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Infectious diseases, particularly bovine respiratory disease (BRD) and neonatal calf

diarrhea (NCD), are prevalent in calves. Efficient health-monitoring tools to identify such

diseases on time are lacking. Common practice (i.e., health checks) often identifies sick

calves at a late stage of disease or not at all. Sensor technology enables the automatic

and continuous monitoring of calf physiology or behavior, potentially offering timely and

precise detection of sick calves. A systematic overview of automated disease detection

in calves is still lacking. The objectives of this literature review were hence: to investigate

previously applied sensor validation methods used in the context of calf health, to identify

sensors used on calves, the parameters these sensors monitor, and the statistical tools

applied to identify diseases, to explore potential research gaps and to point to future

research opportunities. To achieve these objectives, systematic literature searches were

conducted. We defined four stages in the development of health-monitoring systems:

(1) sensor technique, (2) data interpretation, (3) information integration, and (4) decision

support. Fifty-four articles were included (stage one: 26; stage two: 19; stage three:

9; and stage four: 0). Common parameters that assess the performance of these

systems are sensitivity, specificity, accuracy, precision, and negative predictive value.

Gold standards that typically assess these parameters include manual measurement

and manual health-assessment protocols. At stage one, automatic feeding stations,

accelerometers, infrared thermography cameras, microphones, and 3-D cameras are

accurate in screening behavior and physiology in calves. At stage two, changes in

feeding behaviors, lying, activity, or body temperature corresponded to changes in health

status, and point to health issues earlier than manual health checks. At stage three,

accelerometers, thermometers, and automatic feeding stations have been integrated

into one system that was shown to be able to successfully detect diseases in calves,

including BRD and NCD. We discuss these findings, look into potentials at stage four,

and touch upon the topic of resilience, whereby health-monitoring system might be used

to detect low resilience (i.e., prone to disease but clinically healthy calves), promoting

further improvements in calf health and welfare.
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INTRODUCTION

Diseases, in particular bovine respiratory disease (BRD) and
neonatal calf diarrhea (NCD), are the most common causes
of morbidity and mortality in veal calves (1), dairy calves (2),
and beef youngstock (3). Despite slightly different prevalence
rates (4), disease types affecting dairy and veal calves are
similar (5–7). BRD symptoms include hampered respiration,
nasal discharge, and coughing (5). A direct symptom of NCD
is extremely watery feces (8). Potential risk factors for BRD
include: inadequate passive transfer of immunity from colostrum
(2, 9); low body weight at arrival in veal calves (10); poor
indoor housing conditions compared to outdoor housing (10);
and management practices such as weaning, comingling, and
castration (11). Potential risk factors for NCD include: high
exposure to pathogens causing NCD; factors related to host
resistance or susceptibility to disease, e.g., low quality and
quantity of colostrum; and factors about the environment that
favor the host or agent, e.g., high stocking density and too high
or too low ambient temperature and air humidity (12, 13).

Diseases in calves cause significant economic losses (14, 15),
due to treatment (16), impaired growth and mortality (17).
Diseases also impaired calf welfare (18). Moreover, antibiotic
resistance, a major concern in human and veterinary medicine
(19), is a serious problem in the veal (20, 21) and dairy industry
(22). In addition, the overuse of antibiotics might result in the
contamination of surface water near farms due to residues in
the urine and feces of animals (23). Given the all-encompassing
impact of calf health on sustainability aspects, it is essential that
we develop accurate, timely, and practical systems to identify sick
calves, in both the dairy and veal sectors.

The common practice for identifying diseases in calves is
based on visual appraisal and clinical examinations performed by
farmers and veterinarians (5). This practice is linked to a number
of disadvantages: (1) Calves identified as sick already show clear
clinical symptoms and may have already been sick for a while.
For example, clinical signs of BRD might occur later than onset
of fever (24), or even without the occurrence of fever (5), and
clinical signs of NCD are visible when much of the associated
tissue damage to the intestinal submucosa has already occurred
(25). (2) Visual appraisal and clinical examinations are typically
poor at identifying sick calves. For example, in a study diagnosing
BRD in beef calves using clinical examination, the estimated
sensitivity and specificity were 61.8 and 62.8%, respectively (26).
Many sick calves, hence, go undetected, or require re-treatment
due to delayed intervention and inappropriate antimicrobial
dosage for the first case, which makes it difficult to promptly
treat them, leading to greater chances of spread of disease, poorer
animal welfare, and greater negative impacts on economy and
environment, overall leading to poor sustainability of production
systems involving calves.

Improved methods to detect health problems accurately

and on a timely basis in individual calves are warranted. The

decreasing cost and increasing implementation of electronic
tools allows for the application of “sensing solutions” to

animal farming. Behavioral and physiological parameters can
nowadays be automatically recorded at individual animal level,

continuously and over long periods of time (27, 28). During the
past decade, various sensor data models have been proposed for
automatic health-monitoring systems in dairy and veal calves. To
date, however, there has been no systematic review presenting
the associated gaps in research, while literature reviews have
previously been done for pigs (29, 30), dairy cows (31, 32),
dairy sheep (33), and dairy calves (27, 28). The objectives
of this literature review were hence: to investigate previously
applied sensor validationmethods and gold standards; to identify
sensors used on calves, the parameters these sensors monitor,
and the statistical tools applied to identify diseases; and to
explore potential research gaps to point to opportunities for
future research.

METHODS

Definitions
Animals included in this review were bovine animals aged < 1
year; these include “calf ” or “calves” (pre-weaned or weaned),
heifers (weaning to 1 year of age), growing bulls (after arrival
at the fattening farm up to 1 year of age), and beef cattle (early
fattening period until 1 year of age). Precision livestock farming
(PLF) is defined based on Berckmans (34) as “measuring variables
on the animals, modeling these data to select information,
and then using these models in real time for monitoring and
control purposes”. We defined the following terms–SENSOR:
an automatic tool capable of recording activities, behaviors,
physiology, and body size of calves continuously; MODEL:
a mathematical tool that describes the relations between the
sensor output and the actual values of the measured parameters
of the physical environment; VALIDATION: the process of
determining the measurement ability of automatic tools relative
to a gold standard using statistics. DISEASE: sickness status of an
animal occurred naturally or induced by disease challenges.

We defined four stages of development of a particular sensor
technique for disease detection based on Rutten et al. (31)
(Figure 1):

• Stage one: SENSOR TECHNIQUE-applying sensor
technology to automatically or manually record behavioral
or physiological parameters in animals, visualizing
these parameters.

• Stage two: DATA INTERPRETATION-changes in data are
detected and connected to changes in behavior and physiology
with an established link to the animal’s health status;

• Stage three: INFORMATION INTEGRATION-multiple data
resources, e.g., treatment records and sensor data, are
integrated to direct the farmer to potential problems that
need attention;

• Stage four: DECISION SUPPORT–a sensor system that aids to
make a decision, e.g., whether to treat an animal or not; what
to treat the animal for?

Inclusion and Exclusion Criteria
Peer-reviewed scientific articles describing applying sensors to
calves were eligible for inclusion. Only articles based upon
original data were included. Included articles were written in
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FIGURE 1 | Four-stage development approach.

English, with complete, full-text documents available. To provide
up-to-date review, only articles published between 2009 and 2021
were included. Manuscripts published after the completion of
the literature search were not included (i.e., after May 10, 2021).
Exclusion and inclusion criteria for the systematic review were
based on an previous work by Beaver et al. (35) and agreed upon
by all co-authors.

Search Strategy
Systematic searches were conducted using the Web of Science
Core Collection database because it has high coverage rates of
animal behavior and welfare and bio-system engineering journals
with significant PLF contents.

The following search terms were applied: (calf OR calves
OR dairy calf OR dairy heifer OR heifer calf OR heifers OR
young cattle) AND (BRD OR bovine respiratory disease OR
calf comfort OR calf health OR diarrhea OR group housing
OR health OR precision livestock OR precision livestock
farming OR proneness to disease OR welfare) AND (automatic
OR automated measurement OR automated measures OR
detection OR diagnosis OR disease monitoring OR evaluation
OR modeling OR non-invasive detection OR prediction
OR validation) AND (accelerometer OR activity sensor OR
artificial intelligence OR automatic milk feeder OR bioacoustics
OR computer vision OR electronic monitoring OR infrared
thermography OR low-cost sensor OR non-invasive technology
OR radio frequency identification OR reticulo-rumen bolus OR
statistical process control OR sound analysis OR 3-D sensor).
The selection of these search terms was based on initial screening
of relevant articles to gain general background information and
expert opinion.

Selection Process
The primary outcomes were selected based upon a four-step
screening and appraisal process (Figure 2):

• Step one. Scanning the titles–filter out irrelevant results
such as review articles in automatic detection, original
articles of health monitoring in calves without applying

sensor technology, or original articles of automatic health-
monitoring systems in mature cattle or other species.

• Step two. Evaluating abstracts–identify and remove
irrelevant articles.

• Step three. Snowballing–checking and selecting references
within selected articles.

• Step four. Eligibility. Full texts of the remaining articles were
read in detail. Original experimental studies were excluded if
not aiming at health monitoring in calves aged up to 1 year
using sensor technology.

Data Extraction
From each included article, where applicable, we recorded
the objectives, animal category, parameters measured,
sample size, gold standards for validation, sensors used,
and measurements used to assess the performance of the
sensors or algorithms. Missing information was noted down as
“not available.” The results were pooled in the form of a table
(Supplementary Material). The reliability for data extraction
was tested by author 1 (DS) on a random subset of 20 articles,
with a result of 100% agreement.

Data Management
Extracted data were entered into and managed in excel
spreadsheets (version 2016, Microsoft Corp., Redmond,
WA, RRID:SCR_016137).

RESULTS AND DISCUSSION

Following the article-selection process described above, 54
articles were included in this review (Figure 2). As shown in
Figure 3, 26 articles fell into stage one (sensor technique), 19
articles fell into stage two (data interpretation), and 9 articles fell
into stage three (information integration). We found no articles
at stage four (decision support).

Studies at these different stages use different validation
methods and gold standards. Studies at stage one aim to check
that a given sensor is accurately recording a particular behavioral
or physiological parameter of interest. These studies typically use
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FIGURE 2 | Article selection process.

(a) manually collected parameter(s) as gold standard for their
validation, e.g., video observations of lying bouts or rectal body
temperature measurements using a thermometer. Stage two and
stage three studies aim to identify sick calves as early as possible.
Stage two and three studies develop and test algorithms applied to
sensor data to accurately detect sick individuals. Manual health-
assessment protocols are typically used as gold standards to
develop and test these algorithms (Table 1).

We first define what is meant by “validation” in this
review as well as define the terms used in this context,
i.e., sensitivity, specificity, accuracy, and positive and negative
predictive value. We follow up with a description of the
different gold standards that have been used at the different
stages of investigation. Next, we describe the various sensors
that have been used in calf-health-monitoring research, the
parameters these sensors record, and their accuracies in these
recordings. We end by presenting the current research at
stage two (data interpretation) and stage three (information
integration), revealing important knowledge gaps between
stage three and stage four (decision support), suggesting
the direction for future study that will enable the bridging
of these gaps, hence reaching automated health-related data
interpretation and complete decision-support systems for calf
production systems.

Validation
The validation assessments at different stages of studies
share common principles. Validation assessments are typically
calculated via so-called confusion matrices (Table 2) (36).
Confusion matrices reveal relationships between the sensor of
interest, the selected gold standard (see the below formulas
for: sensitivity, specificity, accuracy, precision, and negative
predictive values) and the underlying prevalence of the disease
interest. “Positive and negative” show the sensor (or model)
output (a response of “yes” or “no” to the disease detection),
while “true and false” reflects whether the sensor (or model)
output is in line with the gold standards in a pre-specified time
window (i.e., whether the prediction matches the reality). When
comparing article outcomes, it should be noted that sensitivity
and specificity are affected by characteristics of the sensor, while
accuracy, precision, and negative predictive values are affected
by the prevalence of disease or behavior based on the dataset:
the higher the prevalence, the better the accuracy, precision,
and predictive values for the given dataset. Model developments
are usually aimed to enhance the contrast in a sensor system
output for the purpose of threshold evaluations (e.g., sensitivity,
specificity, or accuracy) over a given range. Common methods
used for model developments are correlation, area under curve
(36), and receiver operating characteristic curves (36).
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FIGURE 3 | Distribution of stages of included articles. *In Studds et al. (56) both diarrhea and navel inflammation were studied.

Sensitivity =
true positives

(true positives+ false negatives)

Specificity =
true negatives

(false positives + true negatives)

Accuracy

=
(true positives + true negatives)

(true positives+ true negatives + false positives

+ false negatives)

Precision (positive predictive value)

=
true positives

(true positives + false positives)

Negative predictive value =
true negative

(true negative + false negative)

Gold Standard
To obtain a sound validation of a sensor or PLF system, an
objective “gold standard” is needed. In this regard, studies at
stage one to stage four require different gold standards. At stage
one, gold standard means “variables of interest,” i.e., behavioral
or physiological parameters; at stage two, three, and four, gold
standard usually refers to the identification of disease, typically
via a manual “clinical examination.”

Stage one studies, where sensors are checked directly for their
ability to record behavioral or physiological parameters, tend
to use manual sampling of these behavioral or physiological
parameters. For sensors recording behavioral parameters,
behavioral observations of videos, continuous or at regular

intervals, are a commonly used reference for validation.
Continuous sampling of focal animals will provide the most
accurate data for calf behavior, but is a time-consuming exercise.
For certain, long-term, so-called “state” behaviors, instantaneous
scan sampling at regular intervals may provide an accurate
enough gold standard and is less time consuming, for example,

meal time and frequency over a 3 day period can be detected
accurately with instantaneous scan sampling at short intervals of

30 s and 1min (37). However, one main disadvantage of video

observation is that it is labor intensive, and requires training to
achieve appropriate observer reliability; and observer error might

occur (38).
For sensors recording physiological parameters, manual

measurements of these physiological parameters are also used

as gold standards. Sensors recording body temperature, e.g.,
body surface temperature (39), eye temperature (40, 41),

and rectal area temperature (40), typically use manually

recorded rectal temperature as gold standard. When
validating body dimensions in calves and heifers, manual

measurements of body weight and dimensions are common,
including body weight (42, 43), hip height (42), and wither
height (42).

With increasing research into validating sensors in terms of
how accurately they record behavior or physiological parameters,
previously validated sensors may be used as automated gold
standard to validate new sensors, which significantly reduces
labor required for these types of stage one studies. The Hobo
Pedant G Data Logger, for example, has been previously used as
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TABLE 1 | Gold standards of studies at stage two and three.

No. Reference Stage Gold standard

Clinical examination Blood analysis Other

1 Borderas et al. (45) 2 Yes (daily)

2 Timsit et al. (24) 2 Yes (twice daily) Yes

3 Schaefer et al. (16) 2 Yes (daily) Yes

4 Moya et al. (58) 2 Yes (frequency information not available) Carcass information, lung

lesions

5 Wolfger et al. (61) 2 Yes (twice daily) Yes

6 Jackson et al. (55) 2 Yes (at least twice daily) BW

7 Johnston et al. (52) 2 Yes (modified Wisconsin calf health scoring chart: twice

weekly in pre-weaning and weaning periods and once

weekly in post-weaning period)

Yes

8 Pillen et al. (81) 2 Yes (daily) Depression score

9 Vandermeulen et al. (51) 2 Yes (Wisconsin calf clinical respiratory score: at least

twice weekly in pre-weaning period and once weekly in

post-weaning period)

Yes

10 Voss et al. (46) 2 Yes (at least twice daily)

11 Knauer et al. (53) 2 Yes (Wisconsin calf clinical respiratory score: daily) Yes Calf enrollment, treatment

record, morbidity and

mortality data

12 Swartz et al. (47) 2 Yes (Wisconsin calf health scoring chart: twice daily)

13 Carpentier et al. (65) 2 No examination Yes

14 Knauer et al. (54) 2 Yes (Wisconsin calf clinical respiratory score: daily) Calf enrollment, treatment

record, morbidity and

mortality data

15 Oliveira et al. (62) 2 Yes (daily) Yes

16 Shane et al. (49) 2 Yes (daily)

17 Studds et al. (56) 2 Yes (twice weekly)

18 Kayser et al. (57) 2 Yes (twice weekly) BW

19 Swartz et al. (63) 2 Yes (Wisconsin calf health scoring chart: twice weekly)

20 Hanzlicek et al. (60) 3 Yes (three times daily) Yes

21 Szyszka et al. (66) 3 Rectal temperature (day 0, 13, 15, 17, 20, 27, and 31);

fecal samples (day 0, 13, 15, 17, 20, 27)

Yes BW

22 Toaff-Rosenstein et al. (59) 3 Yes (daily) Necropsy

23 Toaff-Rosenstein and Tucker (50) 3 Yes (daily)

24 Hixson et al. (48) 3 Yes (Wisconsin calf health scoring chart: twice daily)

25 Sutherland et al. (4) 3 Yes (daily) Yes BW

26 Lowe et al. (7) 3 Yes (daily)

27 Kayser et al. (72) 3 Yes (twice daily) Yes

28 Duthie et al. (64) 3 Yes (modified Wisconsin calf health scoring chart: daily)

a gold standard to validate another accelerometer, the AfiTag II,
for lying behavior and step count (44).

Stage two and three studies aim to identify sick calves.
Here, a clinical examination is the most commonly used
gold standard for disease diagnosis (Table 1) (45–50). Various
protocols have been used in this type of study, such as the
Wisconsin clinical respiratory score (51) and the Wisconsin
calf health scoring chart (52). Further information can be
added to these clinical examinations to complement the gold
standard, including metadata such as management information
(e.g., calf registration or enrollment data), morbidity and
mortality data from the farm (53, 54), BW (55–57), post-mortem
examination (58, 59), or blood parameters (16, 24, 51–53, 60–

62). Of all the clinical examination protocols, the (modified)
Wisconsin calf health score chart was the most commonly used
protocol (47, 48, 52, 63, 64). Gold standards without clinical
examination, e.g., from blood analysis (65), or a combination
of BW, biochemical parameters from blood and fecal samples,
and rectal temperature (66) have also previously been used.
Clinical examination can be combined with clinical chemistry,
for example, via blood sampling, to improve the accuracy of
health assessment.

Visual appraisal of disease, e.g., BRD, relies on the experience
of observers, and may have low specificity and be highly variable
between observers based on their level of experience (67).
Thus errors from the clinical examinations may transfer to the
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TABLE 2 | Confusion matrix.

actual

Predicted Positive Negative

Positive True positive False negative

Negative False positive True negative

corresponding models (58). Improvements are necessary for the
clinical examinations used as gold standards for the development
of algorithms to detect diseases in calves. Firstly, training in
clinical examination and high inter-observer consistency are
required. Secondly, to better relate clinical examinations tomodel
outcome, consistent and explicit definitions of diseases across the
literature are needed.

When performing time-consuming clinical examinations for
use as a gold standard, the frequency of these examinations
needs to be carefully considered. As observed by the current
authors, daily clinical examinations of calves can provide better
timely reference, at the cost of disturbance to the group and
high labor requirements. However, a low frequency of clinical
examinations will result in late detection, making it difficult
to develop an early disease detection algorithm (68). Previous
research applied different frequencies–for clinical examinations–
ranging from daily to weekly (Table 1). Clinical examinations
combining two different frequencies applied at different life
stages were also found, e.g., before (twice a week) and after the
weaning period (once per week) of dairy calves (51, 52). To
the author’s knowledge, no study has yet compared the effect of
different frequencies of clinical examinations on the accuracy of
disease-detection models.

In summary, clinical examination is the most common gold
standard used in the development of algorithms to identify sick
calves. The Wisconsin calf health score chart was identified
as a commonly used protocol for clinical examination in this
context, with a sensitivity of 62.4, and specificity of 74.1% (69).
Clinical references with high accuracy, consistent guidelines,
and easy-to-follow protocols are needed for disease detection in
calves. A standardized clinical scoring system will benefit the
validation of the sensors and algorithms, making it easier to
compare the performance of different algorithms. In addition,
ultrasonographic assessment of the thorax could be a useful tool
to assess BRD detection in calves (70, 71).

Stage One: Sensor Technology Used in
Calves
Data sources used in calves include automatic feeding stations
(AFS), accelerometers, microphones, infrared thermography
(IRT) cameras, temperature sensors (i.e., boluses, thermometers),
radiofrequency identification (RFID) chips, 3-D cameras, and
2-D cameras.

Automatic Feeding Stations
AFS, such as automated milk dispensers for pre-weaned calves
and automatic concentrate bunks for post-weaned calves, and
water bins, have been used in studies aimed at automated health
monitoring in young calves, hence stage two research. These AFS

can measure a wide range of parameters linked to feeding and
drinking patterns, including daily feed intake (4, 45, 47, 52–55,
57, 72–74), frequency and duration of rewarded and unrewarded
visits (4, 45, 47, 52–55, 57, 58, 61, 62, 72, 74), drinking speed
(milk) (47, 52–54), water-drinking behavior (intake, time, and
frequency) (62, 74), and other feeding behaviors (head-down
duration at the AFS) (55, 72), time-to-bunk: time to approach
feeding stations following feed-truck delivery (55, 72), and
duration of unrewarded visit intervals (55). We did not find
validation studies for common systems such as Förster-Technik
GmbH (n = 5; Engen, Germany) or GrowSafe Systems (n =

3; GrowSafe Systems Ltd., Airdrie, AB, Canada). However, we
found a study validating automatic feed and water bin (Intergado
R© Ltd, Contagem, Minas Gerais, Brazil), and showed that this
system seem to be able to measure feeding time, water drinking
time, feed intake per visits, and water intake per visits with high
correlation compared with the gold standards (r2 = 0.917, 0.963,
0.973, and 0.986, respectively) (74).

Accelerometers
Accelerometers are attached to the body of the calf, generally
to one of the limbs, neck, or ear (tag). They are typically used
to assess various activity-related behaviors. Accelerometers are
accurate in recording calf behaviors, including lying time (44,
75–78), lying bouts (44, 75, 76, 78), standing time (75, 78),
standing bouts (75), step counts (44, 79), locomotion time (78),
gait scoring (79), feeding time (73, 78), sucking behavior from
dams (38), and licking or sucking at objects, other calves’ bodies,
or own body (78). After more than 10 years of development,
accelerometers are now used to record a broader variety of
behaviors andmore detailed behavioral patterns, e.g., recognizing
between galloping, trotting, and walking (79), and recording
behaviors such as eating, water drinking, chewing, positive social
interactions, self-grooming, and inactivity (80). Step counts were
originally measured by pedometers (60). This activity parameter
was later integrated into accelerometers (44, 47, 66, 79, 81).

Temperature Sensors
Boluses, IRT cameras, and thermometers are used to measure
body temperature. These temperature sensors have been
developed to record body temperature at different anatomical
areas, enabling the measurement of rectal temperature (50, 59)
or temperature around the rectal area (40), reticulo-rumen
temperature (24, 46), eye temperature (7, 16, 40, 41, 82), cheek
temperature (7, 82), back, shoulder, and side temperature (7),
and temperature at the base of the tail (39). These cameras have
also shown high accuracy in measuring cheek temperatures (82),
but have not been found to be highly accurate in measuring
temperature around the rectal area (40) or core body temperature
(41). In terms of eye temperature, IRT cameras seem to show
varying levels of correlation between eye temperature and
rectal temperature, e.g., high correlation (R2 ≥ 0.99) (82), low
correlation (R2 ≤ 0.32) (40). Thismight be partly due to the use of
an detection algorithm (82). A prototype thermometer provided
by Nogami et al. (39) has been found to measure tail temperature
with high correlation compared with rectal temperature in calves.
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Other Sensors and Techniques
Microphones, when integrated into sound-acquisition systems,
can detect abnormal cough sounds (51, 65, 83) and rumination
sounds in calves (84–86). The performance of microphones
varied in calves of different ages. Microphones accurately
recorded rumination time in pre-weaned calves (85), but
overestimated rumination time in weaning calves (86). RFID ear
tags can be applied to monitor grooming behavior (measured
via proximity to a brush) in heifers (87). IRT cameras have also
been used to assess respiration rate in calves, at a high level of
accuracy (88).

With the application of approaches such as computer vision
or machine learning, an even broader range of parameters might
be recorded with the available sensors. For example, Carslake
et al. (89) applied machine-learning approaches to multi-class
behavior identification (including locomotor play, self-grooming,
ruminating, non-nutritive suckling, nutritive suckling, active
lying, and non-active lying) as well as behavior quantification
(i.e., behavior distribution) using a single sensor (comprised of
an accelerometer and gyroscope) in calves. Computer vision
allowed 2-D cameras to identify multiple behaviors, e.g., pen
entering, pen leaving, standing or lying static behavior, turning,
and feeding and drinking behaviors (90). 3-D cameras can
monitor growth and morphology (i.e., BW, body mass, hip
height, and wither height) in young calves and heifers (42,
43).

Knowing which parameters that sensors (or sensor
combinations) can accurately measure can contribute to
the development of an efficient sensor system at stage two and
three. For example, accelerometers are not accurate in screening
rumination time in calves (73), but this can instead be achieved
by microphones (84, 85). Both accelerometers and AFS can
record feeding and water-drinking behaviors, but AFS can
record these behaviors directly without having to apply statistical
models and are non-intrusive, i.e., not attached to the animal
(80). In addition, no further hardware is needed when extracting
data from AFS compared with accelerometers.

To sum up, available sensors (AFS, accelerometers, IRT
cameras, microphones, and 3-D cameras) are accurate in
measuring different behavioral or physiological parameters in
calves, and approaches such as machine learning and computer
vision broaden the range of behaviors that sensors can record.
Future work should further develop behavior classification
and quantification by applying computer-vision and machine-
learning approaches.

Stage Two: Data Interpretation–Outcomes
of Algorithms
In order to develop a sensor-based system that detects sick
calves, i.e., sensor technology combined with algorithms, stage
two studies must follow three steps: (1) identify how behavioral
or physiological parameters change with disease, identified via
a gold standard (this includes the selection of both parameters
of interest and corresponding sensors); (2) investigating how
these behavioral and physiological changes vary at which stage of
disease they can first be detected; and (3) developing and testing

the accuracy (or performance) of algorithms in detecting sick
calves based on changes in these behavioral and physiological
parameters. In this section, we highlight the algorithms that
can detect diseases prior to clinical confirmation (Table 3), and
summarize changes in behavioral and physiological parameters
in response to disease as well as time course: disease states
in animals typically lead to both behavioral and physiological
changes over time.

Changes in Feeding Behaviors
Feeding behaviors and patterns, including intake, frequency,
speed, and duration at various time ranges, are commonly used
parameters for the early detection of disease in calves (91, 92).
Note that most studies look at feeding behaviors aggregated at
a daily level. With the application of RFID, individual calves
are identified at AFS, whereby individual feeding behaviors can
be recorded. For example, pre-weaned calves diagnosed with
BRD drank less milk on the day of clinical examination (47)
and on the first day of treatment (53), drank milk slower 4
days prior to the clinical examination (53), and performed fewer
unrewarded visits to the milk dispenser 3 days prior to (52),
and on the first day of treatment (53). Moreover, net daily
energy intake (calculated for each calf by summing daily milk
replacer and concentrate intake values) (52) and DMI (55), were
reduced in BRD-infected calves in the time prior to the clinical
examination, e.g., 3 days in Johnston et al. (52) and 6.8 days in
Jackson et al. (55). In calves diagnosed with NCD, daily milk
intake and time at water trough dropped 4 days prior to clinical
examination (7).

Changes in Activity
Changes in activity parameters, such as step counts and lying
behaviors, are used to detect sick calves. In calves diagnosed with
BRD, for example, step counts (<6 days), lying bouts (<5 days),
standing time (< 1 day) were reduced (81). In calves diagnosed
with NCD, results are inconclusive regarding activity: lying bouts
were found to both decrease (<7 days) (7) and increase (<7
days to 3 days) (63), and lying durations were found to both
decrease (<6 days to 3 days) (63) and increase (<7 days) (7).
Finally, calves with inflamed navels show reduced lying time at
day level after arrival at fattening farms compared with healthy
calves (56).

Changes in Other Parameters
Coughing which is a typical symptom of BRD can be detected
using microphones (83). Note that as opposed to activity and
feeding behaviors, coughing has so far only been measured at
group level. An increased coughing frequency was found to be
correlated to BRD occurrence in group-housed calves (51, 65).

Changes in body temperature can be used to detected sick
calves before clinical examination. BRD-diagnosed calves showed
increases in orbital (eye plus 1 centimeter surrounding the eye)
maximum temperature (16) and reticulo-ruminal temperature,
e.g.,−136 to−12 h (24) and−3.5 days (46) relative to diagnosis.
One importantmethodological consideration with thermometers
is that recorded temperatures differ based on the body area that
is investigated. For example, skin temperature was consistently
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TABLE 3 | Performance of algorithms and models.

No.References Features Performance

Sea (%) Spb (%) Accuracy

(%)

PPVc (%) NPVd (%) Other

parameters

Days prior

(best)

Days prior

(least)

1 Jackson et al. (55) Feeding behavior −14.2 −1.3

2 Kayser et al.

(57)-univariate factors

Feeding behavior 48.7–80.1 −10.2 −0.6

3 Wolfger et al. (61) Feeding behavior −7

4 Lowe et al. (7) Feeding behavior, lying behavior,

body temperature

−7 −4

5 Swartz et al. (63) Activity, lying behavior −7 −6

6 Jackson et al. (55) DMI −6.8

7 24 Reticulo-rumen temperature 0.91 (r), 0.82

(r2)

−5.7 −0.5

8 Sutherland et al. (4) Feeding behavior, lying behavior −5 0

9 Pillen et al. (81) Activity −5 −1

10 Kayser et al. (72) Feeding behavior 0.61–0.89 −4.5

11 Kayser et al. (72) Rumen temperature 0.78 −4.5

12 Sutherland et al. (4) Feeding behavior −4 0

13 Knauer et al. (53) Feeding behavior, activity −4 7

14 Voss et al. (46) Reticulo-ruminal temperature 71 98 86 98 0.855 (area

under curve)

−3.5

15 Moya et al.

(58)-model 33

Feeding behavior 66.7 58.3 62.5 −3.1

16 Moya et al.

(58)-model 66

Feeding behavior 75 50 50 −3.1

17 Knauer et al. (54) Feeding behavior 56.4 49.5 66.6 49.5 −3.1

18 Knauer et al. (54) Feeding behavior 70.9 32.9 65.3 38.7 −3.1

19 Knauer et al. (54) Feeding behavior 74.9 27.1 64.6 37.4 −3.1

20 Johnston et al. (52) Feeding behavior −3

21 Oliveira et al. (62) Feeding behavior −3 4

22 Duthie et al. (64) Feeding behavior, activity −3 −1

23 Moya et al.

(58)-model 14

Feeding behavior 58.3 83.3 70.8 −2.4

24 Kayser et al.

(57)-multivariate

factors

Feeding behavior 84 −2.1 −2

25 Shane et al. (49) Social network patterns 17.9–100 <10 >90 −2 0

26 Swartz et al. (47) Behavior, activity −2

27 Sutherland et al. (4) Feeding behavior −2 0

28 Sutherland et al. (4) Lying behavior −2 0

29 Toaff-Rosenstein and

Tucker (50)

Rectal temperature −2

30 Moya et al.

(58)-model 3

Feeding behavior 50 100 75 −1

31 Oliveira et al. (62) Feeding behavior −1 1

32 Toaff-Rosenstein and

Tucker (50)

Feeding behavior 0

arefer to sensitivity. brefer to specificity. crefer to positive predictive value. drefer to negative predictive value.

2 to 3◦C lower than the rectal temperature (39), while reticulo-
rumen temperature was consistently 0.57◦C higher than rectal
temperature (24). As long as these differences between recorded
temperature and body temperature are consistent, this should not
affect the detection of temperature increases due to diseases in

calves. In calves diagnosed with NCD, the temperature of the
side flank and shoulder increased at least seven days prior to
diagnosis (7).

Changes in social behaviors were also detected in sick calves.
In a modeled disease challenge study (calves were infected
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with Mannheimia haemolytica), sick calves were found to show
decreases in daily social grooming time and daily social lying time
(lying within one body length of another calf) (48).

Some other behavioral parameters can be well recorded by
sensors, but their potential in early disease detection is yet
unknown. These include sucking behavior (38), rumination time
(86), and play behavior (93–95). Further research into the link
between these parameters and disease is warranted.

As explained above, behavior and physiology change with
disease, and these changes can be detected using sensors and
algorithms. Theoretically, “behaviors that are less critical for
immediate survival and primarily support long-term fitness are
most affected by disease” (96), such as play and exploratory
behaviors (97). In practice, the type of diseases and the age
of the animals also need to be taken into consideration as
they might influence behavioral deviations. For example, in
parasitized beef steers (aged between 4 and 11 months) and
BRD-infected dairy calves, changes in activity (e.g., lying,
standing, and step counts) enabled a better disease detection
than feeding behaviors such as frequency and duration of
feeding and drinking (66) and feed intake (47). In identifying
NCD-infected calves and BRD-infected steers, however, feeding
behaviors (e.g., the number of unrewarded visits to an
automated milk dispenser, DMI, and bunk visit duration)
permitted a more accurate detection of disease compared with
activities such as lying and standing duration (4, 72). In
addition, certain diseases result in behavioral changes that are
easier to detect at an earlier stage. NCD-diagnosed calves,
for example, displayed earlier and more consistent changes
in feeding behaviors compared with BRD-diagnosed calves
(53). Further research is hence needed into identifying the
best, most sensitive behavioral and physiological parameters
that can identify specific diseases or diseased state on a
generic level.

Stage Three: Information
Integration–Outcomes of Models
To date, sensor fusion (i.e., two or multiple sensors) was applied
in a number of studies (n = 9, Figure 3), in which data from
accelerometers, thermometers, and AFS are integrated into one
model to identify diseases including BRD (64, 72) andNCD (4, 7).
Information integration, however, means more than a multiple-
sensor tool. First, “integration” does not mean accumulating all
the data obtained from different sources. In the design of systems
at stage three, redundancy needs to be reduced for a disease-
detection model. To reach this, data mining (98), which allows
for a more complete understanding of different parameters in
relation to disease occurrence, is a prerequisite. Data mining
allows for the selection of the key parameters, the variation of
which reflects health status with high accuracy. In this way,
by reducing the redundancy, the number of sensors used and
possibly attached to a calf will be reduced. Second, multiple
data sources mean that sensor data are not the only sources of
data. Economic insights, for example, were also suggested to be
considered for the treatment decisions (24, 57).

Given that many sensors and techniques are already
commercially available, it is crucial to choose an appropriate
sensor system when recoding certain parameters. For example,
the combination of video cameras and sensors (including
thermometers, accelerometers, or AFS), although popular for
research (n = 5), seems impractical for on-farm settings.
This might be due to the number of cameras required and
the time-consuming process of analyzing the video footage.
However, a recent study show that artificial intelligence is
able to identify the physiology and behavior of animals
using video footages with high accuracy (90), allowing for
less labor.

Therefore, “information integration” means selecting as
few meaningful parameters indicative of diseases as possible
when developing models (thereby avoiding redundancy). The
integrated systems will give an alert when the current status of
a calf deviates from its earlier patterns, i.e., being sick. Ideally,
models at this stage include a minimum number of sensors per
animal, which is advantageous in terms of costs and maintenance
labor but also in maintaining the integrity and freedom of
movement of calves.

Stage Four: Decision Support–Automation
At stage four, decision support means that the integrated system
can identify which disease is occurring based on the developed
model. Farmers can refer to the decision made by the system
as support. To the author’s knowledge, no such systems are
available for early disease detection in calves. An example of a
stage four system in dairy cows is estrous detection and automatic
identification of the best way to inseminate the cow (99). In the
situation of early disease detection in calves, however, so far only
alerts are available.

For the future, automation is crucial–a decision-support
system with an easy-to-operate user interface is what farmers
need for an easy identification of sick calves. Current models
may give some form of alert, yet cannot give automatic
decision support. Another important characteristic of such
systems is the possibility for the farmers to enter feedback
(e.g., whether the identified individual was truly ill with the
suspected disease and whether the treatment was efficient)
so that the system can continuously learn and adapt to
the specific farming conditions. Knight (98) suggested a
business model that bridges information integration and decision
support. In the provided business model, farmers are buying
a service from service providers. A service provider purchases
the technologies from different developers, and provides the
service of installation, maintenance, data collection, and data
integration, thereby providing decision support to the farmers.
However, at the same time we believe that technology should
not replace but, rather, support management decisions made by
the farmer.

Introducing “Resilience” Theory
Following the above four-stage approach, the decision-support
system is regarded as a screening tool that aims to detect
diseases at an early stage and provides a short list of “positive
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cases” of animals that have a sufficiently high chance of being
prone to develop the targeted disease. Hence the farmer and
the care taker is provided a window of opportunity to check
for the clinical status. Additionally some preventive measures
can be taken or a predefined health protocol can be applied.
A negative outcome of a decision-support system predicts
the likelihood of a clinically healthy animal of becoming
diseased in the near future, i.e., its predisposition to diseases
then is generally speaking a balance between environmental
infection pressure and its immune system functioning. In a
paper discussing sensor technologies in dairy farming, Knight
argued that “the focus is on improving overall husbandry,
rather than “solving” specific disease problems” (98). The
same focus should apply to the dairy and veal industry
as well. We therefore introduce “resilience” theory, through
which the developed system might be able to quantify the
resilience of individual animals, thereby identifying animals
in a low-resilience state. This potentially allows for early
intervention in the husbandry system, whereby the environment
or management are specified in such a way that low-resilient
individuals and the herd as a whole can maintain relatively
healthy states.

Resilience in farm animals has been defined as “the capacity
of the animal to be minimally affected by a disturbance or to
rapidly return to the physiological, behavioral, cognitive, health,
affective and production states that pertained before exposure
to a disturbance” (100). Calves falling sick can be equaled to
a complex system transiting from one stable state (healthy)
to another (unhealthy), with the return to the original state
being more difficult than the simple cancellation of factors that
caused the change in state. Such shifts in complex systems
have been termed “critical transitions” or “tipping points” (101).
When such complex systems are close to tipping points, the
recovery rate of that system from small perturbations becomes
very slow, and this is known as “critical slowing down” (CSD)
(102). For example, a cow showing “CSD” before parturition,
in this case by using an accelerometer to assess activity (e.g.,
low average eating time, a disturbed circadian rhythm, and
variance in ear temperature), is likely to develop periparturient
disorders (103). CSD, which can be revealed through dynamic
aspects of sensor data, is here seen as an increase in variance
in the activity data, hence a loss of regularity. CSD, therefore,
reflects a loss of resilience (101, 102). In still clinically healthy
individuals, CSD reflects the animal’s vulnerability to pathogens
prior to the disease, and hence reflects a state of low resilience.
Identifying CSD in sensor data patterns of “low-resilient”
individual animals, would enable, for example, timely change
of the environment of this animal in an attempt to increase its
resilience (e.g., by removal of stressors, or the improvement of
nutrition, etc.).

Current sensor tools focus on detecting the early stages of
disease, while sensor technology already allows us to analyze
the dynamics of physiology and behavior with high accuracy.
Advanced analytical tools can estimate resilience status from
the micro-recoveries in the data flow (104). These tools may

eventually also be applicable to advanced and innovative calf
health management systems.

CONCLUSIONS

This review summarized the literature on sensor systems
so far studied in the context of health monitoring in
calves between 2009 and 2021, and revealed the current
phase of development by categorizing each study based on
a four-stage system (sensor technology, data interpretation,
information integration, decision support). Our literature search
demonstrated that most studies up to now are at stage one
(sensor technique) or stage two (data interpretation), and a
few studies are at the beginning of stage three (information
integration). Accelerometers, IRT cameras, microphones, and
3-D cameras can be accurate in measuring behavioral and
physiological parameters in calves (at stage one). Deviations in
behaviors (e.g., feeding, lying, and social behaviors), activity,
and body temperature can be detected prior to the clinical
examination (at stage two and three), and are promising for
developing algorithms. To develop a health detection model
with a minimal number of sensors, it is crucial to select
appropriate sensor systems that can record the most relevant
parameters that show clear changes in response to diseases in
calves. Clear gaps in research include stage three (information
integration) and stage four (decision support) systems, as
well as forecasting methods via the identification of low-
resilience animals.
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