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When two drugs are combined, drug-drug interactions (DDI) often occur. Metabolic DDI

usually occur due to inhibition of the metabolism of one drug by the other. This leads

to an increase in the plasma concentration of the drug whose metabolism is inhibited.

The objective of this research study was to verify the DDI risk of two antibacterial,

florfenicol (FF) and doxycycline (DOX) due to metabolism. Because food containing

residues of any pharmacologically active substance could potentially constitute a public

health hazard, we selected a food producing animal, goat, goat liver microsomes and

recombinant metabolic enzymes, for in vivo and in vitro metabolism studies. In vitro

experiments showed that CYP3A was the key enzyme subfamily in FF metabolism,

DOX slowed down FF metabolism and R440 was possibly the key amino acid in the

metabolic interaction between FF and DOX. In vivo studies in the goats showed that

DOX inhibited up-regulation of CYP3A24 gene expression produced by FF; in liver and

kidney, DOX slightly slowed down FF metabolism. Quantitative prediction of DDI risk

suggest that when DOX is used in combination with FF in veterinary medicine, may

result in a clinical significant increase of FF plasma and tissue concentrations, resulting a

prevalence of harmful tissue residues of medicinal products in the food chain. Through

our experimentation, when DOX is used in combination with FF, the withdrawal period

of FF in the kidney was extended by 1 day. Otherwise, an appropriate withdrawal period

(20 days) of FF was established for FF and DOX combined use to ensure that the animal

can be safely slaughtered for food.

Keywords: florfenicol, florfenicol amine, doxycycline, metabolism, interaction, CYP3A, residue depletion study

INTRODUCTION

Florfenicol (FF), 2-dichloro-N-{(1R,2S)-3-fluoro-1-hydroxy-1-4-(methylsulfonyl) phenyl] propan-
2-yl} acetamide, is a synthetic, broad-spectrum, primarily bacteriostatic antibiotic, of choice for the
treatment of pneumonia and associated respiratory infections in livestock (1, 2). It is indicated in
goats for the treatment of respiratory infections caused by Mannheimia haemolytica, Pasteurella
multocida, and Histophilus somni associated with pyrexia (3, 4). The total FF residue in the tissue
is calculated as the sum of FF and florfenicol amine (FFA). According to the European Union
Regulation (EU) (5), the maximum residue limits (MRLs) of FF in goats are as follows: muscle
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(200 µg/kg), liver (3,000 µg/kg) and kidney (300 µg/kg). The
MRL represents one of several standard options for riskmanagers
to limit the presence of unwanted substances.

One of appropriate and suitable methods that would increase
the effectiveness of chemotherapy of bacterial infections
is a rational use of a combination of antimicrobial agents.
Combination of antimicrobial agents is often presented as one
of the few remaining effective strategies for the treatment
of clinical diseases for which standard treatments have
become ineffective. When two or more drugs are combined,
the combinational effect can be defined as synergism, no
interaction, or antagonism. Doxycycline (DOX), α-6-deoxy-5-
hydroxytetracycline, a “second-generation” tetracycline, is also
a primarily bacteriostatic antibiotic indicated in gastrointestinal
and respiratory tract infections (6, 7). The combined use of FF
and DOX has a synergistic or additive effect, both are usually
combined to improve their efficacy. A study was conducted to
study in vitro (P. multocida isolates) synergism of FF with DOX.
The results reveal that synergistic interactions were observed
in 15% of the tested isolates for FF + DOX. Consideration
of synergism plus fractional inhibitory concentration index
produced higher overall percentages of FF + DOX (69%)
combination (8).

However, when more than one drug is used concurrently in
combination therapy, drug-drug interactions (DDI) may occur,
especially if their metabolism involves overlapping mechanisms
(9). Cytochrome P450 (CYP450) enzyme-based drug metabolism
is a key factor in DDI (10). Existing studies have shown that
FF metabolism in rabbits and chickens is affected by CYP3A,
and when P450 enzyme substrates, inhibitors or inducers are
added, the drugs may interact and cause adverse effects (11,
12). In addition, studies have shown that DOX can inhibit the
metabolism of quinine to 3-OH quinine via CYP3A (13). That is,
DOX is likely to have an inhibitory effect on CYP3A. However,
the possibility of DDI between DOX and FF under the influence
of CYP3A has not yet been investigated.

Studies on the pharmacokinetics of FF in goats are relatively
extensive, but there are few studies on the detection of FF
tissue residues and the recommended withdrawal period (14, 15).
The “withdrawal period” means the minimum period between
the last administration of a veterinary medicinal product to an
animal and the production of foodstuffs from that animal which
under normal conditions of use is necessary to ensure that such
foodstuffs do not contain residues in quantities harmful to public
health (16).

With the gradual expansion of meat goat herds, goat meat
has become an increasingly important animal-derived food, and
its tissue residues have also received widespread attention (17).
In this study, in vitro and in vivo experiments were carried
out in goats to evaluate the DDI produced when DOX and FF
are combined.

MATERIALS AND METHODS

Bacteria and Plasmid
Escherichia coli BL21 (DE3) and E. coli DH5α were purchased
from Vazyme (Nanjing, China). Plasmid pET-28a was obtained

from the National Reference Laboratory of Veterinary Drug
Residues (HZAU), Wuhan, China.

Experimental Methods
Goat Liver Microsomes Experiments
Goat liver microsomes were purchased from PrimeTox
Bio-medical Technology Co. LTD (Wuhan, China). The
protein concentration was 20 mg/kg and the activity of the
microsomes was appropriate. To determine the key metabolic
enzymes of FF metabolism, we used six CYP450 inhibitors:
ketoconazole (CYP3A4), diosmetin (CYP1A), quinidine
(CYP2D6), fomepizole (CYP2E1), methoxsalen (CYP2A6), and
sulfaphenazole (CYP2C9) were co-incubated with FF in goat
liver microsomes. In order to study the effect of DOX on FF, we
divided the experiment into a single group of florfenicol and a
combined group of florfenicol and doxycycline. Both of these two
combinations were incubated with goat liver microsomes. The
production of FFA was determined by liquid chromatography
tandem mass spectrometry (LC-MS/MS). Each reaction was
performed in triplicate.

Cloning of the CYP3A24 Gene
According to the mRNA sequence of goat CYP3A24, specific
primers (forward: 5′-cagcaaatgggtcgcggatccATGGAGCTAATC
CCAAGCTTTTC-3′ and reverse: 5′-gtggtggtggtggtgctcgagGGC
TCCACTTATGGTTCCATCTC-3′) were designed containing
restriction enzyme sites BamH I and Xho I to amplify the
coding sequence of CYP3A24. The goat CYP3A24 gene fragment
was obtained by polymerase chain reaction (PCR) and ligated
into the expression plasmid pET-28a. The ligated plasmid pET-
28a-CYP3A24 was used to transformed E. coli DH5α. Isolated
transformant was cultured and the recombinant plasmid was
confirmed by sequencing.

Homology Modeling and Molecular Docking
Using the homology modeling phantom of the Sybyl-X2.0
software (Tripos, USA), the 3D structure of goat CYP3A24 was
obtained based on the crystal structure of the human CYP3A4
protein (PDB ID: 4D7D). Sybyl-X2.0 was also used for molecular
docking of the CYP3A24 protein with FF and DOX to obtain
the key amino acids (AA) involved in the formation of hydrogen
bonds between the protein and each drug (AA within 5Å of the
active pocket are considered possible AA related to affinity) (18).

Site-Directed Mutagenesis
The steps for site-directed mutagenesis were as follows: First, the
recombinant plasmid pET-28a-CYP3A24 was used as a template
to obtain the required mutant plasmid PCR, and the primers
used to introduce the mutation are shown in Table 1. Second, the
mutant plasmid was digested with the restriction enzyme Dpn I
and then used to transform E. coli DH5α cells (19). Third, the
mutant plasmid was transformed into E. coli BL21 (DE3) for
recombinant expression and then sequenced for confirmation.

The protein expression and purification process of bacteria
was based on the published article of our laboratory (18). Then,
the purified proteins were concentrated through concentrator
tubes and confirmed by SDS-PAGE and Western blot. The
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protein concentration of each sample was determined by the
method of Bradford (20).

The Protein Activity Verification of
CYP3A24 and Its Mutants
Testosterone (TS) is a specific substrate of CYP3A, which can
generate 6β-OHTS under the action of CYP3A (21). In order
to study the protein activity of CYP3A24 and its mutants,
we incubated each protein with TS. The experimental steps
were as follows: protein (0.5 mg/mL) and NADPH (1 mmol/L)
were added to PBS (pH 7.4) for 10min at 37◦C, then TS (Dr.
Ehrenstorfer GmbH, Germany, 1 µmol/L) was added to start
the reaction. The total reaction volume was 200 µL. At 60min
after drug addition, 200 µL of ice-cold acetonitrile was added
to terminate the reaction. After centrifugation at 12,000 g/min
for 15min, the supernatant was filtered through a 0.22µm
membrane and analyzed by LC-MS/MS (AB SCIEX API5000,
USA). For TS and 6β-OHTS, chromatographic separation
occurred using a Thermo Scientific Hypersil Gold C18 column
(150× 2.1mm, 5µmparticles), and analytes were detected on an
API5000 mass analyser. Mobile phase A was 0.1% formic acid in
water, andmobile phase B was methanol. Themass spectrometric
parameters for TS and 6β-OHTS was shown in Table 2. The
flow rate was 0.2 mL/min with a linear gradient under the
following conditions: 0–0.10min 5–85% B, 0.10–4.10min 85%
B, 4.10–8.00min 85–5% B. The injection volume was set to
10 µL. The limit of quantitation (LOQ) of the analysis was
0.1 µmol/L, and the limit of detection (LOD) of the analysis
was 0.02 µmol/L. All inter-assay coefficients of variation were
within 8.6%, the intra-assay coefficients of variation were within
12.4%, and the recovery rates were between 84.5 and 115.4%.

TABLE 1 | Primers used for site-directed mutagenesis.

Primer Sequence (from 5′ to 3′ end)

R105A F: TTCACAAACGCGAGGGTTTTTGGTCCAATGGG

R: AAAAACCCTCGCGTTTGTGAAGACAGAGT

R372A F: ATTGCTGTTGCACTTGATAGGCTCTGTAAGAAGGATG

R: CCTATCAAGTGCAACAGCAATTGGAAACATTCTGAGAGTC

R440A F: ACTGGACCCGCAAATTGCATTGGCATGAGGTTTG

R: AATGCAATTTGCGGGTCCAGTTCCAAAAGGCAGGT

The underline shows the bases corresponding to the mutant amino acids, all primers were

synthesized by Sangon Biotech (Shanghai, China).

TABLE 2 | Optimized characteristic ion mass spectrometry parameters for TS and

6β-OHTS.

Drug Polarity Precursor

ion (m/z)

Product

ion (m/z)

Collision

energy (V)

TS Positive 289.0 109.0 20

97.0 35

6-β OH-TS Positive 305.1 269.3 20

184.0 25

After activity verification, CYP3A24 and its mutants were co-
incubated with FF and DOX, and the key amino acid residues for
metabolism of FF and DOX were studied by the determination of
FFA production.

Animal Experimental Design
In this study, a total of 54 Boaer-cross goats (Capra hircus) of
both sexes, about 8months old, were selected, weighing 28–36 kg.
During the 1st week of acclimatization, all animals were raised in
the usual way, with free access to feed and water. The experiment
was conducted in accordance with the Guidelines for the Care
and Use of Laboratory Animals issued by HZAU and approved
by the Ethics Committee of Veterinary College of HZAU.

Throughout the experiment, all goats had ad libitum access to
feed and water without antibiotics. The goats were divided into
three groups, namely the control group (6 animals), the single
group (24 animals), and the combined group (24 animals). The
control groupwas fed withoutmedication. In the single group, FF
(Zhonglongshenli Animal Pharmaceutical Co., Ltd. Hefei, China,
specification: 10 mL: 1 g) was injected into the neck muscles at
48 h intervals, twice in total. In the combined group, FF was
injected into the neck muscles at 48 h intervals, twice in total,
and DOX-hyclate (Zhonglongshenli Animal Pharmaceutical Co.,
Ltd. Hefei, China, specification: 10 mL: 1 g) was injected into
the neck muscles, once a day for 3 days. The volume of the
treatment solution was calculated individually for each goat
to provide a dose equivalent to 20mg FF/kg bw and 10mg
DOX/kg bw.

The control group was euthanized by use of ketamine
hydrochloride (Fujian Gutian Pharmaceutical Co. Ltd., China:
10–15 mg/kg bw) and xilazine hydrochloride (Shengda Animal
Medicine Co. Ltd., China: 2 mg/kg bw) for anesthesia followed
by euthanasia with T61 (Bayer Animal Health GmbH, Germany:
4–6 mg/50 kg bw) and tissue samples (liver, kidney and muscle)
were collected and were used to the validation of the analytical
method for the compounds FF and FFA.

TABLE 3 | Primers sequences of goat CYP3A24 and β-actin for qPCR.

Gene Primer sequences (5′ to 3′)

CYP3A24 F: ATGCAATTTCGGGGTCCAGT

R: GGCACCTCCGACCTATGATG

β-actin F: GGACTTCGAGCAGGAGATGG

R: CCAGGAAGGAAGGCTGGAAG

All primers were synthesized by Sangon Biotech (Shanghai, China).

TABLE 4 | Optimized characteristic ion mass spectrometry parameters for FF

and FFA.

Drug Polarity Precursor ion Product ion Collision energy

FF Positive 355.9 336.1 22

118.8 35

FFA Positive 247.9 229.7 18

130.1 34
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Goats of the single group (treated with FF) and goats of the
combined group (treated with FF and DOX) were euthanized
as previously described at 0.5 (n = 4), 1 (n = 4), 3 (n = 4),
7 (n = 4), 14 (n = 4), and 21 days (n = 4) after the last dose
of 20mg FF/kg bw (single group) and after the last dose of
20mg FF/kg bw plus 10mgDOX/kg bw (combined group). Goats
were immediately exsanguinated, and tissue specimens of liver,
kidney and muscle were collected separately. Each of the tissue
specimens was carefully weighed and stored frozen at −20◦C
until assayed for concentrations of FF and FFA.

Gene Expression of CYP3A24 in Goats
Real-time quantitative polymerase chain reaction (qPCR) was
used to detect the expression of CYP3A24 in treated goats. Total

RNA was extracted from goat liver by using the Trizol method.
The concentration and purity of RNA was detected by Q3000
(Thermo, USA). The extracted RNA was reverse transcribed
into cDNA. Goat-specific primers have shown as Table 3. The
reaction procedure is: stage 1, 95◦C for 30 s; stage 2, 40 cycles at
95◦C for 3 s, 60◦C for 10 s and 72◦C for 20 s; stage 3, melt phase.
The data were analyzed by the 211Ct method.

Sample Pre-treatment and Residue
Detection
The method of FF and FFA pre-processing in the target tissues
was as follows: Tissue samples weighing 1.00 ± 0.01 g were
placed in a 10mL centrifuge tube, then 5mL 2% ammoniated
ethyl acetate was added, and the tube was vortexed, sonicated

FIGURE 1 | LC-MS/MS method for detecting FF, and FFA. The peak times of FFA and FF were 1.80 and 6.05min, respectively.

FIGURE 2 | The influence of specific inhibitors of CYP450 [ketoconazole (CYP3A4), diosmetin (CYP1A), quinidine (CYP2D6), fomepizole (CYP2E1), methoxsalen

(CYP2A6) and sulfaphenazole (CYP2C9)] on the generation of FFA (A). The effect of DOX on the metabolism of FF in goat liver microsomes (B). (A) The horizontal axis

represents the incubation time, and the vertical axis represents the FFA production in the inhibitor group to that in the control group. (B) The horizontal axis represents

the incubation time of the drug and goat liver microsomes, and the vertical axis represents the amount of FFA produced. The results were expressed as mean ±

standard deviation (error bars) and repeated three times of each reaction. P < 0.05 (*) was considered to be statistically significant. P < 0.01 (**) was considered a

significant difference.
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and centrifuged. The above steps were repeated, and the
supernatants were pooled and dried under a stream of nitrogen.
The residue was reconstituted in 5% acetic acid in water,
vortexed and passed through an MCX solid-phase extraction
column (the order of the column was methanol, water, sample,
5% acetic acid water and 8% ammoniated ethyl acetate),
then the eluate was dried under nitrogen, re-dissolved in
2mL of degreased n-hexane, passed through a 0.22µm filter
membrane and subjected to LC-MS/MS (AB SCIEX API5000,
USA) analysis.

For FF and FFA, chromatographic separation was performed
using a Thermo Scientific Hypersil Gold C18 column (150
× 2.1mm, 5µm particles). Mobile phase A was 0.1% formic
acid in water, and mobile phase B was acetonitrile. The mass
spectrometric parameters for FF and FFA was shown in Table 4.
The flow rate was 0.3 mL/min with a linear gradient under
the following conditions: 0–1min 10% B, 1–5min 10–70% B,
5–6min 70% B, 6–6.1min 70–10% B, and 6.10–9.00min 10%
B. All calibration curves exhibited a correlation co-efficient
(r) exceeding 0.99 across the concentration range. All inter-
assay coefficients of variation in each tissue were within 9.93%,
the intra-assay coefficients of variation in each tissue were
within 11.08%, and the recovery rates in each tissue were
between 70.62 and 113.55%. The LC-MS/MS results of FF and
FFA standard products showed that the method had good
specificity. For FF and FFA, the LOQ of the analysis was
10 µg/kg, and the LOD of the analysis was 2 µg/kg. The
peak times of FFA and FF were 1.80 and 6.05, respectively
(Figure 1).

Analysis of Experimental Data
Significance analysis between different groups using one-way
ANOVA with SPSS Statistics, version 18.0 (SPSS Inc., Chicago,
IL). 0.01 < P < 0.05 indicates a significant difference, marked
with ∗; P < 0.01 indicates a very significant difference, marked
with ∗∗.

The withdrawal period was estimated by linear regression
analysis of log-transformed tissue concentrations and
was determined at the time when the 95% upper one-
side tolerance limit was below the MRL with 95%
confidence (22).

RESULTS

CYP3A24 May Be the Main Metabolic
Enzyme of FF in Breed Goat Liver
Microsomes
The influence of CYP450-specific inhibitors on the production
of FFA is shown in Figure 2A. Compared with the inhibitor-
free group (control group), the production of FFA decreased
at all times after the addition of CYP450 inhibitors. The
inhibition percentage of FFA production was as follows: at
0.5 h of incubation, the order was CYP3A4 (43.66%) >

CYP2E1 (31.20%) > CYP2D6 (31.19%) > CYP1A (27.13%)
> CYP2C9 (23.01%) > CYP2A6 (22.28%) inhibitors. After
1 h of incubation, the order of influence on FF metabolism
was: CYP3A4 (65.94%) > CYP2A6 (62.02%) > CYP1A
(59.13%) > CYP2D6 (56.90%) > CYP2C9 (56.16%) > CYP2E1
(53.71%) inhibitors. After 2 h of incubation, the order of

FIGURE 3 | 3D structure of CYP3A24 (A) and interaction with FF (B) and DOX (C), respectively. (A) 3D structure of CYP3A24 was represented as a cartoon, with

α-helices colored in cyan, β-stands in magenta, and loops in salmon. (B) Amino acid residues involved in the interaction of CYP3A24 with FF. (C) Amino acid residues

involved in the interaction of CYP3A24 with DOX. The hydrogen bonds were represented as yellow dotted lines. The FF molecular was colored in gray.
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influence on FF metabolism was: CYP2C9 (71.70%) > CYP3A4
(68.73%) > CYP1A (67.95%) > CYP2A6 (66.44%) > CYP2E
(66.06%) > CYP2D6 (64.62%) inhibitors. In general, the
result showed that CYP3A is the most critical enzyme in
FF metabolism.

In Breed Goat Liver Microsomes, DOX
Slows Down FF Metabolism
The result is represented in Figure 2B. After 0.5 and 1 h
incubations, there was no significant difference in the
amount of FFA produced between the single group (FF)
and the combined group (FF + DOX). After 2 and 4 h
incubations, the production of FFA in the single group
was significantly higher (41.4 and 46.5%, respectively),
than that of the combined group. It is speculated that
FF and DOX interact in liver microsomes, slowing down
FF metabolism.

Homologous Modeling Molecular Docking
The protein structure of goat CYP3A24 was modeled using
CYP3A4 as a template, which is displayed by the visualization
software Pymol, as shown in Figure 3A. In order to better
explore the mechanism by which DOX affects FF metabolism,
FF and DOX were molecularly docked with CYP3A24, and
the docking results are shown in Figures 3B,C. For FF, three
hydrogen bonds were formed between the CYP3A24 protein
and FF in the active pocket. Among the hydrogen bonds
forming AAs, one hydrogen bond was, respectively, formed with
R105, R372, R440. The key amino acid residues in CYP3A24
that play a role in FF metabolism may be R105, R372, and
R440. For DOX, four hydrogen bonds were formed between
the CYP3A24 protein and DOX in the active pocket. Among
the hydrogen bonds forming AAs, in which one hydrogen
bond was formed with T309, and three hydrogen bonds were
formed with R440. The amino acid residues in CYP3A24 that

FIGURE 4 | The SDS-PAGE result of CYP3A24 and its mutants (A). The Western blot result of CYP3A24 and its mutants (B). (A) The sample volume in each line was

20 µL, and no protein quantization was carried out. (B) The sample of each protein was 30 µ4g. Line M is protein marker, lines 1–4 are CYP3A24, R105A, R372A,

R440A, respectively.
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interact with DOX may be T309 and R440. It is speculated
that the interaction between FF and DOX may be related
to R440.

Protein Expression of CYP3A24 and Its
Mutants
The R (arginine) side chain is positively charged and forms
ionic interactions with negatively charged groups. A (alanine)
has a non-polar side chain, which is non-reactive and
can eliminate the ionic interaction (23). For this reason,
we mutated R to A. According to the website http://
web.expasy.org/compute_pi/, the protein molecular weight of
CYP3A24 is predicted to be about 58 kDa. As shown in
Figure 4, the results of SDS-PAGE and Western blot show
that the molecular weight of the protein is consistent with
the prediction.

CYP3A24 Enzyme and Its a Mutant Protein
Had Good Activity
TS can be metabolized into 6β-OHTS by CYP3A enzyme. The
peak time of 6β-OHTS was about 4.95min. The results show that
CYP3A24, R105A, R372A, and R440A could metabolize TS, and
all the proteins were active (Figure 5).

R440A May Be a Key Amino Acid Through
Which DOX Affects the FF Metabolism
According to Figure 6 when incubated with CYP3A24, the
addition of DOX reduced the production of FFA in 17.8%, that is,
themetabolism of FF was inhibited. The key amino acid sequence
that reduced FF metabolism was: R440A (65.8%) and R372A
(32.9%). R440A is a key amino acid for CYP3A24 enzyme to
metabolize FF. Since R440A is the common site in the docking
result of FF and DOX, it is speculated that the reason why DOX

FIGURE 5 | Activity verification of CYP3A24 and mutant protein. The results (A–D) show that CYP3A24, R105A, R372A and R440A could metabolize TS into

6β-OHTS. Note: (A–D) are the chromatograms of CYP3A24 (A), R105A (B), R372A (C), and R440A (D).
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FIGURE 6 | Incubation of CYP3A24 with FF and DOX and its mutants (R105A, R372A, and R440A). The vertical axis represents FFA production. The data were

expressed as mean ± standard deviation (error bars) (n = 3). **(P < 0.01) and *(P < 0.05) indicate statistically significant difference between the CYP3A24 and

each mutant.

inhibits FF metabolism is that DOX competes with R440 for the
CYP3A24 enzyme.

The Effect of DOX and FF on CYP3A24
Gene Expression in Goats
The concentration and purity of RNA extracted from goat liver
were good. The A260/280 ratio of all RNA extracted was between
1.8 and 2.0, and the concentration was about 2,000 ng/µL. The
effect of single administration of FF and co-administration of FF
and DOX on the expression level of the CYP3A24 gene in goats
is shown in Figure 7.

When FF was stopped for 1 and 3 days, the gene expression
level of CYP3A24 enzyme was up-regulated in the single groups,
about 2.3 and 3-fold, respectively compared to control.

When FF + DOX was stopped for 1 and 3 days, the up-
regulation of CYP3A24 enzyme gene expression in the combined
groups decreased significantly compared to single groups, about
0.7 and 1-fold, respectively. This indicates that DOX can inhibit
up-regulation of the CYP3A24 gene.

Tissue Residue Depletion
Residues of FF and its metabolite FFA in tissue specimens
after intramuscular administration of FF (20 mg/kg bw, at 48 h
intervals, twice in total) in single group and after FF (20 mg/kg
bw, at 48 h intervals, twice in total) plus DOX (10 mg/kg bw,

once a day for 3 days) in combined group, were determined.
The tissue concentration-time profiles are presented in Table 5

for liver, kidney, and muscle from single and combined groups at
0.5, 1, 3, 7, 14, and 21 days after administration of the final dose
of FF (single group) and a after administration of the final dose
of FF plus DOX (combined group).

Withdrawal Period Estimation
Linear regression analysis of the logarithmic transformed data
can be considered for the calculation of the withdrawal periods.
Using this approach, the withdrawal period was determined as
the period when the one-sided, 95% upper tolerance limit of the
regression line with 95% confidence level was below the MRL
(22). Using this approach and considering the marker residue for
the MRL (the sum of FF and its metabolite FFA) recommended
by de EU, the withdrawal period for FF was calculated for single
group and combined group in kidney (tissue which showed
slower residue depletion). After intramuscular administration of
FF (20 mg/kg bw, at 48 h intervals, twice in total) in single group
and after FF (20 mg/kg bw, at 48 h intervals, twice in total)
plus DOX (10 mg/kg bw, once a day for 3 days) in combined
group, the withdrawal periods were 17.18 days and 18.61 days,
respectively (Figures 8A,B). When DOX is used in combination
with FF, the withdrawal period of FF in the kidney was extended
by 1 day.
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FIGURE 7 | CYP3A24 gene expression in goats. The data were expressed as mean ± standard deviation (error bars) (n = 3). *(P < 0.05) indicates statistically

significant difference between the combined group (FF + DOX) and the single group (FF).

DISCUSSION

In veterinary medicine, drugs are often used in combination;
improving efficacy is the primary factor in drug combination.
However, DDI often produces some adverse effects (24).
Metabolism is a key factor affecting DDI, and CYP450 enzymes
are a key factor affecting metabolism (25). The inhibition of
CYP enzymes may cause the accumulation of drugs in the
body, resulting in toxicity or prolonging the drug withdrawal
period (26). Therefore, it is necessary to study combinations
of drugs from the perspective of enzymes. FF and DOX are
often used together in clinical treatment. Previous studies have
shown that the metabolism of FF in rabbits and chickens is
affected by CYP3A (11, 12), and DOX has the effect of inhibiting
CYP3A (13). Therefore, this research studies the combined use
of DOX and FF from the perspective of liver microsomes and
recombinant metabolic enzymes. Moreover, in vivo experiments
were also conducted to verify the effects of the two antibacterial
on metabolism, and to recommend a withdrawal period, so as to
better guide clinical medication.

In vitro goat liver microsome experiments showed that
CYP3A is the most important metabolic enzyme that affects the

metabolism of FF (Figure 2A). This is consistent with studies
in rabbit and chicken (11, 12). The addition of DOX will slow
down the metabolism of FF (Figure 2B). If the functionally
homologous proteins have sequence homology >30%, then a
known protein crystal structure can be used as a template
to establish a highly accurate target protein structure model.
The sequence homology between goat CYP3A24 and human
CYP3A4 enzymes reached 76.5%. So we used human CYP3A4
as a template for homology modeling and obtained CYP3A24
(Figure 3A). Then we havemolecularly docked FF andDOXwith
CYP3A24 enzyme and screened out the possible key amino acids
for FF metabolism as R105, R372, and R440 (Figure 3B), and
T309 and R440 as possible key amino acids for DOX metabolism
(Figure 3C). Site-directed mutagenesis is often used to study the
impact of specific sites on the overall structure (27). Therefore,
in this experiment, the three amino acids (R105, R372, and
R440) were mutated to R105A, R372A, and R440A. The mutated
protein was incubated with the drug to determine that R440A
may be the key amino acid through which DOX affects FF
(Figure 6). Combined with previous research on the interaction
between R440 and CYP2D6, R440 is very likely to be themain site
of CYP2D6 binding to reductase (28). This research suggests that
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TABLE 5 | Tissue concentrations of FF and FFA for goats treated intramuscularly with FF (single group) and for goats treated with FF plus DOX (combined group).

Tissue Group

Single: 20mg FF/kg bw, at 48h intervals, twice in total

Time after last

dose (days)

FF (µg/kg) FFA (µg/kg) FF+FFA (µg/kg)

Combined: 20mg FF/kg bw, at 48h intervals, twice in total plus

10mg DOX/kg bw, once a day for 3 days

Liver Single 0.5 2791.1 ± 256.7 1715.0 ± 284.7 4618.5 ± 188.0

1 2053.8 ± 310.5 1324.0 ± 234.8 3377.8 ± 155.6

3 936.2 ± 148.3 827.0 ± 136.8 1763.2 ± 76.1

7 338.4 ± 126.3 678.2 ± 77.1 1005.4 ± 67.8

14 178.7 ± 26.5 294.1 ± 41.6 472.8 ± 46.0

21 44.5 ± 17.6 88.5 ± 26.6 133.0 ± 41.8

Combined 0.5 2904.7 ±195.7 1687.5 ± 305.5 4592.2 ± 480.0

1 2181.0 ± 189.1 1264.1 ± 133.5 3445.1 ± 173.6

3 937.1 ± 193.3 858.0 ± 93.7 1795.1 ± 173.6

7 342.4 ± 69.9 630.4 ± 110.5 972.8 ± 52.1

14 204.4 ± 52.1 329.2 ± 52.4 533.5 ± 33.0

21 62.6 ± 19.5 113.0 ± 15.3 175.6 ± 6.8

Kidney Single 0.5 2259.8 ± 203.0 1297.1 ± 239.3 3556.9 ± 209.3

1 1772.2 ± 141.8 1047.9 ± 105.4 2820.1 ± 177.4

3 843.1 ± 123.7 677.1 ± 88.7 1520.2 ± 70.2

7 327.4 ± 43.4 328.5 ± 49.7 656.0 ± 24.2

14 130.7 ± 17.1 168.6 ± 33.3 299.3 ± 26.1

21 37.5 ± 8.6 62.0 ± 19.9 99.5 ± 27.6

Combined 0.5 2373.0 ± 250.9 1194.3 ± 124.9 3567.3 ± 201.8

1 1873.8 ± 164.4 977.7 ± 216.4 2851.5 ± 178.3

3 812.2 ± 117.8 687.1 ± 60.2 1499.4 ± 66.0

7 369.3 ± 69.7 315.8 ± 88.2 685.1 ± 61.5

14 140.1 ± 46.8 164.8 ± 58.6 304.9 ± 14.0

21 50.7 ± 8.1 83.0 ± 20.9 133.7 ± 19.6

Muscle Single 0.5 1762.3 ± 201.0 1083.7 ± 101.3 2846.1 ± 301.9

1 858.1 ± 43.2 492.6 ± 49.2 1350.7 ± 64.0

3 376.2 ± 58.1 322.7 ± 72.8 698.9 ± 35.6

7 162.1 ± 4.6 107.5 ± 11.9 269.6 ± 16.4

14 48.6 ± 7.6 68.1 ± 13.4 116.7 ± 20.9

21 ND ND ND

Combined 0.5 1701.1 ± 111.2 862.4 ± 103.4 2563.5 ± 212.1

1 920.5 ± 69.2 479.2 ± 29.8 1399.6 ± 69.7

3 420.5 ± 31.8 265.6 ± 65.7 686.1 ± 50.1

7 170.0 ± 23.6 97.0 ± 25.3 267.1 ± 7.9

14 50.6 ± 3.7 62.3 ± 5.7 112.9 ± 8.9

21 ND ND ND

Each value is the mean ± SD for 4 goats.

R440 plays an important role in the electron transfer and binding
between CYP3A24 and its reductase. When it is destroyed, the
metabolism of FF and DOX will be affected; when FF is used in
combination with DOX, the DOX will compete for R440 on the
CYP3A24 enzyme, which will slow down FF metabolism.

Notably, the effect of DOX on FF metabolism was significant.
In vivo experiments have shown that DOX can inhibit the up-
regulation of CYP3A24 gene expression caused by FF (Figure 7).
Residue depletion studies in goats showed that the addition of
DOX would slow down the elimination half-life of FF and FFA
(Table 3). EMA withdrawal-period calculation-program WT1.4

software (22) was used to analyse the withdrawal period of FF
from goat target tissue concentrations of FF and FFA (Figure 8).
Notably, the effect of DOX on FF metabolism was significant.
The combination of FF and DOX caused a prolonged withdrawal
period of FF in the kidney; the withdrawal period of FF in the
kidney was extended by 1 day. In addition, the kidney toxicity
of FF has been confirmed in animals. FF can up-regulate the
expression of pro-apoptotic factors and accelerate the abnormal
apoptosis of renal cells (29). Therefore, whether the effect of DOX
on FF metabolism in the kidney will lead to the enhancement of
this toxic effect remains to be studied.
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FIGURE 8 | Plot of the withdrawal period calculation for FF in goat kidney at the time when the one-sided 95% upper tolerance limit is below the EU MRL for FF (300

µg/kg). (A) In single group, after intramuscular administration of FF (20mg FF/kg bw, at 48 h intervals, twice in total) and (B) in combined group, after intramuscular

administration of FF (20mg FF/kg bw, at 48 h intervals, twice in total) plus DOX (10mg DOX/kg bw, once a day for 3 days). Residue marker is the sum of florfenicol

(FF) and its metabolite florfenicol-amine (FFA).
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