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An artificial intelligence (AI)-based computer-aided detection (CAD) algorithm to detect

some of the most common radiographic findings in the feline thorax was developed and

tested. The database used for training comprised radiographs acquired at two different

institutions. Only correctly exposed and positioned radiographs were included in the

database used for training. The presence of several radiographic findings was recorded.

Consequenly, the radiographic findings included for training were: no findings, bronchial

pattern, pleural effusion, mass, alveolar pattern, pneumothorax, cardiomegaly. Multi-label

convolutional neural networks (CNNs) were used to develop the CAD algorithm, and

the performance of two different CNN architectures, ResNet 50 and Inception V3, was

compared. Both architectures had an area under the receiver operating characteristic

curve (AUC) above 0.9 for alveolar pattern, bronchial pattern and pleural effusion, an AUC

above 0.8 for no findings and pneumothorax, and an AUC above 0.7 for cardiomegaly.

The AUC for mass was low (above 0.5) for both architectures. No significant differences

were evident in the diagnostic accuracy of either architecture.

Keywords: cat, thorax, artificial intelligence, convolutional neural network, radiology

INTRODUCTION

Plain radiographs are, nowadays, a widely used diagnostic imaging tool used in the veterinary
clinical routine to investigate the thorax in small animals. Despite the increasing availability of
more advanced imaging techniques, such as computed tomography, plain radiographs are, in most
cases, the first screening technique for thoracic disease. Furthermore, often the decision whether to
perform additional, and more advanced, imaging investigations is based on the results of plain
radiographs. In such a scenario, the correct interpretation of plain radiographs is paramount
in prescribing successful treatment. However, the reported incidence of interpretation errors
(in human medicine) for trained radiologists is still around 10–15% (1–3). The incidence of
interpretation errors in veterinary medicine has not yet been reported.

Several strategies to reduce the incidence of interpretation errors have been proposed. While
some non-technological solutions, such as structured reports, reductions in multitasking, and
double readings, alone or combined, have been reported as decreasing inattention-related errors,
on the other hand technological solutions such as eye-tracking technologies or computer-aided
detection (CAD) software have also been proposed (3). The increasing availability of computers
with a high computing power has driven the current research trend in the direction of the
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development of artificial intelligence (AI)-based CADs (4, 5).
In fact, AI application in radiology is a major field of research
with massive ongoing investments (6, 7). Currently, in human
medicine, the main applications of AI on plain radiographs are
related to the automatic detection of findings or pathologies
(7, 8). In the veterinary field, the scope to use AI-based algorithms
to detect some radiographic findings has been explored in dogs
over the last few years (9–12). The same potential use has not yet
been explored in cats.

Therefore, the aims of this study were: (1) to develop
an AI-based CAD algorithm to automatically detect some
of the most common radiographic findings in cats (2) to
compare the diagnostic accuracy of some of the most commonly
used convolutional neural network (CNN) architectures on
our database.

MATERIALS AND METHODS

Database Creation
All the feline radiographs performed at the Veterinary Teaching
Hospital of the University of Padua between June 2010 and
March 2021 and at the Pedrani Veterinary Clinic between
December 2018 and November 2019 were included in the
database. Three different X-ray equipments were used: at the
Veterinary Teaching Hospital of the University of Padua a Kodak
Point of Care CR-360 System (Carestream Health Inc.) was used
from June 2010 to June 2018, whereas a FDR D-EVO 1200
G43 (Fujifilm Corporation) digital radiology (DR) is currently
in use. At the Pedrani Veterinary Clinic a Isomedic RT 800MA
(Isomedic S. r. L) X-ray equipment was available. The PACS were
interrogated to search for thoracic radiographs.

Radiographic Findings
All the images were individually evaluated by two of the
authors, TB and AZ with over 10 and 20 years’ experience
in small animal diagnostic imaging, respectively. All the
radiographs were evaluated simultaneously by the two
authors and the interpretation was concorded following a
consensus discussion. Only correctly positioned and exposed
radiographs were included in the database. Furthermore, only
radiographs of skeletally mature cats were used. The radiographic
findings were annotated, in a standardized fashion, for each
radiograph. In particular, the presence of the following was
recorded: alveolar pattern, bronchial pattern, interstitial pattern,
cardiomegaly, pleural effusion, pneumothorax, fracture, hernia,
megaoesophagus, pneumomediastinum, and subcutaneous
emphysema (pneumoderma). If a radiograph was within normal
limits, a “no findings” tag was applied. Bronchial or interstitial
pattern were recorded as either present or absent, and no
grading score was used. Cardiomegaly was defined based on the
recommendations reported in the literature (13); in particular,
all cats with abnormalities in both the size and shape of the
cardiac silhouette (e.g., bulging of the right or left atrium) were
classified as having cardiomegaly. The cardiac silhouette was
evaluated, when possible, on both lateral and ventrodorsal and
dorsoventral projections. If cardiomegaly was detected in one
of the available projections, all the radiographs of the same

animal were classified as cardiomegaly even if cardiomegaly was
not evident in all the available projections. Both diffuse and
segmental megaoesophagus were classified as megaoesophagus.
The site of fractures was not recorded. Radiographs showing
fractures of the hind limbs were discarded.

Image Analysis
The images were stored in the lossless MHA format before
being fed to the data loader. The processing pipeline started
with resizing of the images to a 224 × 224 pixel format;
these were then normalized to a (0–1) range. Classification
was performed using a convolutional neural network (CNN),
which is a group of deep-learning architectures specifically for
image classification, segmentation and registration. Two different
CNN architectures were evaluated, namely ResNet-50 (14) and
Inception V3 (IncV3) (15). The CNN weights were initialized by
pre-training the network using the ImageNet database and then
they were fine-tuned on the database. A multi-label approach
was opted for because different radiographic findings are usually
present simultaneously. Binary cross-entropy was used as a
cost function. The training hyperparameters were shared by
the networks and this process was performed using the Adam
optimizer together with an exponentially decaying learning rate
until convergence was reached. The model state showing the
epoch with the lowest loss in the validation set was chosen
for further testing. The training cases were augmented by
random cropping, affine warping, flips, and contrast changes.
These augmentations apply random transformations to increase
the dataset diversity. This is a standard, and commonly used,
technique to improve the generalizability of deep networks
by reducing the risk of over fitting the training set. The
images were randomly splitted into a training, validation,
and test set with a 8:1:1 ratio, respectively; an algorithm
maintaining the same ratio among different tags in training,
validation, and test set was used. The information regarding
the institution was not used for training. The performance
of the trained model on the test set is reported. No cross-
validation was used. A purpose-built deep-learning workstation
equipped with four graphics processing units was utilized

TABLE 1 | Summary of the radiographic findings for the LL radiographs.

Radiographic finding Number of radiographs

No finding 571

Cardiomegaly 186

Bronchial pattern 120

Pleural effusion 115

Alveolar pattern 79

Mass 54

Pneumothorax 50

Interstitial pattern 29

Megaesophagus 17

Hernia 10

Fracture 3

Pneumomediastinum 3
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FIGURE 1 | Example images of the radiographs used to train the CNN. (A) No finding; (B) pleural effusion; (C) cardiomegaly, alveolar, and interstitial pattern; (D)

pneumothorax and alveolar pattern; (E) bronchial pattern; (F) mass, interstitial pattern, and alveolar pattern.

TABLE 2 | Performance of InceptionV3 in the test set.

Radiographic finding AUC Sensitivity Specificity PLR NLR

Alveolar pattern 0.93 (0.86–1) 82.4 (56.6–96.2) 93.7 (85.8–97.9) 13 (5.4–31.2) 0.2 (0.1–0.5)

Bronchial pattern 0.88 (0.70–1) 81.8 (48.4–97.7) 83.5 (73.9–90.7) 5 (2.9–8.6) 0.2 (0.1–0.8)

Cardiomegaly 0.71 (0.53–0.88) 50 (21.1–78.9) 83.3 (73.6–90.6) 3 (1.4–6.3) 0.6 (0.3–1)

Mass 0.54 (0.22–0.853) 33.3 (4.33–77.7) 86.7 (77.9–92.9) 2.5 (0.7–8.7) 0.8 (0.4–1.4)

No finding 0.86 (0.79–0.94) 83.3 (70.7–92.1) 76.2 (60.6–88) 3.5 (2–6.1) 0.2 (0.1–0.4)

Pleural effusion 0.99 (0.97–1) 85.7 (42.1–99.6) 94.4 (87.4–98.2) 15.3 (6.2–37.7) 0.2 (0–0.9)

Pneumothorax 0.78 (0.52–1) 66.7 (22.3–95.7) 78.9 (69–86.8) 3.2 (1.6–6.3) 0.4 (0.1–1.3)
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TABLE 3 | Performance of ResNet50 in the test set.

Radiographic finding AUC Sensitivity Specificity PLR NLR

Alveolar pattern 0.95 (0.9–1) 82.5 (56.6–96.2) 93.7 (85.8–97.9) 13 (5.4–31.3) 0.2 (0.1–0.5)

Bronchial pattern 0.94 (0.84–1) 81.8 (48.22–97.7) 94.1 (86.8–98) 13.9 (5.7–34) 0.2 (0.1–0.7)

Cardiomegaly 0.71 (0.55–0.85) 66.7 (34.9–90) 67.9 (56.8–77.6) 2 (1.2–3.4) 0.5 (0.2–1)

Mass 0.58 (0.24–0.92) 33.3 (4–77.7) 81.1 (71.5–88.6) 1.7 (0.5–5.9) 0.8 (0.4–1.5)

No finding 0.86 (0.79–0.94) 92.6 (82.1–97.9) 66.7 (55.5–80.4) 2.8 (1.8–4.3) 0.11 (0 – 0.3)

Pleural effusion 0.97 (0.95–1) 85.7 (42.1–99.7) 96.6 (90.5–99.3) 25.4 (8–80.5) 0.2 (0–0.91)

Pneumothorax 0.83 (0.7–0.96) 33.3 (4.3–77.7) 90 (81.9–95.3) 3.3 (0.9–12) 0.74 (0.4–1.3)

for training (4× Tesla V100; Ubuntu 18.04, NVIDIA and
Canonical). The evaluation metrics were not directly optimized
during training.

Statistical Analysis
All the statistical analyses were performed using a custom-
built Python programming language script (Python Software
Foundation; the Python Language Reference, version 3.6;
available at http://www.python.org). The performance of the
two architectures on individual radiographic findings was
assessed with the area under the receiver operating characteristic
curve (AUC). The performances of the two architectures were
compared with the DeLong test. The differences in the AUCs of
the considered tests, as a result of the DeLong test, are expressed
as a Z-score. All P-values were assessed at an alpha of 0.05. The
overall accuracy within the test set for both CNN architectures
was also calculated.

RESULTS

Database
One thousand six hundred and thirty-seven latero-lateral (LL)
radiographs and 1,105 ventro-dorsal (VD) radiographs were
retrieved. 575 LL radiographs and 426 VD radiographs were
discarded due to poor positioning or incorrect exposure.
Consequently, the database was composed of 1,062 LL and 679
VD radiographs. Due to the limited number of available VD
radiographs, the CNN was trained only on the LL radiographs.
The number of radiographs showing each radiographic finding is
reported in Table 1.

Selection of Radiographic Findings
Some of the included radiographic findings (fracture, hernia,
megaoesophagus, interstitial pattern, pneumomediastinum, and
pneumoderma) were scarcely represented in the database and,
therefore, were not included in training. Consequently, the
findings included for training were: no findings, bronchial
pattern, pleural effusion, mass, alveolar pattern, pneumothorax,
cardiomegaly (Figure 1).

Classification Results
The complete classification results in the test set for ResNet
50 and for IncV3 are reported in Tables 2, 3, respectively.
The results of the De Long test showed no significant
differences in the performances of either architecture for all

the included radiographic findings. The overall accuracy in the
test set was 81.8% for InceptionV3 and 84.1% for ResNet50.
A visual representation of the analysis results is provided in
Figure 2.

DISCUSSION

An AI-based algorithm for the automatic detection of some
of the most common radiographic findings in cats was
developed. The high classification accuracy on the test set
for some of the included radiographic findings, in particular
alveolar pattern, bronchial pattern, no findings, pleural
effusion, and pneumothorax, suggests that the developed CAD
algorithm could potentially be used to assist veterinarians in
interpreting feline thoracic radiographs. To fully investigate
the usefulness of the proposed CNN, the error rate of the
veterinarians in the detection of the above radiographic findings
should also be investigated. Interestingly, the accuracy of
this CAD in detecting the above-mentioned radiographic
findings was comparable to the results reported for dogs
(9, 10) and humans (16, 17), even though the database
used for training was significantly smaller. A possible
explanation is that the greater homogeneity in terms of
body size and shape of cats might have reduced the intrinsic
variability in the database thus enabling the CAD to achieve
a high accuracy on the test set despite the reduced size of
the database.

The accuracy for mass detection was low for both the tested
CNN architectures. Interestingly, also in dogs (9, 10) the accuracy
of CNNs in the detection of masses is lower than for the other
radiographic findings. Instead, the reported accuracy for such a
radiographic finding is reported to be high in human studies (16).
It is the authors’ opinion that, such a difference is, most likely,
due to the presence of several mass-like structures (e.g., nipples,
degeneration of costochondral joints) in normal canine and feline
thoracic radiographs. Another possible explanation is that such a
low accuracy might be related to the combination of the variable
dimensions and locations of the masses within the thorax and the
limited size of the training database.

Accuracy in detection of cardiomegaly was also lower than for
the other radiographic findings. The radiographic identification
of cardiomegaly in cats is challenging and, although some
guidelines are currently available (13), its interpretation is often
very subjective, especially in mild cases. Left atrial enlargement
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FIGURE 2 | Visual assessment of the ResNet-50 classification results of a radiograph of a cat showing cardiomegaly, an alveolar pattern both in the cranial and

caudal lungs, and pleural effusion. The activations of the last layer are visualized superimposed on the radiographs. Each image corresponds to the activations for a

specific radiographic finding. The alveolar pattern (B) and the pleural effusion (F) were correctly identified by the model. However, the model failed to identify the

cardiomegaly (G). (A) Original image, (B) alveolar pattern, (C) unremarkable, (D) pneumothorax, (E) mass, (F) pleural effusion (G) cardiomegaly, (H) bronchial pattern.

(the so called “valentine” heart) is a common finding in cats with
cardiac disease (13) and is often better detected in dorsoventral
rather than lateral projection. The low accuracy in detecting
cardiomegaly evident in this study might be related to the fact
that the CNN was trained only on lateral images and that the
information on dorsoventral projections was unavailable during
training. More in general, current guidelines on the classification,
diagnosis and management of cardiomyopathies in cats (18)

state that radiology is an insensitive method for detecting
cardiac disease in cats and that cats with congestive heart
failure may present radiologically normal cardiac silhouettes.
A possible way to overcome such a limitation could be to
train a CNN on feline thoracic radiographs classified based
on the results of echocardiographic examinations, and then to
test whether this CNN provides more accurate results than an
experienced operator.
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Recent studies (19) highlighted that, when trained on
databases from different institutions, the generalization
performances of CNNs depend on the disease prevalence in
each database. Furthermore, the above-mentioned study also
highlighted that CNNs trained on pooled data from different
sites performed better on the data from these sites but not
on external data. In the present study, the database used to
train the network contained pooled data from two different
institutions using three different X-ray equipments. Due to the
limited size of the available database, the CAD performance
differences regarding the data from each individual institution
were not tested. However, training the models on pooled data
from different institutions is reported as providing better
generalization performances than training the model on data
generated from a single institution (19).

The two CNN architectures tested in this study, ResNet
50 and IncV3, have been widely used both in human (20)
and in veterinary medicine (21, 22) for the classification of
diagnostic images. Both architectures have been engineered
for the classification of everyday images and do not
contain any radiology specific features. Furthermore, to
improve performance, both CNNs were pre-trained on a
large-scale database of everyday images, called ImageNet
(www.image-net.org), and then fine-tuned on the feline
database. It is the authors’ opinion that the high classification
accuracy achieved in the test set for several of the included
radiographic findings might be, at least partially, due to the
high standardization of the radiographic images. In fact,
everyday images are often messy, and the same subject
might come in different sizes; different shapes and colors
might be in the foreground or background and so on.
Instead, radiographs are acquired by skilled personnel in
a highly standardized fashion. Interestingly, no statistically
significant differences were evident in the performances
of the two CNN architectures for any of the included
radiographic findings.

A limitation of this study is that, due to the small database
size, the number of radiographic findings included to train
the CAD algorithm is smaller compared to those included
in canine (9–12) and human studies (16). It is the authors’
opinion that, at this stage of development, the proposed CAD
could be more useful during emergency assistance, where the
prompt identification of some of the included radiographic
findings, in particular alveolar pattern, pleural effusion, and
pneumothorax, is very important. The main advantage of using
CNNs to develop CADs is that they are relatively easy to
implement. Indeed, once the parsing modes have been defined,
the individual radiographic findings can be directly selected or
excluded for training.

To improve classification performances only correctly
positioned and exposed radiographs were included in the
database used for training. Therefore, the performance of the
developed algorithm might be slightly different when used
on technically incorrect images. Another limitation is that
cross validation was not used and, given the limited size of the

available database, different results are to be expected if other
random splits are used. On the other hand, cross validation is
not commonly used when CADs for the automatic classification
of thoracic radiographs are developed, even in case of small sized
data bases for training (8, 12).

CONCLUSIONS

A CAD algorithm for the automatic detection of some
radiographic findings in feline thoracic radiographs is proposed.
This CAD showed a high accuracy in the identification of
alveolar pattern, bronchial pattern, no findings, pleural effusion,
and pneumothorax. The accuracy in identifying cardiomegaly
was moderate whereas the accuracy in the identification of
masses was low. The use of a larger database for training
could, potentially, provide more accurate results. The developed
CAD can be easily upgraded by simply adding new images
to the database used for training, validation, and testing.
Further testing on images acquired with different of X-Ray
equipment will provide more insights in the performances of the
developed CAD.
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