focal species, given
its presence (15). Extending occupancy models to so-called
multi-season site-occupancy (MSO) models, enables estimating
rates expressing population changes through time. One of these

rates, the extinction rate, is of prime interest when assessing the
combined effect of a viral disease, such as ASF, and culling efforts
on a host population.

In the current study we evaluate wild boar population trends
throughout the recent ASF epidemic in Wallonia (Belgium),
using a camera trap network. The first cases of this outbreak were
reported on September 13, 2018 (16). Further, we aim to uncover
the roles of ASF and control measures (i.e., primarily culling
efforts) on inferred population dynamics. To our knowledge,
only one study so far attempted to quantify the effects of ASF
on a wild boar population using CTs (17). Here, we develop
a different statistical framework, that can be adapted to model
management strategies of multiple species, in diverse settings.
We apply it in our study of wild boar population dynamics
in an ASF-infected and non-infected zone. The latter has been
subjected to an intensive culling regime (January 2019–March
2021) during the entire ASF episode. While in the infected zone,
both ASF-induced mortality and culling efforts determine wild
boar extinction rates. Moreover, this zone is fenced off from the
surrounding non-infected zones. Using detection/non-detection
data (March 2019–May 2020) from 92 CTs, we estimate monthly
site-occupancy of wild boar in both ASF-infected and non-
infected zones, through a Bayesian MSO. In addition, we provide
wild boar distribution maps for the area under study. Finally, we
use these results to draw conclusions about the ASF management
in Wallonia (Belgium). We believe this case is important beyond
its own setting for two reasons: (i) wildlife managers are often
asked by funders to justify the use of CT networks, hence being
able to show the usefulness of CTs to monitor population trends
is important; (ii) authorities need to assess the effectiveness of
control measures taken to prevent the spreading of ASF. Camera
trapping is an understudied method that could provide valuable
information on the effectiveness of these measures.

MATERIALS AND METHODS

Study Area
The study area (longitudes: 5.2847◦E - 5.8156◦E; latitudes:
49.5485◦N - 49.6955◦N) is situated between the cities of Virton
(South), Florenville (Northwest) and Arlon (Northeast), and has
been subdivided into three management zones. An ASF-infected
zone (red), a non-infected zone, i.e., free of ASF (turquoise) and
a zone that was excluded from the study due to its ambiguous
disease status and limited number of deployments (gray), see
Figure 1. It has a total forested area of 223 km2, part of a larger
ASF management zone of 1,106 km² encompassing a total of 572
forested km². The study area has a cool temperate and moist
climate, with a mean annual temperature of 8.94◦C and 966mm
rainfall (18). The landscape is characterized by rugged terrain
crossed by numerous rivers and fragmented by several roads,
while its vegetation is dominated by deciduous forests.

Camera Trap Network and Data
Within the study area, a CT network was deployed since March
2019. The network consists out of 97 Snapshot Extra Black
12.0 l HD (Dörr) cameras. For more detailed information on the
camera specifications, consult Supplementary Table 1.
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FIGURE 1 | Map of the study area with the overlaying hexagonal grids. Camera deployments are indicated by the black dots. Black lines represent fences. Colors

represent the African swine fever management zones; ASF-infected (red), non-infected (turquoise) and excluded (gray). The inset map (bottom) shows the study area

within Belgium.

Camera placement was done according to a stratified
random sampling scheme. Proportional to its area, a number of
cameras was deployed in each management zone (stratum)
(Supplementary Table 2). A posteriori, the strata were
superimposed by a hexagonal grid layer (x-spacing of 500m,
area of 21.65 ha/ site) ensuring that each camera was assigned
a unique grid cell (Figure 1). Throughout the sampling period,
camera locations were fixed. All cameras were installed by
mounting them on trees ∼50 centimeters above ground, facing
North. We did not use baiting, nor did we select for trails.
Monthly check-ups were performed to determine battery levels
and to verify camera operability. Each camera trigger was
followed by a series of five photographs, without a delay between
consecutive triggers. All images were manually annotated, using
the Agouti software platform (19). After omitting data from the
excluded zone (5 deployments; 5.15%) (Figure 1), we retained
data from 92 deployments between March 2019 and May 2020,
resulting in a total of 42,136 24-h observation periods.

We considered three classes of covariates, potentially
important to explain wild boar population trends: (1) time,
(2) land use, and (3) infection status. As will be clarified in
section Statistical Model, for time, we evaluated three alternative
definitions: (1.i) month since the start of the monitoring program
(observationmonth; t), (1.ii) a binary variable indicating whether
the observation month is in April–September (biannual; BIAt),
and (1.iii) a similar indicator variable consisting of four seasonal
periods, i.e., Spring, Summer, Autumn and Winter (quarterly;
QRTt). For land use, we only considered a single covariate: the

(z-scored) proportion of broad-leaved forest land cover class
(BLt), which was extracted from the LifeWatch Ecotope dataset
(18). Finally, infection status (ASFi) is encoded as follows: 1 when
a site is within the ASF-infected zone, 0 otherwise (Figure 1).
Note that the infection status for each zone was assigned, based
on the occurrence of ASF virus (ASFV)-positive carcasses within
a zone. We refer readers wanting to access the ASFV occurrence
data or searching for more information on the dispersal history
and dynamics of the ASFV in Belgium to Dellicour et al. (20).
An overview of all covariates discussed in this section and a
priori defined models are given in Table 1. For model-specific
predictions [P (Model)] consult Supplementary Table 3.

Statistical Model
We analyse the CT data using a longitudinal multi-season
occupancy model (MSO), defined as a state-space model (21), to
make inference onwild boar’s site-occupancy. The sampling grids
used are smaller than wild boar’s home range, hence occupancy
should be interpreted as habitat use (22). Detection histories
were constructed using the R package CamtrapR (23). For site
i = 1, 2, . . . ,N, at survey day j = 1, 2, . . . , J, in observation
month t = 1, 2, . . . ,T, the detection history is 1 when wild boar
were observed during a 24-h period (yijt = 1) or 0 when no boars
are caught on camera that day (yijt = 0). These are assumed to
follow a Bernoulli distribution, such that,

yijt|zit ∼ Bernoulli(zit pijt), (1)

Frontiers in Veterinary Science | www.frontiersin.org 3 October 2021 | Volume 8 | Article 726117

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Bollen et al. Managing ASF: Camera Trap Monitoring

TABLE 1 | A priori defined occupancy (step 1) and detection (step 2) models.

Model Logit(ψ it) Logit(pt)

Occupancy models (step 1)

ψ1 αψ + f
ψ

2 (x1(i), x2(i)) αp

ψ2 αψ + ASFi · β
ψ

ASF
+ f

ψ

2 (x1(i), x2(i))

ψ3 αψ + ASFi · β
ψ

ASF
+ BLi · β

ψ

BL + f
ψ

2 (x1(i), x2(i))

ψ4 αψ + ASFi · β
ψ

ASF
+ BLi · β

ψ

BL + t · β
ψ

t + f
ψ

2 (x1(i), x2(i))

ψ5 αψ + ASFi · β
ψ

ASF
+ BLi · β

ψ

BL + t · β
ψ

t + (ASF i · t) · β
ψ

ASF·t
+ f

ψ

2
(x1(i), x2(i))

ψ (6) αψ + ASFi · β
ψ

ASF
+ BLi · β

ψ

BL + f
ψ

1 (t)+ f
ψ

2 (x1(i), x2(i))

Detection models (step 2)

p1 Top-ranking ψ – model from step 1 αp

p2 αp + BIAt · β
p
BIA

p3 αp + QRTt · β
p

QRT

p4 αp + f
p
1 (t)

Top-ranked models for each step are indicated in bold. ASF infection status (ASFi ), z-scored proportion of broad-leaved tree land cover class (BLi ), observation month (t), biannual

(spring – summer, autumn – winter) seasons (BIAt ), quarterly (spring, summer, autumn, winter) seasons (QRTt ), smooth function for temporal variation f1 (t), smooth function for spatial

variation f2 (lon, lat). Intercepts and slope parameters are given by α and β, respectively.

where pijt is the probability of detecting the focal species and
zit is the latent occupancy status (unoccupied zit = 0; occupied
zit = 1) at site i during observation month t. Note that we do not
use survey day-specific, nor site-specific covariates to model pijt ,
hence the detection probability simplifies to pt . The occupancy
status is modeled as,

zit ∼ Bernoulli (ψit) , (2)

Where ψ it is the occupancy probability, from now on simply
referred to as “occupancy,” at site i during observation month
t. Unlike dynamic MSO, we do not take probabilities of wild
boar surviving or colonizing a site i from observation month t
to t + 1 into account, as the high degree of zero-inflation in our
data complicates joint inference on all these processes. We define
ϑl =

{

pijt , ψ it

}

, which collects all processes that will be modeled
as a function of covariates and random effects, using a logit link.
A general model formulation for ϑl, l = 1, 2, can be defined as

logit (ϑl) = αl + Xlβl + ul + fl,1 (t)+ fl,2
(

lon, lat
)

, (3)

where αl are intercepts, βl are vectors of process-specific
slope parameters with their corresponding covariate matrix Xl.
The term ul models spatially unstructured overdispersion as a
normally distributed random effect, fl,1 is a smooth function
modeling temporal variation for each observation month t and
fl,2 is an isotropic two-dimensional smooth function modeling
spatial variation in occupancy patterns, for the longitude lon and
latitude lat of each site’s centroid. Both fl,1and fl,2 are modeled
using Gaussian processes (GP), with an exponentiated quadratic
covariance function. While fl,1 uses an exact GP, we model fl,2
by means of the Hilbert space reduced-rank Gaussian process
(HSGP) approach as the number of sites in our study area is
large (24, 25). This approach yields substantial speed gains when
dealing with large number of sites through approximate series
expansions of the GP’s covariance function.

Model fitting was performed using Stan (via the R package
rstan), a probabilistic programming language that enables
Bayesian estimation through a dynamic Hamiltonian Monte
Carlo (HMC) sampler (26). For each MCMC iteration, we
also derive site-specific growth rates λit =

ψit
ψi(t−1)

, average

monthly growth rates λi = 1
T−1

∑T
t=2 (λit) and total growth

rates λTot, i =
ψ iT
ψi1

in site-occupancy (27). We choose weakly

informative Student t(3, 0, 5) priors for all the regression
parameters {αl, βl} and a nonnegative Student t+(3, 0, 5) prior
for the marginal standard deviation of the hyperparameters σf1
and σf2 of the GPs. For the scale parameters ρf1 and ρf2 of the
GPs, we, respectively, used an inverse gamma IG(10.9, 4.00) and
a generalized inverse Gaussian GIG(3, 12, 0.01), ensuring most
prior evidence is placed on scales that can be estimated from the
data (i.e., larger than the smallest difference between any pair of
CT locations and smaller than the largest difference between any
of these pairs).

The full model that would contain two random effects
terms for each of these processes, in addition to covariates, was
computationally infeasible to fit and, furthermore, does not
necessarily reflect a sensible data-generating process. Hence, we
consider a set of sensible reduced models based on ecologically
plausible considerations, preventing multicollinearity, and
computational feasibility (Table 1). Multicollinearity was
avoided by including one of two covariates, when their
Spearman rho correlation estimate |rs| < 0.6. Subsequently,
we select the most appropriate model by means of a model
selection procedure.

Model selection through approximate leave-one-out cross-
validation was performed using the R package loo (28). Following
the authors’ recommendations, leave-one-out (LOO) expected
log-predictive densities were used to rank our a priori selected
candidate models (Table 2). Our ranking procedure consists of
a two-step approach. First, the top-ranked occupancy model
is retained by comparing LOO for selected combinations of
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TABLE 2 | Model selection of candidate occupancy models (step 1) and detection

models (step 2).

Model PD SE(PD) LOO SE(LOO) 1 LOO SE(1 LOO)

Occupancy models (step 1)

ψ (5) 45.55 2.84 −992.29 60.04 0.00 0.00

ψ (4) 43.49 2.70 −995.43 60.03 −3.14 2.38

ψ (6) 53.02 3.25 −999.16 60.20 −6.87 3.56

ψ (3) 40.92 2.44 −1,044.70 61.14 −52.41 9.84

ψ (2) 38.64 2.32 −1,045.91 61.12 −53.62 9.94

ψ (1) 37.83 2.33 −1,049.73 61.24 −57.44 10.45

Detection models (step 2)

p(4) 71.17 6.93 −979.88 59.33 0.00 0.00

p(2) 47.31 2.96 −985.54 58.15 −5.66 9.41

p(1) 45.55 2.84 −992.29 60.04 −12.40 10.88

p(3) 47.26 2.92 −993.16 60.21 −13.28 10.49

Note that PD represents the effective number of parameters rather than the true number

of parameters. Leave-one-out expected log-predictive density (LOO), in addition to the

difference in LOO between each model and the top-ranked model (1 LOO), along with

their standard errors (SE) are presented.

fixed and random effects at the occupancy (ψ) level, while
keeping detectability (p) constant (Table 2, step 1). Secondly,
the detection process is modeled using fixed effects only, while
adopting the top-ranked occupancy model from step 1 (Table 2,
step 2).

All models were fitted using four parallel MCMC chains
with 4,000 iterations, which included 2,000 iterations that
were discarded as burn-in iterations for all candidate
models; this always resulted in satisfactory convergence
(Supplementary Figure 1), following the guidelines by Vehtari
et al. (29). After the selection procedure, a prior sensitivity
analysis was performed for the top-ranked model from step
2, by comparing results of the default prior specification
with Student t(3, 0, 2.5) and Student t(3, 0, 10) priors for
{

αl, βl, σf1 , σf2
}

; this analysis revealed posterior invariance
under the considered prior specifications.

RESULTS

Table 2 presents the model selection process, which yielded a
final model consisting of an occupancy process and detection
process that will be detailed in the following subsections.

Detectability
The detection model according to LOO (Table 2, p4) models
temporal variation in wild boar’s detectability for each
observation month as a GP. Modeling the detection probability
using biannual seasons (p2) results in a better fit compared to the
intercept only model (p1). Using quarterly instead of biannual
seasons, results in the lowest ranking detection model (p3). Note
that the accuracy in 1 LOO, measured as the standard error of
this metric, is relatively low for all detection models (Table 2,
step 2). The posterior mean probability of detecting wild boar
ranges between 0.0279 and 0.1106 regardless of the observation

month. Despite low detectability in general, monthly differences
can be observed (Supplementary Figures 2, 3).

Occupancy
All of the tested covariate combinations perform better than the
intercept model (ψ1), with the multiplicative model of ASFi,
t and BLt (ψ5) outranking all other models. Similar to the
detection models, not all 1 LOO values are very accurate. For
the difference between the two top-ranking models the standard
error exceeds |1 LOO| (Table 2, step 1). According to the top-
ranked occupancy model, ASF infection status has a strong effect
on the occupancy of wild boar. Posterior mean odds ratios (OR)
of wild boar occupancy are 17.71 (3.49–95.12) and 0.01 (0.00–
0.08) for non-infected and ASF-infected zones, respectively.
Moreover, the OR for season, 0.76 (0.65–0.88), reveals a highly
probable overall decline in wild boar occupancy for observation
month (t). Finally, the posterior distributions of ORs for both
proportion of broad-leaved forest land cover class (BLt) and
the ASF infection status—season interaction term (ASFi · t)
have one enclosed by the 95% HPDI (Supplementary Table 4).
Posterior mean occupancy and 95% HPDI at each observation
month, averaged over the ASF management zones (Figure 2A),
reveal an overall decline in occupancy, both in the ASF-infected
and non-infected zone. Moreover, regression analyses using an
ordinary least squares estimation of the cumulative number of
wild boar culled per km2 result in positive trends for both
zones (Figure 2B). Finally, prediction maps for the estimated
occupancy from March 2019 until May 2020, are displayed in
Figure 3 (see Supplementary Figures 4, 5 for 2.5th and 95th
percentile maps).

Occupancy Growth Rate
Posterior means of occupancy growth rates, i.e., λit ,
are lower than one regardless of the site and season
(Supplementary Figure 6). For λTot,i, total growth rates (in
fact, extinction rates, due to their negative trend) in occupancy,
posterior means range between 0.0865 and 0.7756 (0.9135
and 0.2244), while those for average monthly growth rates
λi lie between 0.8049 and 0.9757 (0.1951 and 0.1243). Finally,
posterior mean and 95% HPDI for λTot,i and λi averaged over
the ASF management zones (designated λTot,z and λz) are given
in Table 3.

DISCUSSION

To assess wild boar population trends throughout the recent ASF
epidemic in Wallonia (Belgium), we have built a spatio-temporal
MSO model using data from CTs. This was done according to
a two-step approach, selecting the best detection covariates and
subsequently occupancy covariates with respect to the LOO (28)
statistics from a set of a priori defined models.

Detectability
For all model comparisons (relative to the top-ranked detection
model) the standard errors for 1 LOO values are smaller than
two times |1 LOO|, hence a certain degree of uncertainty as to
which model provides the best fit to the data remains after our
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FIGURE 2 | Monthly posterior mean occupancy estimates (dots) and 95% highest posterior density intervals (vertical lines) per ASF management zone (A).

Cumulative number of wild boar culled per km2 in function of the observation month. Trend lines derived from ordinary least squares regression estimation (B).

selection procedure (Table 2, step 2). Nevertheless, we believe
that using a GP tomodel monthly temporal variation in wild boar
detection probability is a sensible choice, given the ability of GPs
to balance ecological realism with model flexibility (30).

When using CTs, detection probabilities are known to be
affected by, among others, vegetation denseness, background
surface temperature and weather conditions (31), all of which
depend on the seasonal variation to some extent. Hence, a certain
degree of seasonality in detection probabilities is not uncommon.
Morelle et al. (17) report higher probabilities of detecting wild
boar in summer months compared to fall (4.90E+04), winter
(4.34E-03) and spring (4.90E+04). In this study, posterior
mean detection probability for wild boar is low, although some
additional heterogeneity attributed to the observation month
was observed. In 2019, summer months display a somewhat
higher probability of detecting wild boar as compared to winter
months, yet there is insufficient evidence that a periodic trend
exists. Instead, we suggest that the main effect at play is a
density-dependent effect (32, 33), more specifically a decline in
detection probability governed by a decreasing wild boar density.
In addition, the intensive culling regime adopted throughout the
ASF epidemic possibly led to an increased risk perception by
wild boar, incentivizing them to restrict their movements and
seek hiding places. Lower activity levels negatively relate with

photographic rates (34). Similarly, low probabilities of detecting
wild boar could reflect decreased movement.

Occupancy
The top-ranked occupancy model consists of a multiplicative
effect the ASF infection status (ASFi) of the zone, the observation
month (t) and the proportion of deciduous forest land-use
class (BLt), closely followed by a fully additive model of these
covariates (Table 2, step 1). A large difference in wild boar
occupancy was already present during the first month of the
study period (March 2019), with posterior mean occupancies
of 0.2352 and 0.8677 in infected and non-infected zones,
respectively (Supplementary Table 5). Hence, ASF-governed
mortality, which had already decimated the population in the
infected zone at the beginning of the monitoring program
(Supplementary Table 6), strongly affects wild boar occupancy

[posterior meanOR(βψASF) of 0.01; Supplementary Table 4]. This
is not surprising given that the zone was already infected with
ASF for several months (i.e., since September 2019) before the
study’s onset. Although it is uncertain whether the low initial
occupancy in the infected zone is driven by ASF alone, mortality
rates approaching 100% have been reported (35). Interestingly,
the inclusion of a HSGP that achieves a degree of spatial
smoothing depending on ρf2 , did not result in smoothly varying
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FIGURE 3 | Posterior mean occupancy of wild boar in the ASF-infected (enclosed by the black line) and non-infected (non-enclosed) zone in Wallonia (Belgium).

Panels ranging from March 2019 until May 2020.

occupancies at the infected/non-infected boundary. Instead, the
occupancy abruptly changes at this boundary, a trend that is
seen throughout the entire study period (Figure 3). This pattern
persists, even after omitting the information about ASF infection
status (i.e., a potential driver of abrupt changes in occupancy, due
to its binary encoding) from our model (results not shown). In
that case, the variation in occupancy previously accounted for

by βψASF , remains explained by the spatial GP (fψ2 ). Hence, we
are confident that this absence of smooth occupancy patterns is
not an artifact of our choice of covariates. Instead, we argue that
fences placed at the infected/non-infected boundary (Figure 1)
serve as an effective measure to stop the passage of wild boars,
explaining the patterns observed in Figure 3. By impeding
wild boar’s movement, fences also prevent the inflow of ASFV
throughout an epidemic. Hence, we regard fencing, as it was
adopted in Wallonia (Belgium), as an essential element in the
ASF-management strategy.

Despite the strong impact of ASF, the infected zone has quite
some refugee sites that display higher occupancies compared
to surrounding areas as of March 2019 (Figure 3). As the
epidemic progressed, occupancy drops in most of these subareas,
with only one patch in the South displaying markedly higher
occupancy toward May 2020. Given the remoteness of this

TABLE 3 | Posterior mean and 95% highest posterior density values for the total

growth rate (λTot,z ) and average monthly growth rate (λz ) per ASF management

zone, obtained by averaging over all corresponding sites.

Zone Mean 2.5% 97.5% Mean 2.5% 97.5%

λz λTot,z

ASF-infected 0.8670 0.8083 0.9264 0.1772 0.0494 0.3432

Non-infected 0.9032 0.8105 0.9900 0.3848 0.0739 0.7946

patch, it could be that wild boar in this area are shielded
from ASF to some extent. A more likely explanation is that
these refugee sites reflect the area’s suitability for remaining
wild boar in terms of habitat quality and food availability.
Similarly, we argue that latent ecological preferences drive the
heterogeneity in occupancy observed within the non-infected
zone, where higher occupancies are observed in the central axis
(horizontally) throughout the study period (Figure 3). Indeed,
looking at the spatial random effect alone, both the Southern
patch of the ASF-infected zone and central axis of the non-
infected zone are associated with some of the highest values
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(Supplementary Figure 7). A number of potential ecological
drivers of wild boar occupancy are observed and subsequently
modeled; we have considered the proportion of broad-leaved tree
land cover class, which is known to positively affect its occupancy
(36–38), as a fixed effect in our final model. The 95% HPDI
for the OR (βψBI) (Supplementary Table 4), which encompasses
one, suggests an effect that needs further investigation in
future studies.

Importantly, we obtain an overall declining trend [posterior

mean OR (βψt ) of 0.76; Supplementary Table 4] in wild
boar occupancy for both ASF-infected an non-infected zones
(Figure 2A). Interestingly, these declines are inversely related
with the positive trends of the cumulative number of wild boar
culled per km2 in function of the observationmonth (Figure 2B).
Although hunting statistics are sensitive to search effort, these
findings indicate that occupancy probabilities continue to drop in
response to maintained culling efforts. In addition, ASF-induced
mortality contributes to the occupancy decline seen in the ASF-
infected zone, where its effect is strongest during the first months
of our study period, when ASFV-positive wild boars are still
found occasionally Supplementary Table 6. Finally, we find that
occupancy declines have different rates between the zones, with a
more moderate decline seen in the ASF-infected zone [posterior

mean OR (βψASF·t) of 1.13; Supplementary Table 4]. Possibly,
differences in hunting pressure could explain this variation in
rates of occupancy decline. Although wild boars have been culled
in both ASF-infected and non-infected zones, the latter was more
densely populated throughout the entire study period, which
likely reduces the search effort by hunters and leads to increased
hunting success (Supplementary Table 7). In addition, we note
that between the epidemic-onset and its peak (September 2019
– February 2019), an occupancy decline was likely much higher
in the ASF-infected zone. Importantly, our model reveals that
an effect of the ASFi · t interaction term is not highly probable
when looking at 95% HPDI. Uncertainty about the existence of
zone-specific occupancy rates, is also reflected in the small 1
LOO between a model with and one without the interaction term
(Table 2, step 1).

Occupancy Growth Rate
We will not discuss growth rates in depth, since they carry on the
same messages as the occupancy probabilities discussed earlier,
but see Supplementary Figure 6 for a graphical representation.
However, it is worthwhile to briefly focus on total occupancy
growth rates, as they provide a summary statistic for net change
in occupancy. Posterior means of 0.1772 and 0.3848 (extinction
rates of 0.9228 and 0.7152) for, respectively, ASF-infected and
non-infected zones, confirm the strong decline in wild boar
occupancy. In line with these results, Morelle et al. (17) report
declines in wild boar abundance, obtained through fitting a REM
(12) to CT data, of 83.8 ± 25.5% and 94.8 ± 6.4% in unmanaged
and managed zones, respectively, one year after an ASF outbreak
in the Białowieza Primeval Forest (Poland). Moreover, average
monthly growth rates of 0.8670 and 0.9032 (Table 3) indicate that
monitoring highly lethal diseases, such as ASF, which typically

lead to rapid depletion of individuals, demands for shorter
primary sampling periods.

Limitations
The data used in this study do not cover the full ASF
episode as it occurred in Wallonia (Belgium). As such, we
are unable to report on the full course of the epidemic.
Secondly, it has been reported by (27) that sample sizes
smaller than 40 lead to insufficient power to detect declines
in occupancy under most circumstances. Here, we deploy
69 cameras in the ASF-infected and only 23 cameras in
the non-infected zone. Nonetheless, we were able to capture
meaningful declines in occupancy for both zones throughout
the study period. Importantly, both ASF management zones
had sampling intensities higher than the best scenario (2%
of sites sampled) considered by Banner et al. (27). From a
modeler’s perspective, we did not attempt a full spatio-temporal
analysis. However, we believe that it is reasonable to assume that
temporal dynamics in site-occupancy are spatially independent,
given the relatively small surface area (ASF-infected: 162.826
km2, non-infected: 48.229 km2) of both zones in our study.
Finally, we did not include structured and unstructured random
effects for both the detection and occupancy process, due
to unidentifiability.

CONCLUSION

Based on our results, we conclude that ASF infection status
was the main driver of wild boar occupancy at the beginning
of the monitoring period, which led to higher occupancies
in the ASF-infected zone compared to the non-infected zone.
Moreover, we find that fences placed at the infected/non-infected
boundary act as an effective barrier throughout the entire study
period, resulting in abrupt changes in occupancy from one
zone to the other. This suggests that wild boar’s movement
across this barrier is severely impeded, preventing inflow of
the ASFV to the non-infected zone. Starting from March 2019,
our model strongly supports an overall decline in occupancy
until May 2020, presumably due to maintained culling efforts.
Together, these results confirm (1) a declining trend in wild
boar occupancy resulting from ASF (only in the infected zone)
and ASF control measures implemented in Wallonia (Belgium),
and (2) the potential of using a CT network to monitor
wild boar population trends and impacts thereon during an
ASF outbreak.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://figshare.com/
projects/African_Swine_Fever_Monitoring/115092.

Frontiers in Veterinary Science | www.frontiersin.org 8 October 2021 | Volume 8 | Article 726117

https://figshare.com/projects/African_Swine_Fever_Monitoring/115092
https://figshare.com/projects/African_Swine_Fever_Monitoring/115092
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Bollen et al. Managing ASF: Camera Trap Monitoring

ETHICS STATEMENT

Ethical review and approval was not required for the animal study
because the data used in this work were obtained through a non-
invasive method (camera trapping), which does not disturb the
natural behavior of animal.

AUTHOR CONTRIBUTIONS

MB: methodology, formal analysis, visualization and writing—
original draft preparation. TN: methodology and validation.
MF: methodology and visualization. AL, VD, and BM: resources.
JC and NB: supervision. MB, TN, VD, AL, JC, and NB: writing—
review& editing, conceptualization. Each author’s contribution is
described using the CRediT roles. All authors contributed to the
article and approved the submitted version.

FUNDING

MB and MF are PhD fellows, MB is funded by a BOF-
mandate at Hasselt University, MF is funded by the Research
Foundation – Flanders (FWO) (grant number 11E3220N). The
camera trapping infrastructure was provided and funded by the

Public Service of Wallonia. Services used in this work were
provided by the VSC (Flemish Supercomputer Center), funded
by the Research Foundation – Flanders (FWO) and the Flemish
Government. Finally, the ecotope dataset, used in this work,
is derived from the LifeWatch ecotope database, which is led
by the Earth & Life Institute (UC Louvain) and funded by the
Wallonia-Brussels Federation.

ACKNOWLEDGMENTS

We thank Guillaume Morrel for installing the camera
trapping network during his master thesis (ULiège).
Further, we are grateful to the municipalities and residents
in Gaume to allow us to place camera traps on their
property. Finally, we would like to thank the reviewers for
their thoughtful comments and efforts toward improving
our manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fvets.
2021.726117/full#supplementary-material

REFERENCES

1. Sánchez-Cordón PJ, Montoya M, Reis AL, Dixon LK. African swine fever: a
re-emerging viral disease threatening the global pig industry. Vet J. (2018)
233:41–8. doi: 10.1016/j.tvjl.2017.12.025

2. Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Stahl K. Epidemiological
considerations on African swine fever in Europe 2014-2018. Porcine Health
Manag. (2019) 5:10. doi: 10.1186/s40813-018-0109-2

3. More S, Miranda MA, Bicout D, Bøtner A, Butterworth A,
Calistri P, et al. African swine fever in wild boar. EFSA J. (2018)
16:e05344. doi: 10.2903/j.efsa.2018.5344

4. Commision Implementing Regulation (EU) 2021/605 of 7 April 2021 Laying

Down Special Control Measures for African Swine Fever Was Adopted by the

Commission Based on the New Legal Framework of Regulation (EU) 2016/429

(“Animal Health Law”), OJ L 126. Brussels: EU Commission (2021).
5. Nurmoja I, Mõtus K, Kristian M, Niine T, Schulz K, Depner

K, et al. Epidemiological analysis of the 2015–2017 African
swine fever outbreaks in Estonia. Prev Vete Med. (2018)
181:104556. doi: 10.1016/j.prevetmed.2018.10.001

6. Lange M, Guberti V, Thulke HH. Understanding ASF spread
and emergency control concepts in wild boar populations using
individual-based modelling and spatio-temporal surveillance data.
EFSA Supp Public. (2018) 15:1521E. doi: 10.2903/sp.efsa.2018.EN-1
521

7. Bubnicki JW, Churski M, Schmidt K, Diserens TA, Kuijper DPJ. Linking
spatial patterns of terrestrial herbivore community structure to trophic
interactions. eLife. (2019) 8:e44937. doi: 10.7554/eLife.44937

8. Hegel CGZ, dos Santos LR, Pichorim M, Marini MA. Wild pig (Sus scrofa
L.) occupancy patterns in the Brazilian Atlantic forest. Biota Neotrop. (2019)
19:8. doi: 10.1590/1676-0611-bn-2018-0719

9. Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT,
et al. REVIEW: Wildlife camera trapping: a review and recommendations
for linking surveys to ecological processes. J Appl Ecol. (2015) 52:675–
85. doi: 10.1111/1365-2664.12432

10. Foster RJ, Harmsen BJ. A critique of density estimation from camera-trap
data. J Wildlife Manag. (2012) 76:224–36. doi: 10.1002/jwmg.275

11. Seber GA, Schofield MR. Capture-Recapture: Parameter Estimation for Open

Animal Populations. Cham: Springer (2019). p. 663.

12. Rowcliffe JM, Field J, Turvey ST, Carbone C. Estimating animal density using
camera traps without the need for individual recognition. J Appl Ecol. (2008)
45:1228–36. doi: 10.1111/j.1365-2664.2008.01473.x

13. Nakashima Y, Fukasawa K, Samejima H. Estimating animal density without
individual recognition using information derivable exclusively from camera
traps. J Appl Ecol. (2018) 55:735–44. doi: 10.1111/1365-2664.13059

14. Palencia P, Vicente J, Barroso P, Barasona JÁ, Soriguer RC, Acevedo P.
Estimating day range from camera-trap data: the animals’ behaviour as a key
parameter. J Zool. (2019) 309:182–90. doi: 10.1111/jzo.12710

15. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle
J, Langtimm CA. Estimating site occupancy rates when detection
probabilities are less than one. Ecology. (2002) 83:2248–55. doi: 10.1890/
0012-9658(2002)083[2248:ESORWD]2.0.CO;2

16. Linden A, Licoppe A, Volpe R, Paternostre J, Lesenfants C, Cassart D, et al.
Summer 2018: African swine fever virus hits north-western Europe. Transb
Emerg Dis. (2019) 66:54–5. doi: 10.1111/tbed.13047

17. Morelle K, Bubnicki J, Churski M, Gryz J, Podgórski T, Kuijper
DPJ. Disease-induced mortality outweighs hunting in causing wild boar
population crash after african swine fever outbreak. Front Vet Sci. (2020)
7:378. doi: 10.3389/fvets.2020.00378

18. [Dataset] LifeWatch. LifeWatch-WB Ecotope Database. (2018). Available
online at: https://www.lifewatch.be/en/lifewatch-wb-ecotope-database
(accessed October 8, 2020).

19. Casaer J, Milotic T, Liefting Y, Desmet P, Jansen P. Agouti: a platform for
processing and archiving of camera trap images. Biod Inform Sci Stand. (2019)
3:e46690. doi: 10.3897/biss.3.46690

20. Dellicour S, Desmecht D, Paternostre J, Malengreaux C, Licoppe A, Gilbert
M, et al. Unravelling the dispersal dynamics and ecological drivers of the
African swine fever outbreak in Belgium. J Appl Ecol. (2020) 57:1619–
29. doi: 10.1111/1365-2664.13649

21. Royle JA, Kéry M. A bayesian state-space formulation of dynamic occupancy
models. Ecology. (2007) 88:1813–23. doi: 10.1890/06-0669.1

22. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey L, Hines JE.
Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of

Species Occurrence. Amsterdam: Elsevier (2017). p. 641.
23. Niedballa J, Sollmann R, Courtiol A, Wilting A. camtrapR: an R package

for efficient camera trap data management. Meth Ecol Evol. (2016) 7:1457–
62. doi: 10.1111/2041-210X.12600

Frontiers in Veterinary Science | www.frontiersin.org 9 October 2021 | Volume 8 | Article 726117

https://www.frontiersin.org/articles/10.3389/fvets.2021.726117/full#supplementary-material
https://doi.org/10.1016/j.tvjl.2017.12.025
https://doi.org/10.1186/s40813-018-0109-2
https://doi.org/10.2903/j.efsa.2018.5344
https://doi.org/10.1016/j.prevetmed.2018.10.001
https://doi.org/10.2903/sp.efsa.2018.EN-1521
https://doi.org/10.7554/eLife.44937
https://doi.org/10.1590/1676-0611-bn-2018-0719
https://doi.org/10.1111/1365-2664.12432
https://doi.org/10.1002/jwmg.275
https://doi.org/10.1111/j.1365-2664.2008.01473.x
https://doi.org/10.1111/1365-2664.13059
https://doi.org/10.1111/jzo.12710
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1111/tbed.13047
https://doi.org/10.3389/fvets.2020.00378
https://www.lifewatch.be/en/lifewatch-wb-ecotope-database
https://doi.org/10.3897/biss.3.46690
https://doi.org/10.1111/1365-2664.13649
https://doi.org/10.1890/06-0669.1
https://doi.org/10.1111/2041-210X.12600
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Bollen et al. Managing ASF: Camera Trap Monitoring

24. Riutort-Mayol G, Bürkner P-C, Michael, Solin A, Vehtari A. arXiv Pre-Print
Server [Preprint] (2020). Available online at: https://arxiv.org/abs/2004.11408
(accessed April 23, 2020).

25. Solin A, Särkkä S. Hilbert space methods for reduced-rank Gaussian process
regression. Stat Comp. (2020) 30:419–46. doi: 10.1007/s11222-019-09886-w

26. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt
M, et al. Stan: A probabilistic programming language. J Stat Softw. (2017)
76:32. doi: 10.18637/jss.v076.i01

27. Banner KM, Irvine KM, Rodhouse TJ, Donner D, Litt AR. Statistical
power of dynamic occupancy models to identify temporal change: informing
the North American bat monitoring program. Ecol Ind. (2019) 105:166–
76. doi: 10.1016/j.ecolind.2019.05.047

28. Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Stat Comp. (2017) 27:1413–
32. doi: 10.1007/s11222-016-9696-4

29. Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner P-C. Rank-
Normalization, folding, and localization: an improved r for assessing
convergence of MCMC. Bayes Anal. (2021) 1:1–28. doi: 10.1214/20-BA1221

30. Golding N, Purse BV. Fast and flexible Bayesian species distribution
modelling using Gaussian processes. Meth Ecol Evol. (2016) 7:598–
608. doi: 10.1111/2041-210X.12523

31. Hofmeester T, Cromsigt J, Odden J, Andrén H, Kindberg J, Linnell J. Framing
pictures: a conceptual framework to identify and correct for biases in detection
probability of camera traps enabling multi-species comparison. Ecol Evol.
(2019) 9:1–17. doi: 10.1002/ece3.4878

32. Rovero F, Marshall AR. Camera trapping photographic rate as an
index of density in forest ungulates. J Appl Ecol. (2009) 46:1011–
7. doi: 10.1111/j.1365-2664.2009.01705.x

33. Broadley K, Burton AC, Avgar T, Boutin S. Density-dependent space use
affects interpretation of camera trap detection rates. Ecol Evol. (2019) 9:14031–
41. doi: 10.1002/ece3.5840

34. Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA. Quantifying
levels of animal activity using camera trap data. Meth Ecol Evol. (2014)
5:1170–9. doi: 10.1111/2041-210X.12278

35. Dixon LK, Stahl K, Jori F, Vial L, Pfeiffer DU. African swine
fever epidemiology and control. Ann Rev Animal Biosci. (2020)
8:221–46. doi: 10.1146/annurev-animal-021419-083741

36. Morelle K, Fattebert J, Mengal C, Lejeune P. Invading or
recolonizing? Patterns and drivers of wild boar population
expansion into Belgian agroecosystems. Agricul Eco Environ. (2016)
222:267–75. doi: 10.1016/j.agee.2016.02.016

37. Wevers J, Fattebert J, Casaer J, Artois T, Beenaerts N. Trading fear
for food in the anthropocene: how ungulates cope with human
disturbance in a multi-use, suburban ecosystem. Sci Total Environ. (2020)
741:140369. doi: 10.1016/j.scitotenv.2020.140369

38. Rutten A, Casaer J, Swinnen KRR, Herremans M, Leirs H. Future
distribution of wild boar in a highly anthropogenic landscape: models
combining hunting bag and citizen science data. Ecol Mod. (2019)
411:108804. doi: 10.1016/j.ecolmodel.2019.108804

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Bollen, Neyens, Fajgenblat, DeWaele, Licoppe, Manet, Casaer and

Beenaerts. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Veterinary Science | www.frontiersin.org 10 October 2021 | Volume 8 | Article 726117

https://arxiv.org/abs/2004.11408
https://doi.org/10.1007/s11222-019-09886-w
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/j.ecolind.2019.05.047
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1111/2041-210X.12523
https://doi.org/10.1002/ece3.4878
https://doi.org/10.1111/j.1365-2664.2009.01705.x
https://doi.org/10.1002/ece3.5840
https://doi.org/10.1111/2041-210X.12278
https://doi.org/10.1146/annurev-animal-021419-083741
https://doi.org/10.1016/j.agee.2016.02.016
https://doi.org/10.1016/j.scitotenv.2020.140369
https://doi.org/10.1016/j.ecolmodel.2019.108804
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles

	Managing African Swine Fever: Assessing the Potential of Camera Traps in Monitoring Wild Boar Occupancy Trends in Infected and Non-infected Zones, Using Spatio-Temporal Statistical Models
	Introduction
	Materials and Methods
	Study Area
	Camera Trap Network and Data
	Statistical Model

	Results
	Detectability
	Occupancy
	Occupancy Growth Rate

	Discussion
	Detectability
	Occupancy
	Occupancy Growth Rate
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


