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Rift Valley fever virus (RVFV) activity in Southern Africa tends to occur during periods

of sustained elevated rainfall, cooler than normal conditions, and abundant vegetation

cover creating ideal conditions for the increase and propagation of populations of RVFV

mosquito vectors. These climatic and ecological conditions are modulated by large-scale

tropical-wide El Niño–Southern Oscillation (ENSO) phenomena. The aim of this 5-year

study was to investigate climatic conditions during Rift Valley fever “post-epizootic” period

in Free State province of the Republic of South Africa, which historically experienced

the largest RVF outbreaks in this country. We collected satellite-derived rainfall, land

surface temperature (LST), and normalized difference vegetation index (NDVI) data

since 2014 to understand broad environmental conditions in the years following a

period of sustained and widespread large RVF outbreaks (2008–2011) in the region.

We found this post-epizootic/interepizootic period to be characterized by below-normal

rainfall (∼-500mm), above LSTs (∼+12◦C), depressed NDVI (60% below normal), and

severe drought as manifested particularly during the 2015–2016 growing season. Such

conditions reduce the patchwork of appropriate habitats available for emergence of

RVFV vectors and diminish chances of RVFV activity. However, the 2016–2017 growing

season saw a marked return to somewhat wetter conditions without any reported RVFV

transmission. In general, the aggregate vector collections during this 5-year period follow

patterns observed in climate measurements. During the 2017–2018 growing season, late

and seasonally above average rainfall resulted in a focal RVF outbreak in one location in

the study region. This unanticipated event is an indicator of cryptic RVF activity during

post-epizootic period and may be a harbinger of RVFV activity in the coming years.
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INTRODUCTION

Rift Valley fever (RVF) is an acute viral disease predominantly
of domestic animals (cattle, buffalo, sheep, goats, and camels)
and secondarily, of human populations. The endemic region of
RVF covers most of sub-Saharan Africa, the Arabian Peninsula
(Saudi Arabia and Yemen), and Madagascar (1, 2). Epicenters
of epizootics and epidemics located in Eastern and Southern
Africa are driven by persistent and above-normal rainfall
associated with global scale El Niño-Southern Oscillation (ENSO)
phenomena teleconnections (3, 4). Broadly, RVF outbreaks tend
to occur in Eastern Africa during the positive phase of ENSO (El
Niño) and in Southern Africa during the negative phase of ENSO
(La Niña). The two phases describe the periods of persistent
and above normal rainfall in each region leading to flooding of
pan/dambo habitats. Flooding of these ecological niches where
the various primary mosquito vectors of RVF-virus (RVFV)
Aedes species and secondary Culex species emerge in massive
numbers to trigger an outbreak. The impacts of an outbreak
are varied and range from high rates of abortions and deaths in
affected livestock to mild influenza-like illness and severe clinical
symptoms in humans, including hemorrhagic manifestations,
hepatitis, retinitis and encephalitis, and mortality in humans
(∼1–35%) to abortions and mortality in affected livestock (∼80–
100%) (1). The impacts on economies are pronounced, especially
on livestock trade, and were estimated at $60M during the
2006–2007 outbreak in East Africa (5) and $12M (R203.4M)
to the sheep farming sector alone during the 2010 outbreak
in South Africa (6, 7). Due to its prominence as a cross-
over pathogen, RVFV is listed as a biological agent by US
government public health and defense agencies (Department
of Defense, United States Department of Agriculture, Centers
of Diseases Control and Prevention) and international public
and animal health organizations (World Health Organization,
Food Agricultural Organization, and the World Organization
for Animal Health), requiring focused investigations in RVFV-
endemic and neighboring regions.

One such investigation is Understanding Rift Valley Fever in

the Republic of South Africa in which we are comprehensively
studying an array of key facets influencing the RVF disease
system using a One Health approach during the study period
2014–2019, which we refer to here as post-epizootic period. We

interpreted this period to correspond to interepizootic/inter-

epidemic period because of the likelihood of future RVF
epizootics/epidemics. The One Health approach used is a
collaborative, multisectoral, and transdisciplinary approach
involving climate variable observations at regional level,
vegetation, ecology and soil investigation, mosquito vector
surveillance at local level, epidemiological investigations in
livestock, wildlife, and human populations at farm level. The
project therefore recognizes the interconnection between people,
animals, plants, and their shared environment. The project
is organized into eight work packages: 1. Understanding the
effects of climate and weather (this study), 2. Investigating
vegetation ecology (8), 3. Investigating wetland soil properties
(9), 4. Investigating ecological characteristics of RVFV vector
mosquitoes, 5.Determining the seroprevalence of RVFV antibodies

in farm workers (10), 6. Determining the seroprevalence of
RVFV antibodies of farmed and free-ranging wild ruminants and
domestic livestock (11), 7. Investigating changes in RVFV antibody
levels in a sheep cohort, and 8. Comparison of cattle and buffalo
serostatus in the Free State and Limpopo. This paper reports on
findings from Understanding the Effects of Climate and Weather,
which has monitored and analyzed broad-scale satellite-derived
climatic and environmental variables that influence RVFV
mosquito vector populations. Among these variables are rainfall,
considered the primary large-scale driver of RVFV activity,
vegetation [normalized difference vegetation index (NDVI)],
land surface temperature (LST), evapotranspiration, etc., which
are proximate determinants of habitat conditions influencing
survival and propagation of RVF vector populations (12–
14). Climate variability characterized by year-to-year rainfall,
vegetation, and land surface temperature are important broad
scale drivers influencing the distribution in space and time of
Rift Valley fever mosquito populations; therefore, understanding
this component of the RVF disease system is critical to the
implementation of various efforts to prevent, control, and
mitigate potential outbreaks.

MATERIALS AND METHODS

Study Area
The project is being conducted in a ∼200 × 200 km area
[28S−30.45S, 24E−26.65E] covering a large part of the Free
State province and portions of both Eastern Cape and Northern
Cape provinces. Significant epidemics were reported in these
regions of South Africa in 1951, 1975, and 2010 with epizootics
in 1951, 1975, 1984, 1999, 2008, and 2009, 2010, and 2011
(15, 16) with apparently quiescent inter-epidemic periods. Many
of these epidemics had their epicenter in the Free State as can be
observed from the recent epizootics as shown in Figure 1. Annual
long-term rainfall in the region ranges between ∼200mm to
the west and southwest of the region and a maximum of
∼550mm to the eastern and northeastern parts of the region.
The climatological spatial patterns of land surface temperature
with maximum values of ∼35◦C in the west/southwest, and
normalized difference vegetation index with maximum values
of ∼0.45 in the east/northeastern parts of the region reflect the
long-term annual mean patterns of rainfall. The combination of
these climate metrics with the underlying geology has over time
produced landcover patterns dominated by grasslands, savanna,
and Nama-Karoo biomes (17), which includes fynbos elements,
shrubs, and woodland species. Embedded in these three biomes
are the azonal wetlands, which include the study area pan
habitats, with vegetation distinct from the surrounding upland
vegetation (8). Dryland agriculture that is heavily dependent
on variable rainfall is practiced in the east, while locations
in the drier west and southwest use irrigated agriculture to
buffer against low and variable rainfall. The study area receives
on average of ∼96% of rainfall between September and May
and 4% between June and August, considering the southern
hemisphere summer rainfall season. There is, however, high
interannual variability in rainfall producing periods of above
normal rainfall and floods and episodes of very low rainfall and
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FIGURE 1 | Distribution of recent Rift Valley fever activity (2008–2018) over the southern Africa region. Rift Valley fever in the Republic of South Africa study region is

marked by a red square outline [28S−30.45S, 24E−26.65E], centered on Free State and Northern Cape Province border, the epicenter of multiple epizootics. Data

plotted were derived from the World Organization for Animal Health (OIE) World Animal Health Information System (WAHIS) database.

extreme drought. Periods of above-normal rainfall like 2009–
2011 create conditions for outbreaks to occur and propagate.
The study region thus has an approximately east–west ecological
gradient from Bloemfontein to Mokala National Park (MNP)
that can be observed in climate metrics and land cover patterns
(Figure 2).

Data
Climate Data
Three satellite-derived climate data sets are used in evaluating the
patterns of rainfall and land surface conditions over the region
during the study period (2014–2019). The three data sets are
(a) daily/monthly rainfall from the Africa Rainfall Climatology
(ARC) data, (b) monthly normalized difference vegetation index,
and (c) monthly land surface temperature. Details on these
datasets are given below:

(a) African Rainfall Climatology (ARC) dataset is sourced from
the National Oceanic and Atmospheric Administration
(NOAA)—Climate Prediction Center (CPC) archives. ARC
data are derived from several satellites and in situ sources,
including the polar orbiting Special SensorMicrowave/Imager
and Advanced Microwave Sounding Unit microwave
sensors, infrared bands of the geostationary METEOSAT
platforms, and rain gauge measurements from the Global
Telecommunications System daily total rainfall product. The
data are mapped to a spatial resolution of 0.1◦ × 0.1◦ over
Africa and the Middle East. These data are available as a daily
time series from 1983 to present (18).

(b) Normalized difference vegetation index (NDVI) data are
derived from NASA’s Earth Observing System Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument
aboard the Terra (EOS AM-1) spacecraft. The NDVI and

similar vegetation indices are widely used to infer the
photosynthetic capacity of vegetation and are used as a land
surface input in various weather, climate, biogeochemical,
and hydrological models (19). Applications of normalized
difference vegetation index are numerous and varied and
include agricultural monitoring, famine early warning,
ecological monitoring for habitats indicative of pest and
arthropod vector emergence and survival, and determination
of land use and land cover changes, among others (12, 20–22).
The normalized difference vegetation index is simply the ratio
of the difference between the near-infrared and red reflectance
to their sum; since green leaves with dense chlorophyll are
more reflective in the near-infrared wavelengths than in the
visible, this ratio is higher (approaching one) for healthy
green vegetation and lower (approaching zero) for stressed
vegetation (23). MODIS normalized difference vegetation
index data are derived from the red and near-infrared
bands, centered at 648 nm and 848 nm, respectively. The

reflectance data are atmospherically corrected and masked
for cloud, cloud shadow, and aerosol contamination (24). In
this study we use the global monthly Climate Modeling Grid
(CMG) MOD13C2 product with a spatial resolution of 0.05◦

× 0.05◦ (∼5.5 × 5.5 km) aggregated from nominal 250m
MODIS NDVI.

(c) Land surface temperature (LST) was also derived from

the MODIS instrument. Land surface temperature is a key
parameter in land surface processes affecting climate and

therefore influencing the biology, organisms, and ecosystems
from local to global scales. Changes in land surface
temperatures can induce convection at the boundary layer
and influence air temperature, surface winds, cloudiness,
and precipitation (25). All these variables influence habitat
conditions of mosquito vectors. Land surface temperature
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FIGURE 2 | Climate metrics and land cover characteristic of the study region. In (A) annual long-term rainfall (1983–2019), (B) annual long-term land surface

temperature (2000–2019), (C) annual long-term normalized vegetation index (2000–2019), and (D) land cover classification. The spatial variations and patterning in

(B–D) to a large extent reflect the patterns in long-term rainfall.

has proved useful for agricultural applications in estimating
crop water demands and drought severity assessments (26).
It is also an emerging variable in vector-borne disease
applications (21). We used land surface temperature to infer
temperature conditions on the land surface especially in
vegetated areas, which serve as potential vector emergence
sites during the study period. In this study, we use the global
Climate Modeling Grid (CMG) product MOD11C3 at 0.05◦

spatial resolution. This data set is derived from daytime and
nighttime thermal infrared measurements in bands 31 (10.8–
11.3 nm) and 32 (11.8–12.3 nm) using the day/night land
surface temperature algorithm. Cloud screening is performed
using the MODIS cloud mask product (MOD35_L2), prior to
the land surface temperature calculation.

Mosquito Vector Data
To complement the satellite-based climate observations,
adult floodwater mosquito vectors were sampled by the
vector ecology team at over 21 locations daily (shown in
Supplementary Figure 1). Given the sampling strategy this
amounts to every 2 weeks per site during the growing season
(September–May). Sampling was performed using US Centers
for Disease Control and Prevention (CDC) CO2-baited traps
placed at dusk to lure feeding adult female mosquitoes from
diurnal resting locations. The sampling schedule was designed to
be flexible to allow sampling all sites within the week. However,
due to various issues at project startup, there was no regular
sampling until the 2015–2016 season. In addition, significant
weather events at times, including excessive rainfall or severe
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FIGURE 3 | Continued

winds, made it impossible to access some sites and set traps,
forcing the team to trap at alternate sites. In this paper we
use aggregated adult female mosquito population collection
numbers sampled during the project period to compare to
the 5-year variability in climate conditions. The vector data
presented in this paper are adjusted for trap effort. Trap effort

was summarized as the number of hours the trap was open
multiplied by the number of traps that were set. For instances
where the time the trap was open was not available, the median
of all available data was used. Number of traps was available for
all data. Thus, the adult female mosquito numbers were divided
by this trap effort (hours trap was open multiplied by number of
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FIGURE 3 | Seasonal anomaly patterns of rainfall, normalized difference

vegetation index, and land surface temperatures for epizootic seasons

(2009/2010, 2010/2011) and study post-epizootic/interepizootic period

seasons from 2014–2019. Seasons are defined by early

(September–November: SON), mid (December–February: DJF), and end

(March–May: MAM). Rainfall and normalized difference vegetation index

anomalies are expressed as percentage departures while land surface

temperatures are expressed as absolute departures from the respective

seasonal long-term means.

trap sets) for summary numbers of adult female mosquitoes, and
this trap effort was included as an offset in modeling the adult
female mosquito number.

Data Analysis
Satellite Data Treatment
We processed, mapped, and subset all satellite rainfall, LST,
and NDVI data within the study region extent (28S−30.45S,
24E−26.65E). For each climate variable, we computed both daily
and monthly long-term means and corresponding absolute and
standardized anomalies. We also examined the growing/rainfall
season conditions by calculating seasonal anomalies. For the
growing season we divided the season into early (September–
November; SON), peak (December–February; DJF), and end
(March–May; MAM) to examine the evolution of growing
conditions, classified as below-normal, normal, and above-
normal. For given vector sampling locations we tracked the
seasonal growing conditions of the location using the seasonal
rainfall cumulative metric by comparing the daily cumulative
rainfall against the daily long-term mean. Daily cumulative
rainfall values above the daily long-term mean values are a proxy
for potential flooding of dambos/pans and therefore conducive
to the emergence and propagation of vectors in general, but
RVFV vectors in particular (27, 28). In all cases, at monthly
or seasonal time scale we have calculated anomalies using two
complementary methods as:

(a) Absolute anomalies x′ = x − x

(b) Standardized anomalies z =
x−x
sx

=
x
′

sx

Where x′ is the anomaly for a given month (e.g., January)
or seasonal anomaly (DJF), x the absolute values of a
given month or season, the respective long term means or
climatology values of the respective month and season, z the
standardized anomaly or z-scores for a given month or season,
and sx the corresponding standard deviation. The effect of
standardization is to remove influences of local variability so
we can compare the difference over space and over time from
the different climate measurements (29). Results of absolute
anomalies are presented in Figure 3 and the standardized
anomalies are given in the Supplementary Figure 2. For ease
of interpretation by the reader, we have expressed absolute
anomalies as percentage departures from the long-term mean
for rainfall and normalized difference vegetation index metrics.
Anomalies during the epizootic/period (2009–2010, 2010–2011)
are included for reference purposes representing the most recent
epidemic/epizootic period.

Vector and Climate Data Analysis
To investigate the relationship between vector populations and
climate/environmental data, we employed a negative binomial
regression model of the form,

Mf = Rainfall+NDVI+ LST+Offset

where Mf is the number of adult female mosquitoes and Offset
is the number of hours the traps were open (or median)
∗ number of traps, to compare monthly rainfall, monthly
normalized difference vegetation index, and monthly land
surface temperature with total adult female vector populations
sampled over the entire region. As the outcomemeasure, number
of adult female mosquitoes, is a count variable, we employed
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FIGURE 4 | Contrasting conditions in and around Meadows pan habitat

(location shown in Supplementary Figure 1). [(A)-top] severe drought

conditions in March 2016 at the peak of the growing season (rainfall total:

∼75.82mm, long-term mean: 109.65mm; normalized difference vegetation

index: ∼0.28, long-term mean: 0.44; land surface temperature: 34.6◦C,

long-term mean: 31.9◦C), [(B)-middle], desiccated dambo/plan floor during

the same time period, and [(C)-bottom] March 2018: vegetation growth after

sustained wet conditions (rainfall total: ∼182.80mm, long-term mean:

109.65mm; normalized difference vegetation index: ∼0.51, long-term mean:

0.44; land surface temperature: 28.04◦C, long-term mean: 31.9◦C).

a negative binomial regression approach with an offset for trap
effort. The model structure maintains the data as count data
with the negative binomial approach, and inclusion of the offset
accounts for varying “rates” of mosquito capture—instances in
the field data collection where number of traps or hours the
trap was open might have varied from collection to collection
based on field conditions—which would impact the number
of mosquitoes caught at each collection time point. The offset
employed in this model is a composite of both how long the trap
was open and the number of traps that were set. For records in
which the number of hours the trap was open was not present,
we took the median of available data and multiplied that by the
number of traps that were open during that collection time point.
Complete data were available for number of traps set for all data
collection time points.

RESULTS

Spatial and Temporal Patterns of Climate
Anomalies
We first examined the spatial patterns in climate variable
anomalies. In order to reduce the amount of data to examine
we show the patterns by season: early season (September–
November), mid-season (December–February), and end season
(March–May). Geographic patterns of absolute anomalies for
the study area are presented in Figure 3 (see standardized
anomalies in Supplementary Figure 2 for reference). Anomalies
during 2009–2010 and 2010–2011 are included for reference
purposes, representing the recent epidemic/epizootic period.
The patterns show that the epizootic period was dominated
by an early start (2009–2010) to the season with favorable
conditions for RVFV vectors during SON 2009 (widespread
rainfall, above normal vegetation conditions and cooler than
normal land surface temperature) that propagated into the mid-
season (DJF) and further enhancement of these conditions in
the last quarter of the season (MAM) for both vegetation
and land surface temperature. The 2010–2011 epizootic period
had a delayed start of the season but the rest of the season
from December 2010 to May 2011 had enhanced and favorable
conditions for the emergence of RVFV vectors and subsequent
outbreaks as shown in Figure 1. During the study period 2014–
2019, classified as post-epizootic/interepizootic period, the study
region has been dominated by below normal rainfall, drier
than normal vegetation conditions, and above normal land
surface temperatures. The exceptions to this general pattern
are: early-season during the 2014–15 season (SON2014), mid-
season (DJF) in the 2016-2017 season, and late seasons in 2017–
2018 (MAM2018) and 2018–2019 (MAM2019). The drier than
normal conditions during this period reached a record low
during the mid-season (DJF) 2015–2016 period with rainfall
60–80% below normal, normalized difference vegetation index
∼80% below normal, and land surface temperatures up to
+20◦C above normal over most of region (Figure 3). The
contrasting patterns of land surface conditions during this post-
epizootic period are best illustrated by field work evidence as
shown in Figure 4. In drought years as shown in Figures 4A,B,
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FIGURE 5 | Anomaly time series of rainfall, land surface temperature and normalized difference vegetation index for the period 2009–2019. The Rift Valley fever

epizootic period (2009–2011) is shaded in dark grey and shows predominantly above normal rainfall, lower than normal land surface temperatures, and above

normalized difference vegetation index and opposed to the interepizootic/post-epizootic period (2012–2019) with lower than normal rainfall and normalized difference

vegetation index and persistence of higher than normal land surface temperatures marked by the extreme drought of 2015–2016. The dotted line shows the

approximate timing of the isolated outbreak during 2017–2018 growing season.

due to excessive livestock herbivory, there is no vegetation
cover outside wetlands, and even in certain pan habitats, all
wetlands vegetation, which is generally considered impalatable,
is totally grazed, which would result in NDVI of 0 or near 0
representing bare soil or scant vegetation cover. The amount
of vegetation cover—density, and the type of vegetation—
wetland species adapted to anaerobic conditions, are important
as habitat for mosquito vectors. While NDVI is useful when
correlated with rainfall, it is of specific importance for the

mosquito vectors as they require wetland vegetation which,
in the pans and palustrine habitats in the Free State, is
embedded in the surrounding vegetation, and far more limited
in extent. Because wetland vegetation is so limited in size
in the Free State, green up in vegetation surrounding pan
habitats is prominently detected from background by satellite
measurements of vegetation photosynthetic capacity represented
as high NDVI. Figure 4C illustrates this with the recovery
and vegetation growth after sustained wet conditions in March
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FIGURE 6 | Daily cumulative rainfall time series trajectories for epizootic period

(2010/2011; green) and interepizootic period (average of 2014–2019; blue)

compared to the daily long-term mean rainfall (red) for six selected study sites.

The epizootic season (2010–2011) shown in green, was above the long-term

mean, with a rainfall excess ranging between ∼200 and ∼600mm across

study sites by May. The study post-epizootic/interepizootic period shows

persistently below normal rainfall with a shortfall of ∼100mm by May across all

study sites.

2018 during the 2017–2018 growing season (Figure 3: March–
May 2018).

The area averaged climate anomaly time series for the region
shown in Figure 5 illustrate that the post-epizootic period 2012–
2019 (study period starts in 2014) has been dominated by below
normal rainfall, above normal land surface temperatures, and
below normal vegetation conditions. This is opposed to the
epizootic period 2009–2011 which was characterized by above
normal rainfall, below normal land surface temperatures, and
above normal vegetation conditions. This figure also illustrates
direct correlation between rainfall and NDVI but an inverse
relationship between these two parameters and LST. It is clear
that during the epizootic period (2009–2011), the intensity of

FIGURE 7 | Time series of aggregate mosquito vector counts (of various

floodwater Aedes spp. and Culex spp.) for the study period September

2014–2019 (top) raw mosquito vector counts (bottom), adjusted mosquito

vector counts accounting for trap effort during the study period. The number

of vectors collected shows an increasing trend over time in concert in the

increase in rainfall improving habitat conditions. Taking into consideration the

trapping effort, 2014–2015 and 2015–2016 seasons had no vectors collected

during this period of severe drought conditions.

the amplitudes and the spread of the base months starting
early 2009 until later 2011 they are ∼18/23 months of above
normal rainfall/NDVI and the inverse LST. When compared
with successive periods in the following years, this pattern is
not persistent enough in magnitude nor of the temporal range
required for a large scale outbreak.

The area average growing season absolute rainfall for two
seasons (2009/2010, 2010/2011) was 50.80mm and for the 5 years
of the study period was 39.4mm. In terms of growing season
cumulative rainfall anomalies, the epizootic period had excess
rainfall on the order of∼+367.50mm compared to a deficit of∼-
266.25mm for the entire post-epizootic growing seasons period
(2012–2019). Supplementary Table 1 shows the study area’s
average metrics for rainfall, normalized difference vegetation
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FIGURE 8 | Time series measurements of rainfall, land surface temperatures,

normalized difference vegetation index anomalies, and adjusted mosquito

vector collections during the study period. Vector collections only became

prominent when rainfall and NDVI were trending toward above normal during

the growing seasons from 2017–2019.

index, and land surface temperature for the entire period from
2012–2019. Examining cumulative rainfall trajectories for six
selected study sites (Supplementary Figure 3), we find that only
2016/2017 and 2017/2018 are near normal and slightly above
normal rainfall toward the end of the season. Other than that,
none of the growing seasons during the study period exhibited
persistent above normal rainfall that was sufficient enough to
create ideal conditions to trigger an outbreak as was the case
during the epizootic period in 2010/2011. In totality, the daily
cumulative rainfall trajectories for the selected study sites indicate
that there is a clear and contrasting difference between the
epizootic (2010/2011) and study/post epizootic period (2014–
2019) rainfall conditions (Figure 6) that is also reflected in other
climate metrics.

TABLE 1 | Regression results of female adult vector populations and rainfall,

normalized difference vegetation index (NDVI), and land surface temperature (LST).

Variable Estimate Std. Error p-value

Rainfall −0.00281 0.01419 0.843

NDVI 12.55334 5.53645 0.023*

LST 0.14202 0.05395 0.008*

* indicates a statistically significant result at the 0.05 level.

Adjusted R-squared: 0.273.

Implications for Vector Populations
A time series of the total monthly mosquito vectors collected
and the corrected for trap effort during the study period are
shown in Figure 7 and indicate an increasing trend over the 5-
year period. Low numbers of vector populations were collected
during the 2016–2017 seasons, with the lowest/none during the
2015–2016 period after adjustment for trap effort during the
great desiccation period. However, since the 2016/2017 growing
season there has been an increase in the number of vectors
collected with the highest adjusted numbers during the 2018–
2019 growing season. These patterns mirror the trends in climate
variables shown in Figures 5, 8 especially for rainfall and as
reflected in spatial patterns in Figure 3. A negative binomial
regression analysis of climate variables averaged for the entire
study region (rainfall, normalized difference vegetation index,
land surface temperature as independent variables) and vector
populations (dependent variable) for all growing seasons under
study shows that, at the monthly time scale, both NDVI and LST
are significantly positively correlated with vector populations,
while rainfall is negatively, and not significantly, correlated
(Table 1, adjusted R-squared 0.273). NDVI, LST and Rainfall
were not collinear. To assess whether there was any seasonal
time trend in the data, we incorporated a smooth function
for season into the model of mosquito abundance using the
mgcv package in R statistical software and compared the two
models by AIC. The model without the smooth for season had
the lower AIC and is thus the model we chose. Interestingly,
the estimate for NDVI was substantially higher than the others
in the model, indicating a strong positive relationship between
NDVI and number of adult female mosquitoes. Since NDVI is a
linear function of rainfall in semi-arid areas like the study area
(30), it captures the memory of previous and present rainfall
events including all surface conditions. It has been shown that
environmental temperatures of 25◦C−30◦C are ideal for the
propagation of Rift Valley fever and other disease vectors (31,
32). This is also reflected in land surface temperature shifts
during the Rift Valley fever outbreaks (21). As can be noted in
Figure 9 as an example, comparing the aggregate climate variable
conditions for land surface temperature between the epizootic
(2011 January–March) and the interepizootic (2016 January–
March) periods, temperature distribution shifts leftwards to
∼26◦C–∼33◦C during the epizootic period, while during the
post-epizootic/interepizootic period, the distribution shifts right
of climatology to ∼36◦C−44◦C. We performed a t-test to
determine the significance of the differences in means between
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FIGURE 9 | Climate variable distribution comparisons between Rift Valley fever epizootic period (January–March 2011) (top) and post-epizootic period

(January–March 2016) illustrates clear shift to the right of the long-term mean distribution (in rainfall and normalized difference vegetation index) and to left (land

surface temperature) during the epizootic period. The distribution shifts are reversed during the interepizootic period. The gray bars represent the long-term mean

distribution for each variable.

the peak seasons (January–March) of the two representative
years for epizootic period against the interepizootic year (null
hypothesis H0: means are the same, alternative HA: the means
are different) for all the climate variables. Results indicate that we
reject the null hypothesis, as indeed the means differ significantly
between epizootic (2010, 2011) and post-epizootic/interepizootic
year (2016) at 95% confidence level. The former conditions
favor the emergence and propagation of large populations of
Rift Valley fever vectors. Supplementary Figure 4 also illustrates
that for the entire study region, rainfall is consistently below
or near the long-team mean during this post-epizootic period
unlike the above normal rainfall conditions during the epizootic
period. In addition, peak rainfall is shifted later into the
season and has two peaks in February and April during the
interepizootic period, which differs from the peak of January
for both the climatology and the epizootic period. Accordingly,
the normalized difference vegetation index is consistently below
normal during the post-epizootic/interepizootic period and
only approaches the long-term mean toward the end of the
season in concert with rainfall. Land surface temperatures are

correspondingly consistently above the long-term mean for most
of the entire growing season, conditions only reach below 30◦C
in April and May, and it is therefore no surprise that the bulk of
vectors collected throughout the entire study period are in May
(Supplementary Figure 5). This shift in the combined climate
and ecological conditions may explain the cryptic and localized
outbreak that occurred during this interepizootic period in the
southwest corner of the study region in May 2018 (Figures 1, 5)
(33, 35).

SUMMARY AND CONCLUSIONS

The post-epizootic period has been characterized to a large extent
by below normal rainfall, poor vegetation conditions, and above
normal land surface temperature during the growing/rainfall
season (September–May). These conditions are dramatically
exemplified by the nadir during the 2015/2016 growing
season with low rainfall, depressed vegetation conditions, and
abnormally high land surface temperatures. For the entire
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study period, rainfall and normalized difference vegetation index
have peaked later in the season in April; a month or two
later than average. The conditions have implications for vector
abundance both through space and time: a small population
of vectors was collected in 2014–2016/17 seasons; only until
later in the study period have we had an increased number
of collections. Also given that conditions have been peaking
later in the season, thermal conditions have not been favorable
for propagation of large numbers of vectors with early and
mid-season land surface temperatures measuring above 30◦C.
This aspect may partly account for the localized outbreak in
April 2018 late in the growing season. As a whole; during
the post-epizootic period, we can conclude that conditions
have not been favorable for large scale regional Rift Valley
fever activity.

Field observations have also shown us that the Free State
region is a complex landscape, with numerous potential
habitats—land of 10 000 pans (34)—both natural and artificial.
In this respect, large-scale monitoring of drivers of climate
variability such as ENSO and monitoring of proximate regional
environmental indicators (rainfall, NDVI, soil moisture, etc.)
to detect specific shifts in patterns can support targeted vector
surveillance in high-risk areas and concurrent vaccination
campaigns. This will be an effective method to prevent and
control RVF and minimize the scale of costs and damage such
as those during and after the 2009–2011 epizootic period. Under
large-scale flood conditions, it would be impossible to manage
or control an outbreak; most farmers will not be reached due
to unnavigable road networks. Given the critical importance
of agriculture and livestock farming, in particular to South
Africa’s economy and to rural livelihoods, it is imperative that
the livestock agricultural industry, in partnership with the South
African government, strategizes on a consistent farmer support
plan of annual vaccination of the young animals using Smithburn
vaccine (provided there are no cold chain issues). This will
eliminate the chance of devastating outbreaks. If this were
to become standard practice, it would improve and enhance
the prospects of animal production to the advantage of South
Africa’s domestic and export markets and reduce the chance of
a large-scale devastating outbreak event.
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