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Interferon tau (IFNT), a pregnancy recognition signal in ruminants, promotes the

establishment of embryo implantation by inducing the expression of interferon-stimulated

genes (ISGs) via the Janus kinase/signal transducer and activator of transcription

(JAK/STAT) signaling pathway. However, the precise regulatory mechanism of IFNT in

goat embryo implantation remains largely unknown. In this study, we performed RNA

sequencing of goat endometrial epithelial cells (gEECs) with or without 20 ng/mL IFNT

treatment. Differential comparison showed that there were 442 upregulated differentially

expressed genes (DEGs) and 510 downregulated DEGs. Bioinformatic analyses revealed

that DEGs were significantly enriched in immune-related functions or pathways. The

qRT-PCR validation results showed that the expression levels of STAT family members

(STAT1, STAT2, and STAT3) were significantly upregulated in gEECs after IFNT treatment,

which is in agreement with the RNA-seq data. Meanwhile, the protein levels of p-STAT1

and p-STAT3 increased significantly in gEECs after 6 and 24 h of IFNT treatment,

respectively. Further in vivo experiments also confirmed that both mRNA and protein

phosphorylation levels of STAT1 and STAT3 in the uterus on day 18 of pregnancy (P18)

were significantly increased compared to those on day 5 (P5) and day 15 of pregnancy

(P15). On P5, STAT1 and STAT3 proteins were primarily located in the uterine luminal

epithelium (LE) and glandular epithelium (GE), and were also detected in the stromal

cells. The intense immunostaining of STAT1 and STAT3 proteins were decreased on P15

and then increased on P18, especially in the superficial GE and subepithelial stromal

cells. Moreover, p-STAT1 and p-STAT3 were highly expressed in the deep GE on P18.

Collectively, these results highlight the role of IFNT in regulating endometrial receptivity

in gEECs and uncover the temporal and spatial changes in the expression of STAT1/3

during embryo implantation in the goat endometrium.
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INTRODUCTION

Embryo implantation is crucial for successful pregnancy. During
this period, the elongated conceptus and receptive endometrium
recognize each other and have complex interactions, which
change the expression of a number of genes, resulting in
promotion of embryo implantation and placenta formation,
eventually leading to the establishment of pregnancy (1, 2).
Implantation failure is the major cause of pregnancy loss in
cattle, accounting for 30%–50% of all cases (3, 4). Although
many studies have been conducted to identify the gene
network in the endometrium or conceptus during embryo
implantation (5–8), the precise molecular mechanism has not
been well-characterized.

Interferon tau (IFNT) is a type I IFN secreted from
trophectoderm cells of the ruminant conceptus, which is
instrumental in the pregnancy recognition of ruminants in
the synchronization of the conceptus and maternal uterus (9).
In addition to its anti-luteolytic action, IFNT regulates the
function of the receptive endometrium and the elongation
of the conceptus to facilitate the establishment of pregnancy
(10). Upon binding to the receptor, IFNT performs these
functions through the Janus kinase/signal transducer and
activator of transcription (JAK/STAT) signaling pathway.
In the JAK/STAT signal transduction process, JAK1 and
Tyrosine kinase 2 (Tyk2) successively phosphorylate STAT1
and STAT2 (11, 12). The phosphorylated-STAT1/STAT2
heterodimer forms the interferon-stimulated gene factor
3 (ISGF3) complex with interferon regulatory factor 9
(IRF9) and translocates to the nucleus, which binds to
IFN-stimulated response elements (ISREs) in the promoter
region of a group of interferon-stimulated genes (ISGs), leading
to the transcription of ISGs (13). In addition, type I IFN
induces STAT3 phosphorylation (14). Similar to other STATs,
STAT3 forms complexes with other transcription factors,
including the STAT3 homodimer (15) and STAT1/STAT3
heterodimer (16), and translocates to the nucleus for
signal transduction.

Notably, the mRNA levels of critical signaling components

of the JAK/STAT pathway (STAT1, STAT2, and IRF9) are
low in the endometrial luminal epithelium (LE) during

the peri-implantation period in sheep (17). In cattle,

nuclear STAT1 expression is reduced in the LE during
the peri-implantation period when compared with that
during the pre-implantation period, indicating a decrease
in phosphorylated STAT1 protein levels and subsequent
inhibition of ISGF3 synthesis (18). However, a detailed analysis
of the expression profile of STATs in the goat uterus during
embryo implantation has not been reported. Additionally,
although the JAK/STAT3 signaling pathway is one of the key
pathways in decidualization (19, 20), its role in ruminants
remains unknown.

Therefore, to explore the potential function of
JAK/STAT3 during early pregnancy in goats, based
on the gene regulatory network of IFNT-treated
goat endometrial epithelial cells (gEECs) by RNA
sequencing, we determined the expression and localization

of STATs in the goat endometrium during the
peri-implantation period.

MATERIALS AND METHODS

Tissue Collection
Mature Guanzhong dairy goats (n = 9, aged 2–3 years, average
weight= 59.28±1.93 kg) were reared in the experimental animal
center of Northwest A & F University, Yangling, China. The
goats exhibiting at least two estrous cycles of normal duration
were used in this study. At estrus, female goats were mated with
fertile males to induce natural pregnancy, which was recorded as
day 0 of pregnancy. Pregnancy was confirmed on day 5 (P5, in
the pre-implantation period) by recovering blastocysts from the
uterus. Pregnancy at day 15 (P15, in the pregnancy recognition
period) and day 18 (P18, in the embryo adhesion period)
was identified by observing the elongated tubular conceptus
and linear conceptus in the uterus, respectively. The uteri of
pregnant goats on P5 (n = 3), P15 (n = 3), and P18 (n =

3) were collected immediately after the goats were subjected to
midventral laparotomy and hysterectomy. The uterine tissues
were fixed in 4% (v/v) paraformaldehyde in phosphate-buffered
saline (PBS) without Ca2+/Mg2+ (PBS) or immediately frozen in
liquid nitrogen.

Cell Culture and Treatment
Immortalized gEECs were obtained as previously described (21).
The gEECs were cultured in Dulbecco’s minimum essential
medium nutrient mixture F-12 (DMEM/F-12, BasalMedia,
China) supplemented with 10% fetal bovine serum (FBS, ZETA
LIFE, USA) at 37◦C in a humidified atmosphere of 5% CO2.
When gEECs reached 50% confluence, the cells treated with or
without 20 ng/mL recombinant ovine IFNT (Sangon Biotech) for
6 h were used for RNA-seq analysis. Meanwhile, gEECs treated
with or without 20 ng/mL IFNT for 6, 12, and 24 h were used for
qRT-PCR confirmation.

RNA Isolation and Quality Assessment
Total RNA of gEECs or uterus tissue was isolated using RNAiso
Plus (Takara, Japan), and genomic DNA was removed using
the Evo M-MLV RT Kit (Accurate Biology, China) according
to the manufacturer’s protocols. The purity, concentration,
and integrity of the total RNA were checked using a
NanoPhotometer R© spectrophotometer (IMPLEN, CA, USA),
Qubit R© RNA Assay Kit in Qubit R© 2.0 Fluorometer (Life
Technologies, CA, USA), and RNA Nano 6000 Assay Kit of the
Bioanalyzer 2,100 system (Agilent Technologies, CA, USA).

RNA Sequencing
Library preparation, clustering, and sequencing for RNA
sequencing were performed according to the manufacturer’s
recommendations. Briefly, ribosomal RNA was removed from
3 µg of total RNA using the Epicenter Ribo-zeroTM rRNA
Removal Kit (Epicenter, USA). Subsequently, RNA-seq libraries
were generated using the Library Prep Kit for Illumina R© (NEB,
USA). The library fragments were purified using the AMPure
XP system (Beckman Coulter, Beverly, USA). Next, 3 µL of
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USER Enzyme (NEB, USA) was used with adaptor-ligated cDNA
before PCR. PCR was performed with Phusion High-Fidelity
DNA polymerase, Universal PCR primers, and Index (X) Primer.
The products were then purified using the AMPure XP system
and library quality was assessed using the Agilent Bioanalyzer
2,100 system. Clustering was performed on a cBot Cluster
Generation System using the TruSeq PE Cluster Kit v3-cBot-HS
(Illumina). After cluster generation, the RNA-seq libraries were
sequenced on an Illumina HiSeq 4,000 platform. The sequencing
data generated in this study were deposited in the NCBI GEO
database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE184110).

RNA-seq Data Analysis
Raw reads were aligned to the goat genome using HISA
T2 (v2.0.4) software. Reference genome and gene model
annotation files were downloaded directly from the genome
website. Transcriptome assembly was performed using StringTie
(v1.3.1) software in a reference-based approach. Gene expression
abundance was assessed by calculating the FPKMs of genes
in each sample using Cufflinks (v2.1.1) software. Differentially
expressed gene analysis was performed using the Ballgown
suite. Transcripts with an adjusted p-value <0.05 were assigned
as “differentially expressed.” P-values were adjusted using the
Benjamini–Hochberg procedure.

GO and KEGG Enrichment Analyses
Gene Ontology (GO) enrichment analysis of differentially
expressed genes (DEGs) was performed using the GOseq R
package. KEGG enrichment analysis of DEGs was performed

using the KOBAS software. GO terms and KEGG with
q-values <0.05 were considered significantly enriched by DEGs.

qRT-PCR
Reverse transcription was performed using the Evo M-MLV RT
Kit (with gDNA Eraser, Accurate Biology, China) according
to the manufacturer’s protocol. PCR was performed using
the ChamQ SYBR qPCR Master Mix (Vazyme, China). Data
collection and analysis were performed on a CFX Connect
machine (Bio-Rad, USA) using CFX Manager software. All
quantitative PCRs were performed in triplicate. Primers were
synthesized by Tsingke Biotechnology Co., Ltd. (China), and their
sequences are listed in Supplementary Table 1. Relative mRNA
expression levels of target genes were normalized against the
relative quantity of GAPDH mRNA in the same sample, and
calculated by the formula using the 2−11Ct method.

Western Blotting
The gEECs and uterus tissues were lysed using a protein
extraction kit (KeyGENBioTECH, China) to obtain total protein.
After 10min of lysis at 4◦C, the samples were centrifuged
at 12,000 g at 4◦C for 10min to collect the supernatant for
concentration determination. The concentration of protein
samples was determined using a BCA kit (KeyGEN BioTECH,
China). Next, the protein samples were added to loading buffer
(5×, CWBIO, China) and heated at 100◦C for 10min using a
DryBath (Thermo Fisher Scientific, USA). For western blotting,
the protein samples were separated by SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) on gels and blocked with 5% non-
fat milk (BBI, China) in Tris-buffered saline Tween (TBST)

FIGURE 1 | Volcano plot and heatmap of DEGs in IFNT-treated gEECs. (A) Volcano plot. Genes were plotted in green for downregulation and red for upregulation,

and non-significant genes are shown as blue points. (B) Heatmap. Log10 (FPKM + 1) was used for clustering, red for high expression genes, and blue for low

expression genes.
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for 1.5 h at 25◦C after being transferred to a PVDF membrane
(ZETA LIFE, USA). Following blocking, the membranes were
incubated with anti-STAT1 (1: 2,000, diluted in TBST, Cellular
Signaling Technology, USA), anti-Phospho-STAT1 (Tyr701, 1:
2,000, Cellular Signaling Technology, USA), anti-STAT3 (1:
2,000, Cellular Signaling Technology, USA), anti-Phospho-
STAT3 (Tyr705, 1: 2,000, Cellular Signaling Technology, USA),
and anti-β-actin (1: 2,000, Sanjian Biotech, China) specific
primary antibodies at 4◦C overnight and horseradish peroxidase
(HRP) -conjugated secondary antibodies (1: 8,000, diluted in
TBST) at 25◦C for 2 h. After incubation, the membranes were
washed with TBST. Then, G: BOX Chemi XRQ (Syngene, USA)
was used to capture images and analyze the relative intensity of
the protein.

Immunohistochemistry
The uterine tissues were fixed for 24 h, dehydrated through a
graded ethanol series, and embedded in paraffin. Next, 5-µm-
thick sections were mounted onto glass slides pre-coated with
poly L-lysine solution (Sigma, USA) and incubated overnight
at 37◦C. After deparaffinization and rehydration, sections were
placed in citrate buffer (pH 6.0). Antigen retrieval was performed
by heating the sections for 20min in a microwave oven at
95◦C, and the slides were washed in PBS. The sections were
then stained with the streptavidin-peroxidase method using
an UltraSensitiveTM SP (Rabbit or Mouse) IHC Kit (Maixin
Biotechnologies, China). Briefly, the sections were pretreated
with 0.3% (v/v) H2O2 for 40min at 37◦C to quench endogenous
peroxidase activity. After washing with PBS, the sections were
incubated with 10% pre-immune serum for 70min at 37◦C.
After blocking, the sections were incubated with anti-STAT1
(1: 800, diluted in PBS), anti-Phospho-STAT1 (Tyr701, 1: 100),
anti-STAT3 (1: 300), and anti-Phospho-STAT3 (Tyr705, 1: 100)
at 4◦C overnight, and rewarmed at 37◦C for 40min, washed
with PBS, and incubated with biotin-labeled goat anti-rabbit
or anti-mouse IgG at 25◦C for 40min. The sections were
then washed with PBS and incubated with streptavidin-biotin
peroxidase for 40min at 25◦C. Thereafter, the sections were
visualized with diaminobenzidine (DAB), lightly counterstained
with hematoxylin for 25 s, dehydrated, and coverslipped. As
a negative control, the primary antibody was substituted with
pre-immune serum. Sections were imaged under a microscope
(Nikon, Germany) after drying at 25◦C.

Statistical Analysis
Data are presented as the mean ± standard error of the mean
(SEM). Statistical significance was set at p < 0.05. All data
were representative of at least three different experiments and
statistically analyzed using SPSS software (SPSS 20.0, IBM Corp.,
Armonk, NY, USA). Student’s t-test was used for comparisons
between the two groups. Statistical differences among different
groups (>2) were evaluated using one-way ANOVA with
multiple comparisons among groups tested by Tukey’s post
hoc test.

RESULTS

Differentially Expressed Genes Analysis
We generated triplicate libraries from IFNT-treated and
untreated gEECs (control group) and sequenced them to
a depth of 89.46 Gb clean data. Alignment of the clean
data against the reference genome yielded 82.79–89.78%
of the total mapped reads, >90.70% of the Q30, and
exceeding 46.38% of the GC content. Multiple mapped
reads (3.88–5.46%) were excluded from further analyses.
Therefore, 43,779 mRNA transcripts were detected in the 6
samples, indicating that the RNA sequencing results were
reliable. After the quantification of gene expression levels, a
volcano plot was used to provide an overview of the DEGs
(Figure 1A). A total of 952 genes were differentially expressed
between the IFNT and control groups. Among these genes,
442 genes were upregulated and 510 were downregulated
(Supplementary Table 2). A heatmap depicting the DEGs is
shown in Figure 1B.

GO and KEGG Enrichment Analyses
GO and KEGG enrichment analyses were performed to
identify the potential biological processes of the DEGs. In
the GO analysis performed among IFNT and control groups,
the number of upregulated DEGs annotated to GO terms
was identified (downregulated DEGs annotated to a few
GO terms), and the significantly enriched GO term was
covered. The top 23 enriched functions, including three
biological processes and 20 molecular functions (Figure 2).
Protein ubiquitination (GO: 0016567), protein modification by
small protein conjugation (GO: 0032446), and response to
biotic stimulus (GO: 0009607) were the primary categories
in biological processes. Hydrolase activity (GO: 0016787)
and small molecule binding (GO: 0036094) were the main
function categories.

The DEGs pathway analysis was based on the KEGG
pathway database for calculation of the abundant pathways. The
top 20 enriched pathways of downregulated and upregulated
DEGs are shown in Figures 3A,B. Among the downregulated
DEG enrichment pathways, pathways in cancer showed the
highest degree of enrichment. Among the upregulated DEG-
enriched pathways, the main enriched pathways were those
related to influenza A, herpes simplex infection, measles, and
hepatitis C.

STATs Expression in gEECs by IFNT
Treatment
In agreement with the RNA-seq data, the expression levels of
STAT1, STAT2, and STAT3mRNAwere significantly upregulated
by IFNT in gEECs measured using qRT-PCR (Figure 4A;
p < 0.05). Moreover, STAT1 protein levels in gEECs gradually
increased with increasing time of IFNT treatment (Figure 3B).
Meanwhile, p-STAT1 expression was markedly increased by
IFNT treatment and peaked at 6 h (Figure 3B; p < 0.05).
Although STAT3 protein levels in gEECs were not significantly
altered within 24 h of IFNT treatment, p-STAT3 levels were
significantly increased after 24 h of IFNT treatment (Figure 4C;
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FIGURE 2 | Gene Ontology (GO) enrichment analysis of DEGs in the IFNT-treated gEECs. GO terms with adj. p-value <0.05 were considered significantly enriched by

DEGs. BP, biological process; MF, molecular function.

FIGURE 3 | KEGG enrichment analysis of DEGs in the IFNT-treated gEECs. (A) KEGG pathway enrichment analysis of downregulated DEGs. (B) KEGG pathway

enrichment analysis of upregulated DEGs. KOBAS software was used to test the statistical enrichment of DEGs in KEGG pathways. P-values were adjusted using

Benjamini–Hochberg procedure (adj. p-value <0.05).
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FIGURE 4 | The expression analysis of STATs in IFNT-treated gEECs. (A) To validate RNA-seq data, the mRNA level of STAT1, STAT2, and STAT3, which was

detected by qRT-PCR after gEECs were treated with 20 ng/mL IFNT for 6 h. Gene expression was normalized to GAPDH. Values represent as the mean ± S.E.M.

from three independent experiments, and compared with the control group. (B,C) The protein expression of STAT1, p-STAT1, STAT3, and p-STAT3 was analyzed

using Western Blotting after 20 ng/mL IFNT treatment for 6, 12, and 24 h. The data are presented as the mean ± S.E.M. from three independent experiments, and

bars with different letters (a/b/c) are significantly different (p < 0.05).

p < 0.05). Unfortunately, the STAT2 and p-STAT2 antibodies
which are suitable for goat tissue, were not detected in
this study.

Expression Analysis of STATs in the Goat
Uterus During Embryo Implantation
As shown in Figure 5A, the mRNA levels of STAT1, STAT2,
and STAT3 in the uterus were higher on P18 than on P5
and P15, respectively (p < 0.05). However, there was no
significant difference in STAT1, STAT2, and STAT3 mRNA
expression levels between P5 and P15. Furthermore, no

obvious changes in the STAT1 and STAT3 proteins were
detected among P5, P15, and P18, whereas p-STAT1 and
p-STAT3 were markedly upregulated on P18 (Figures 5B,C;
p < 0.05).

Localization of STAT1/3 in the Goat Uterus
During Embryo Implantation
STAT1 protein was mainly localized in the LE and glandular
epithelium (GE) on P5, and slight immunostaining of the
STAT1 protein was detected in the stromal cells (Figure 6).
On P15, weak STAT1 immunostaining was only weakly
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FIGURE 5 | The expression analysis of STATs in goat uterus during early pregnancy. (A) Relative mRNA level of STAT1, STAT2, and STAT3 was detected by qRT-PCR

in pregnant goat uterus on post-mating days 5 (P5), 15 (P15), and 18 (P18). Gene expression was normalized to GAPDH. (B,C) The protein expression of p-STAT1,

STAT1, p-STAT3, and STAT3 in goat uterus was analyzed by Western Blotting. All the data are presented as the mean ± S.E.M. from three independent experiments,

and bars with different letters (a/b/c) are significantly different (p < 0.05).

observed in superficial GE (sGE) and subepithelial stromal
cells. STAT1 expression was significantly increased in
endometrial cells and was particularly abundant in the
GE and subepithelial stromal cells on P18. Meanwhile,
no obvious immunostaining of p-STAT1 protein was
detected in the endometrium on P5. The p-STAT1 protein

was slightly expressed in the sGE on P15; the expression

gradually increased and was strongly detected in the deeper
GE on P18. The STAT3 protein was widely distributed
in the endometrial cells on P5, P15, and P18 (Figure 7).
Moreover, p-STAT3 was only expressed in the GE at P18
(Figure 7).

DISCUSSION

In this study, we first provide a relatively comprehensive
DEG profile for gEECs. Based on the RNA-seq results, we
found that the expression and localization of STAT1 and
STAT3, which are downstream components of the JAK-STAT
signaling pathway, showed spatiotemporal changes during
embryo implantation process.

By comparing the previously reported transcriptome analysis
with the DEGs in our study, we observed that few genes were
uniformly regulated by IFNT between EECs and in vivo uteri.
In the co-culture system of bovine EECs and stromal cells, the
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FIGURE 6 | Immunolocalization of p-STAT1 and STAT1 in goat uterus during early pregnancy. For Control, preimmune serum was substituted for the primary

antibody. LE, luminal epithelium; GE, glandular epithelium; sGE, superficial glandular epithelium; S, stroma.
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FIGURE 7 | Immunolocalization of p-STAT3 and STAT3 in goat uterus during early pregnancy. For Control, preimmune serum was substituted for the primary

antibody. LE, luminal epithelium; GE, glandular epithelium; sGE, superficial glandular epithelium; S, stroma.
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authors identified 222 upregulated DEGs in bovine EECs by
comparing IFNT-treated and untreated groups; of which 96 of
222 appeared in our DEG list and all showed upregulation (22).
We also compared our data with the DEGs in the receptive
uterus vs. unreceptive uterus reported by Zhang et al. (23),
because there are few reports on the transcriptome of IFNT-
treated cells. There are 5 of 73 upregulated and 53 of 737
downregulated DEGs in the goat receptive uterus vs. unreceptive
uterus were matched to our DEG list, and only 2 of 5 and
42 of 53 of upregulated and downregulated DEGs, respectively,
were consistent with the gene regulation trends in our data (23).
Similarly, in an earlier report, Gray et al. usedmicroarray analysis
to identify 45 genes specifically regulated by IFNT in the ovine
uterus, but it only yielded 10 of 45 genes, consistent with our
data (24).

Using bioinformatics analysis, we found that the significant
enrichment and higher number of GO terms induced by
IFNT were involved mainly in the regulation of enzyme
activity, protein modification, and defense responses. Notably,
ISG15 is involved in the formation of nuclease activity and
ubiquitin-like modification, which once executes its functional
interaction with the DNA helicase and substrate protein
and regulates the immune response by altering the genome
stability and protein function (25, 26). However, in vivo
studies have shown that energy metabolism is the most
important enriched function in the ruminant receptive uterus
(23, 27), and were also predicted to potentially improve
pregnancy outcomes (28). KEGG analysis in this study also
demonstrated that defense response pathways, such as RIG-I
(DDX58) like receptor, NF-κB, and JAK/STAT pathway, were
remarkably enriched pathway, which is similar to the results of
GO analysis.

It has been previously reported that the JAK/STAT signaling
pathway mediates the formation of endometrial receptivity
through the induction of IFNT (29). Therefore, we selected
the JAK/STAT signaling pathway among the DEGs enriched
for validation. In line with these expectations, IFNT markedly
induced the transcription of STATs and phosphorylation of
STAT1. However, the expression of p-STAT3 was negatively
regulated by IFNT from 6 to 24 h, which is consistent
with the maintenance time of the phosphorylation state of
STAT3 (30, 31). Previous in vivo studies on STAT expression
were limited to transcriptional and unphosphorylated protein
levels (17, 18). Therefore, we focused on the localization and
expression of p-STATs in the goat endometrium. As described
in the literature, the expression of classical ISGs in LE/sGE
is inhibited by interferon regulatory factor 2 (IRF2) (31).
Similarly, STAT1 and p-STAT1 were hardly expressed in LE/sGE
cells on P15. However, in the GE, STAT1 and p-STAT1 were
completely undetectable, which is contrary to previous studies
reporting that classical ISGs are strongly expressed in the
ovine endometrial GE during the peri-implantation period

(32, 33). The mechanism underlying this abnormality requires
further study. Moreover, on P15, we observed that STAT3 was
widely expressed in LE/GE/sGE cells, but we did not detect
the expression of p-STAT3. This result may be related to
the formation of unphosphorylated STAT3. Unphosphorylated

STAT3 is also induced by IFN and can, in turn, induce
the transcription of some classical ISGs through nuclear
translocation (34).

In summary, these findings provide the first evidence of
transcriptome changes in STATs via IFNT stimulation in vitro.
We demonstrated that the distribution of STAT1 and STAT3
changes temporally and spatially in the goat endometrium during
embryo implantation and that STAT1 and STAT3 may exert
different effects on goat embryo implantation.
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