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The movements of animals between farms and other livestock holdings for trading

activities form a complex livestock trade network. These movements play an important

role in the spread of infectious diseases among premises. For studying the disease

spreading among animal holdings, it is of great importance to understand the structure

and dynamics of the trade system. In this paper, we propose a temporal network model

for animal trade systems. Furthermore, a novel measure of node centrality important

for disease spreading is introduced. The experimental results show that the model can

reasonably well describe these spreading-related properties of the network and it can

generate crucial data for research in the field of the livestock trade system.
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1. INTRODUCTION

In view of recurring large-scale disease outbreaks among different animal holdings, such as that
of foot and mouth disease in the UK in 2001 (1), the swine fever epidemics in the Netherlands
and Germany in the 1990s and in 2003 (2) and the recent African swine fever (ASF) outbreak
in Eastern Europe (3) and China in 2018 and 2019 (4), studies of the systemic reasons for such
spreading dynamics are highly relevant for both health and economic reasons. China’s outbreak of
ASF in 2019 was more devastating than expected (5). This virus, which is harmless to humans but
deadly to pigs, has wiped out more than one-third of China’s hog population and sent pork prices
skyrocketing.

The crucial role of translocation of both domestic and wildlife animals in the emergence of
new diseases as a great threat for not only animals but also human health was already identified
and discussed in the literature (6–14). These movements are extremely risky that can lead to
the introduction of exotic animal diseases or zoonotic human pathogens like monkeypox in the
United States in 2003, which infected humans as well (11). Furthermore, trade restrictions cause
enormous financial losses for the affected livestock holdings and countries (2, 11). All these can
lead to irreparable impacts on the economy and public health (2, 5, 15–17).

Detection of an outbreak as accurately and early as possible when it has not yet been widely
spread is thus very important. This gives enough time to authorities for disease management and
implementing control strategies on a smaller scale of the population, which is not only easier but
also more cost efficient. Data sources such as the one used in this paper (18) are required for risk
assessments of epidemics like ASF. Unfortunately in most cases, researchers do not have access to
the data crucial for their research because the data are confidential or otherwise unavailable (14). To
our knowledge, no synthetic trade data are available for use in numerical analyses and experiments
as a substitute for real data or to complement real data.
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In this paper, we provide an alternative way to obtain sufficient
amounts of data suitable for modeling and studying disease
outbreaks in animal trade networks. Our approach is based on
large ensembles of synthetically generated yet realistic animal
trade data. For the production of such data, we design and use a
random animal trade transmission network model that represents
in a stylized fashion the major processes that determine the
times, sources, destinations, and sizes of animal transmissions,
which occur in a typical animal trade network. In contrast to
other more complex agent-based models (19, 20), our model
manages to produce realistic distributions of spreading-relevant
network features without having to make detailed assumptions
about geographic or economic aspects of the trade.

Our model only uses heterogeneous farm capacities and
transmission batch sizes. Still, it produces realistic heavy-
tailed distributions of certain indicators of a node’s importance
for disease spreading and detection. As we will see, these
distributions are very similar to those observed in real data. For
comparison, we fit our generic model to the parameters of the
German pig trade network.

2. MATERIALS AND METHODS

2.1. Dataset
According to the EU directive EC/2000/15, EU member states
collect and record livestock movement data in a national
database (12).

According to the German Animal Movement Directive
(Viehverkehrsverordnung), each holding is obligated to record
every livestock movement within 14 days (18). HI-Tier is a
comprehensive database that provides the daily description of
pig movements in Germany since 2006 (18). In this paper, we
use an extract of this database, which contains all trades between
premises in Germany between January 1, 2011 and December 31,
2014. The trade data include a set of transitions that comprise
information about the seller premise’s identifier as the source
of movement, the buyer premise’s identifier as the target of
movement, the number of animals (the batch size) and the date
of movement. Our dataset contains more than 6.3 million such
transactions between 97, 971 premises. After looking closer into
data, we noticed that about 40,381 farms did less than 10 trades
during 4 years observation period, so we decided to leave out
these farms from the rest of analysis. Therefore, the total number
of farms reduced to 57,590.

2.2. Network Representation
The considered pig trade system can be represented as a temporal
network G = (V , E), consisting of a setV of premises as the nodes
of the network and a set of movements/trades between farms
as edges E , where every edge (i, j, t,w) is a temporal weighted
link representing a trade between a seller and a buyer farm.
Therefore, the pig trade network is a large weighted directed
temporal network. By aggregating all pig displacements over time,
also a static network view of the data can be obtained, named as
G = (V ,E).

We summarize some properties of these two network
representations in Figure 1 and Table 1. One special

characteristic of the pig trade network is that it is highly
determined by the underlying pork production chain which is
shown schematically in Figure 2. We conceptualize the chain
as consisting of four farm types whereby every farm type is
specialized in one of the following steps: piglet production,
raising, fattening, and slaughterhouse. As shown in Koeppel
et al. (21), the different stages within the production can be
determined via the weight limits of the pigs, which are specific
to each production step. In addition to the types shown in the
figure, we consider the additional node type of “trader” since
they are often involved in the trading process and may play an
important role in the spreading of an infection due to their high
connectedness in the network (see section the set of transmission
types). Although in reality there are also some “mixed”-type
holdings which do two or three of the above activities, these are
rare enough so that we chose to disregard them in our analysis
for the sake of conceptual clarity. It is to note that, however,
farms are often involved in different individual chains by buying
from and selling to more than one partner (dashed lines in
Figure 2).

2.3. A Novel Node Centrality Measure
Related to Disease Spreading
In recent years, numerous measures have been proposed to
quantify how important a node in a network is for different
aspects. Most of the existing node measures such as degree,
closeness centrality (22), betweenness (23), or k-shell centrality
(24), take only topological, non-dynamical features of the static
network view into account for locating the influential nodes. This
is why they are not particularly well designed to be informative
about dynamic processes occurring on a temporal network such
as disease spreading (25).

Some studies that aim at finding influential spreaders in
disease spreading dynamics (25–28) define and use tailormade
importance measures. One of these is the so-called dynamic-
sensitive centrality measure that integrates topological properties
of the network and spreading dynamics to locate influential
spreaders (25). It considers a simple discrete-time spreading
process on a static network and defines a spreading influence
measure for every node. The spreading influence of node i at time
step t is quantified by the sum of the infection probabilities of all
nodes if i is the initially infected seed node.

Si(t) = [(βA+ βAH + ...+ βAHt−1)⊤L]i. (1)

whereA is the adjacencymatrix of the network, β is the spreading
rate,H = βA+(1−µ)I, I is the identity matrix,µ is the recovery
rate, and L = [1, 1, ..., 1]⊤.

There is also an extension of this approach for temporal
networks, the so-called temporal dynamic-sensitive centrality
measure (28).

By locating the influential spreaders in a trade network,
authorities can target them to implement surveillance strategies
(29–31). Using Italian cattle displacement data, Bajardi et al.
(29) proposed a method for identifying promising nodes where
one could place sentinels (permanent observation points) by
seeking farms, which are more likely to be infected during the
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FIGURE 1 | Decumulative degree distribution of the static network view of the German pig trade. In-degree, number of different suppliers of a holding; out-degree,

number of different customers of a holding. By comparison, a simple “scale-free” network topology would have a power-law-shaped distribution that would appear as

a linear curve in this double-logarithmic plot.

TABLE 1 | Basic statistical features of the pig trade network, including the number

of nodes n, the number of edges e, and the average degree 〈k〉.

Type of network representation n e 〈k〉

Static network 57,590 258,333 4.486

Temporal network 57,590 6,241,634 108.381

early phase of an outbreak. They first find all invasion paths
in the network and then cluster all farms with respect to the
similarity of their invasion paths. Finally, promising sentinels
are determined by selecting nodes from the found clusters. The
authors of Schirdewahn et al. (32) showed that this approach also
works for the German pig trade network. In this paper, we add
another methodology by defining a novel temporal centrality-
type measure that reflects a node’s importance for achieving the
main goal of authorities assumed here, which is to detect an
outbreak in as “early” a stage as possible in terms of its impact.
Thismeans that, when the outbreak is detected, the number of the
infected animals should be as small as possible. Our importance
measure captures this goal in a worst-case fashion in order to be
independent of any particular infectious disease’s specifics. In this
way, the measure only depends on the network topology and can
be interpreted as an inherent property of the network. We define
the spreading detection turnout centrality of j, denoted SDTC(j),
as the inverse of the expected value of the total weight of all
infected nodes when an infection starting at a randomly chosen
node i0 and time t0 reaches node j:

SDTC(j) =
1

〈

W(i0, j, t0)
〉

i0∈V\{j},t0∈T

. (2)

where V is the set of nodes and T is set of time points covered by
the data. Here,W(i0, j, t0) is the total weight of all nodes that are
infected at the time point at which the outbreak reaches node j,
assuming that the outbreak starts at a random node and time and
that every contact transmits the infection with certainty. In our
case, the node weight is the number of animals typically residing
at the holding since we take the worst-case assumption that in the
case of highly infectious disease all animals in a holding might
be infected soon after the infection reaches it. The reciprocal of
this measure, 1/SDTC(j), can thus be interpreted as the average
“turnout” of an outbreak of a highly infectious disease if one stops
any further spreading as soon as the outbreak reaches node j. For
any real-world outbreak, the actual number of affected animals
would then be at most as large as this number.

The good candidates for surveillance goals are those nodes
that typically get infected very early when the outbreak starts at
some random position in the network, and they are those with
high values of SDTC. Hence, the larger SDTC(j) [i.e., the smaller
1/SDTC(j)], the more important the surveying of j appears for
keeping outbreaks small.

2.4. The Temporal Network Model
The main contribution of this paper, in addition to the above-
discussed importance measure, is an algorithm (a “model”) for
generating synthetic but realistic temporal networks representing
animal trade, which we present now.

To this end, we represent an evolving animal trade network by
a formal data structure of what we call a transmission network.
A transmission network is simply a finite set G of transmissions
(t, i, j, x). Each such tuple (t, i, j, x) represents a transmission of x
many animals from facility i to facility j at time t. In this section,
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FIGURE 2 | Schematic of pork production chains (solid arrows) forming the pig trade network. Different production chains can be connected by additional cross links

(dashed arrows) (13).

we first describe the basic logic of our model and then discuss its
parameters and give the actual algorithm.

2.4.1. Basic Logic of the Model
Our random animal trade transmission network model considers
a randomly drawn set N of hypothetical farms and traders
with different characteristics and then generates a hypothetical
sequence of animal transmissions (t, i, j, x) that may happen
between the nodes within some time interval [0,T].

Here, x is the number of animals of the considered species
transported from node i to node j at a time point t.

Since the main use of the generated data is for the study of
epidemic spreading through animal trade, each node represents
an epidemiological unit (e.g., a barn) wherein livestock may be
located at some point in time and which is contiguous enough
so that the disease under consideration can potentially spread
within the same unit without the need of explicitly transporting
animals between different locations. For simplicity, we assume
these nodes are either individual barns or animal traders. Each
barn node houses animals of a particular stage, s, in the livestock’s
production chain. Also, each trader node specializes in the trade
of animals coming from a particular stage. The different stages of
the production chain and trader together form the node types, θ ,
of the model. Even though we focus on the pig trade in this paper,
which has a rather linear production chain, the model is designed
to be also applicable to other livestock (e.g., cattle) that have
more complex production chain that may branch according to
different use types (e.g., meat production andmilk production) or
business models, e.g., organic vs. conventional production. Each
animal in a node i of type θ is bookmarked to be transferred to a
certain target node of some type θ ′. All animals in i bookmarked
for the same target type θ ′ form what we call a virtual queue,
Q(i, θ ′). The type of this queue is denoted as (θ , θ ′). Queues have

non-varying but heterogeneous capacities for holding animals.
Animals stay in each queue for at least a pre-specified number of
days depending on the type of queue (θ , θ ′). Afterward, they are
considered “ripe” for the next stage and leave the queue as soon
as enough animals are ripe, either being sold or killed. Howmany
are “enough” is determined by a varying minimum batch size,
s(i, θ ′), that is drawn independently for each transmission from
a certain probability distribution that again depends on the type
of queue. Sales are represented by transmissions, (t, i, j, x). Each
transmission transfers a batch consisting of a varying number
x of animals from a particular queue, Q(i, θ ′), to a particular
target node, j, of matching type, θ ′. As soon as the number of
ripe animals reaches x(i, θ ′), and a target node of type θ ′ having
enough free capacity can be found, all ripe animals in Q(i, θ ′) are
sold as one transmission of size x.

With a certain probability (called the loyalty of the source
node), the target node is the same as for the last transmission
from this source; otherwise, it is a random node of proper type
and capacity. The loyalty of a node is fixed and drawn in the
beginning from a certain probability distribution depending on
the node type.

Transmissions arrive on the same day and animals
are distributed into the target node j’s queues in certain
fixed proportions.

Finally, animals are born at fixed rates into certain
stages (normally in nodes of type “breeding”), have some
daily mortality rate in each stage, and are killed after a
specified time in certain other stages (normally in node of
type “slaughterhouse” immediately after arrival). Mortality and
birth rates are discussed in sections mortality rate and birth
rate. There is no additional mortality during transmissions.
Figure 3 sketches this logic for the pig trade case used in
this paper.
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FIGURE 3 | Logic of the random animal trade transmission network model, here for the simple model of German pig trade used in this paper.

The formal details and simulation algorithm of the model can
be found in the Supplementary Materials.

2.4.2. Parameters
• A set 2N of node types θ .
• For each type θ ∈ 2N , a number nθ > 0 of nodes of type θ .

Also, a setNθ is defined including all node indices of type θ , so
that nθ = |Nθ |.

• A set 2T of transmission types (θ , θ ′) in which θ , θ ′ ∈ 2N .

For each transmission type (θ , θ ′) ∈ 2T :

• The relative share pθ ,θ ′ > 0 of animals in nodes of type θ ′ that
will be transferred to a node of type θ ′ next and are thus put in
queues of this type.

• A minimal number of days dθ ,θ ′ > 0 each animal spends in a
queue of this type.

• A probability distribution Lθ ,θ ′ for the individual farms’ loyalty
values ℓ(i) that govern the choice of target node.

• A probability distribution Cθ ,θ ′ for the capacity of queues of
this type, typically defined via a tuple of parameters γθ ,θ ′ (e.g.,
the mean and standard deviation of the logarithm of a log-
normally distributed capacity, or the exponent and cutoff of
a power-law shaped capacity distribution).

• A probability distribution Sθ ,θ ′ for the minimal batch size
(number of animals) of queues of this type.

• A birth rate bθ ,θ ′ ≥ 0 specifying the average number of animals
per day and unit of capacity that are born directly into queues
of this type.

• A mortality rate mθ ,θ ′ ≥ 0 specifying the probability that an
animal in a queue of this type dies during 1 day.

For each type θ ∈ 2N , we require that either
∑

θ ′ pθ ,θ ′ = 1
(non-slaughterhouse nodes) or

∑

θ ′ pθ ,θ ′ = 0 and mθ = 1
(slaughterhouses).

2.5. Model Parameters for German Pig
Trade
2.5.1. Farm Type
One important value that was not provided in the database and
should be inferred is the farm type. To achieve this, we use a
simple classification method based on the trade balance ratio and
trader index measures, which introduced in Koeppel et al. (21).
They considered four classes of farms: breeding, fattening, trader,
and slaughterhouse. The trade balance ratio B gives information
about the location and type of a farm in the pork production
chain. The balance is the net purchases of a farm normalized by
the total trading volume:

B =
P − S

P + S
. (3)

where P is the total number of purchases of a holding and S
is the total number of sales of the same holding. Through this
definition, the trade balance ratio Bmay take a value between−1
and+1, whereB = −1 indicates that the farm only sold pigs (e.g.,
breeding farms), and B = 1 means that the farm solely purchased
animals (slaughterhouses). If B = 0, the purchase volume and
sales are equal (traders, fattening farms). To differentiate between
fattening and trader farms, they used trader index. Thus, the set
of farm types 2N of the pig trade network is:

2N = {breeding, fattening, trader, slaughterhouse}. (4)

Through this classification, we observe that around 46% of the
farms are breeding farms, 35% fattening farms, 0.7% are traders,
and 17.5% are slaughterhouses (Table 2).

It should be noted that this classification is only an assessment.
The observed dataset contains only trade information inside
Germany and trade contacts between a German farm and a farm
abroad are missing. Due to not included contacts, farms which
only trade with farms of a foreign country can be considered
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TABLE 2 | Numbers of holding types in the pig trade network.

Holding type Absolute number Relative number (%)

Breeding farms 22,536 39.1

Fattening farms 30,879 53.6

Traders 547 0.95

Slaughterhouses 3,718 6.35

as slaughterhouses. That is a possible reason for having a high
number of slaughterhouses. In Moslonka-Lefebvre et al. (33),
another method for the categorization of holdings based on
position along the supply chain and degree of market share
was proposed.

2.5.2. Farm Capacity
In the case of a disease outbreak, the number of living animals
inside a farm affects the total number of infections. Therefore, the
farm capacity is a very important factor in the outbreak detection
and also in system modeling. On that account, we compute the
number of pigs of each premises as the farm’s “capacity.” Since
these data were not directly available, we estimate the shape of the
distribution from the cumulative trading balance in the available
data roughly similar to Koeppel et al. (21).

LetN(t1, t2) be the trading balance (incoming minus outgoing
pigs) of some farm between days t1 and t2. If the lifestock S(t) in
the farm is assumed to never decrease below a share α of the farm
capacity C and to have a birth rate of β piglets per capacity and
day and a death rate of δ per day, then we know that:

C ≥
N(t1, t2)

1− α − (t2 − t1)(β − δ)
if 1− α − (t2 − t1)(β − δ) > 0,

(5)

and that

C ≥
−N(t1, t2)

1− α − (t2 − t1)(δα − β)
if 1− α − (t2 − t1)(δα − β) > 0.

(6)

Computing these for all pairs of time points (t1, t2) gives a solid
lower bound for the capacity of each farm. We use α = 0.9
and β > 0 for breeding farms and α = β = 0 for other
farm types, and use the birth and death rate estimates reported
further down. From the resulting bounds, we estimated the shape
of the capacity distribution for each farm type. As the capacities
of the breeding, fattening, and trader farms were overestimated,
we scaled their capacity linearly with a common factor to match
the total capacity of 25 million of all farms in Germany. The
resulting capacity distributions are shown in Figure 4. As can be
seen in the figure, these empirical distributions can be fitted well
by lognormal distributions.

2.5.3. The Set of Transmission Types
To determine which transmissions between farm types are more
reasonable and should be considered in the model, we study the
different movements in the real pig trade network. Regarding

the pig production chain, the valid set of movements are those
from breeding farms to fattening farms and from fattening farms
to slaughterhouses. We consider the two primary pig growing
steps as the breeding phase. However, as mentioned before most
of the movements are performed via traders in the real system
and this case also has been emphasized by different practitioners.
Therefore, finding the place of traders in the production chain is
important. So for every trade, we analyze the type of the source
farm, the destination type, frequency, and the batch size. We
consider four classes of farms (breeding, fattening, trader, and
slaughterhouses) and analyze all trades between them.

Table 3 presents the number of pigs traded between every
two types of farms. The results support the idea that traders
are involved in most of the movements. Note that 57% of total
pigs in the breeding stage are moved by traders and only 37%
sold directly to fattening farms. We disregard some impossible
transitions, for example, this table shows 6% of pigs traded
between breeding farms and slaughterhouses and in reality
piglets which are 1.5–3 months old need to get weight before
being slaughtered. Also traders make 92% of deals between
fattening farms and slaughterhouses, therefore the traders are
added to the pork production chain as illustrated in Figure 5. All
in all, we get our set of transmissions as:

2T = {B → F,B → T,T → F, F → T,T → S, F → S}. (7)

where 2T contains the transmission types, θ → θ ′ is equal to
(θ , θ ′ ). Here, B, F, T, and S are breeding, fattening, trader, and
slaughterhouse types, respectively.

2.5.4. Mortality Rate
The mortality rate is the probability of a pig dying within 1 day.
This rate depends on the growth stage in pig life. Studies show
that most pig deaths happen at the earlier stage of pig’s life while
few deaths observed in the later growth stages.

For estimation of the mortality rate with use of trade data, the
following approach is used.We considermθ as the daily mortality
rate in the growth stage θ . Then for each growing phase θ , the
surviving probability Rθ can be computed as Rθ = (1 − mθ )

dθ ,
which dθ is the approximate number of days a pig stays in stage
θ . The surviving probability should be approximately equal to
the ratio of the total number of sold pigs Sθ over purchased
pigs Pθ by a farm (fraction of pigs which survived in this stage),
Rθ ≈ Sθ/Pθ (neglecting any growth trend in production). So we
can receive the mortality ratemθ ,

mθ ≈ 1− (Sθ/Pθ )
1/dθ . (8)

As an example using pig trade data, we computed the mortality
rate in the approximately 100 days long fattening periodmF as:

mF ≈ 1− (SF/PF)
1/100

= 1− (183, 772, 187/181, 225, 163)1/100 ≈ 0.0002. (9)

This way we could estimate the mortality rate for fattening
and trader farms. In slaughterhouses, all pigs are killed, therefore
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FIGURE 4 | The decumulative distribution of the estimated farm capacity and the fitted random distribution for (A) breeding farms, (B) fattening farms, (C) traders,

and (D) slaughters.

TABLE 3 | Number of pigs traded between every two classes of farms.

Farm type Breeding Fattening Trader Slaughterhouse (%)

Breeding 0 37% 57% 6

Fattening 2% 0 92% 6

Trader 1% 91% 0 8

Values are normalized by the total number of pigs sold by all source farms of the same

type. We disregard some impossible transitions in the model.

the mortality rate is set to 1 in the model. We disregard death
while animals are moving. The pig trade starts exactly after the
breeding stage, that is why it is not possible to estimate the animal
death rate during breeding stage from equation 10. So further
information was required for computing mB. We asked some
practitioners to provide us with the real average mortality rate
in each pig growing stage. They reported an overall mortality
rate of 15–16% in the suckling phase in the first 4 weeks of pig’s

FIGURE 5 | Transmissions between different farm types in the pig trade

network. B, F, T, and S indicate breeding farm, fattening farm, trader, and

slaughterhouse, respectively.

life, 2–3% in the flatdeck phase in the following 6–8 weeks and
the death rate of 2–4% in the fattening stage, which takes 12–14
weeks. These statistics are summarized in Table 4. For estimation
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TABLE 4 | Properties of pig growing phase, each phase takes l weeks. m shows

the approximate mortality rate reported by practitioners.

Pig growing phase l m (%)

Suckling 4 15–16

Flatdeck 6–8 2–3

Fattening 12–14 2–4

of the daily mortality rate using this statistic, we use the average
of above values. Thus, the survival rate during the approximately
80 days long breeding stage (including suckling and flat deck
phases), sB = (1 − 15.5%) · (1 − 2.5%) ≈ 0.83 which must
approximately equal (1 − mB)

80, hence mB ≈ 1 − (0.83)1/80 ≈

0.002. Similarly,mF ≈ 1−(1−0.03)1/100 ≈ 0.0003. Therefore, we
apply the approximated daily mortality rate 0.002 in the breeding
stage in our model, which was computed above based on the
practitioner’s information.

2.5.5. Birth Rate
We define the birth rate bθ of the temporal model as the average
number of pigs born per day and per unit of capacity in the
growth stage θ . It is estimated by the following equation:

bθ =
Sθ

Cθdθ · Rθ

. (10)

where Sθ is the total number of pigs sold by farms of type θ and
Rθ is the surviving probability in the stage θ . Hence, Sθ/Rθ is the
approximate total number of pigs born in stage θ , CB is the total
capacity of all farms of type θ and dθ as mentioned in previous
section is the approximate number of days a pig stays in stage θ .
We estimated the daily birth rate 0.087 for the breeding stage and
zero for the following stages and apply these values in our model.

2.5.6. The Minimum Size of the Batch
The minimum batch size is defined as the minimum number
of animals that farmers prefer to sell to other premises. To
estimate this value, we choose randomly 100 farms and plot the
distribution of the batch size values. By analyzing the results,
we observe that farmers sell different number of animals each
time and do not follow a similar pattern. Therefore, we apply a
different way for estimation. For this purpose, we randomly select
6,000 farms of each farm type and then plot the distribution of
mean value of batch size for every farm type. For traders, we
draw only 500 farms as there are only 547 traders. As shown
in Figure 6, each farm type has its own batch size distribution.
From different probability distribution functions, the best-fitted
distributions are log-normal for breeding and fattening types
with different parameters and exponential for traders. The R-
square values of our fitting are 0.87, 0.80, and 0.93 for above
farm types, respectively. We use these probability distributions
for generating the minimum batch size value of the queues in
the model.

2.5.7. The Loyalty Parameter
The loyalty parameter is defined as the probability of selling
animals to the same target as the last time:

loyalty(i) = xi/ni. (11)

Here, loyalty(i) is the loyalty value of farm i and xi is the number
of times, which farm i sells animals to the same destination as
the last time. For computing xi from real data, at first, we set this
value to zero for all nodes, then for every outgoing edge of node
i at time t, its destination is compared to the destination of the
previous outgoing edge at time t − 1.

The value of xi is increased by one, if they are equal and
remains unchanged otherwise. After considering all outgoing
edges of i, the value of xi is normalized by ni, which is the total
number of outgoing edges of node i.

The concept of loyalty also introduced in another study (34)
for computing the epidemic risk of each node in the network.
Figure 7 illustrates the distributions of loyalty values of the
different types. For each farm type, we select the best fitted
probability distribution function to the loyalty value. So the beta
distribution for breeding, fattening and trader types are applied
in the model as Lθ ,θ ′ . The R-square values of our fitting are 0.53,
0.83, and 0.54 for breeding, fattening, and traders, respectively.

3. RESULTS

The model output is a dataset with the same format as the
real trade data. To evaluate how much our temporal model
is capable of reproducing the features of the real-world trade
network that are most important for epidemic spreading, we
first look at the most basic network characteristic, the in- and
out-degree distributions of the real and synthetic networks with
57,590 nodes. Since our model is stochastic, we also compute the
degree distributions for a small sample of 10 generated synthetic
networks. Figure 8 shows that the resulting degree distributions
have a very similar shape as in the real-world network, where
most farms have less than 100 trading partners, only few have
a large degree, these mostly being farms which have a very
large capacity. In addition to the degree distributions, we also
compute other relevant network measures such as the size of
certain components and the average path length. As in Lentz et al.
(13), we consider three different types of components relevant
for spreading. First, we looked at the giant strongly connected
component (GSCC), which is the largest subset of nodes for
which a directed path exists between any pair of them. Then at the
giant in-component (GIC), which consists of all nodes outside
the GSCC from which there is a path into GSCC. And finally at
the giant out-component (GOC), containing all nodes outside the
GSCC toward which there is a path from inside the GSCC. As
it is shown in Table 5 for the real pig trade network, the GSCC
contains 46% of all nodes, and for the synthetic network this
fraction is very similar, 43% on average. For the GIC, the match
is less accurate but still in the correct order of magnitude, being
34% for the real network and 51% for the synthetic networks on
average, hence being too large only by a factor of roughly three
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FIGURE 6 | The distribution of mean value of batch size and the fitted random distribution for (A) breeding farms, (B) fattening farms, and (C) traders.

FIGURE 7 | The histogram of loyalty values and its fitted random distribution function for different farm types (A) breeding farms, (B) fattening farms, and (C) traders.

TABLE 5 | Size of components in the real pig trade network and ensemble of 10

generated networks with n = 57,590.

Component Real network (%) Ensemble of

generated networks

(%)

GSCC 46 43

GIC 34 51

GOC 10 6

Average path length 5.44 3.88

Number of edges in GSCC 116,173 468,194

GSCC is the giant strongly connected component, GIC is the giant-in component, and

GOC shows the giant-out component.

halves. Finally, also the GOC size matches reasonably well in
terms of order of magnitude, being 10% for the real network and
6% for the synthetic ones on average, hence being too small by a
factor of roughly one half.

The average length of undirected paths between any two nodes
in the network for the real network is 5.44, compared to 3.88 for
the synthetic networks on average.

An animal holding with all animals inside is considered as
one node in the animal trade network. Since the animal trade
network is a weighted network, in another analysis we look at
the SDTC of the synthetic and the real pig trade network to
figure out whether the shape of its distribution is captured by
the model. For computing the SDTC, the already estimated farm

capacity is assumed as the node weight in equation 2 assuming
that the economic impacts of an outbreak are strongly related to
the total capacity of the affected holdings. We focus on the tail
distribution of the SDTCmeasure since the nodes with the largest
values of SDTC could be used as sentinels for disease surveillance.
As shown in Figure 9, the tail distributions of SDTC for the real
and synthetic networks appear to have the same general shape.
The exponential distribution fits well to the tails of SDTC for
both datasets. The details and related figures can be found in the
Supplementary Materials.

These results indicate that the model performs well and
the generated data could be used in the different analysis
and simulation tasks like disease spreading and a lot of
other applications like information dissemination and rumor
spreading in the social networks, virus spreading in computer
networks, and so on.

4. DISCUSSION

Since our goal is early detection of disease, we looked at a disease-
oriented temporal centrality measure in section materials and
methods. Considering the dynamic characteristics of the animal
trade network and disease spreading as a major concern, we
designed the SDTCmeasure as a suitable indicator for identifying
good sentinels.

However, Figure 9 shows that on average, significantly more
animals would be affected by a hypothetical outbreak starting
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FIGURE 8 | The degree distribution of (A) real pig trade network with n = 57,590, (B) one realization of a synthetic data with n = 57,590, and (C) ensemble of 10

synthetically generated networks with the same size from the model.

FIGURE 9 | The distribution of weighted SDTC for (A) the real dataset and (B) one realization of a synthetic data. In both networks, n = 57,590.

at a randomly selected node in the synthetic network than
in the real network, assuming a transmission probability of
one. One possible reason for this disparity is that time plays
an important role in the computing of temporal measures
like SDTC. In our synthetic model, we check all farms daily
for animals to be sold. The decision is taken based on the
minimum batch size parameter. This means that if the number
of animals in the queue would be greater than the minimum
batch size, then the farm does sell. Sometimes the minimum
batch size (generated from a probability distribution) is small,
i.e., one or two. In this case, farms or even traders move a
small number of animals immediately, since they always find
a slaughter house. Because of this, we have more movements
in the synthetically generated dataset (here 1 million more
movements) compared to the real one, so we have more paths for
spreading in the synthetically generated datasets that lead tomore
infected cases.

Another factor leading to the disparity in the absolute
numbers in Figure 9 might be the quality of the data about farm
sizes that was unavailable to us, which we had to estimate quite
indirectly from trading volumes (as mentioned in section farm
capacity) and then a probability distribution was fitted to this
estimated data, not to the real farm sizes (see Figure 10). We

expected this mismatch to be in the same order of magnitude for
weighted SDTC values.

Still, for the selection of sentinels only the relative order of
SDTC values between nodes matters, not their absolute value,
so the shape of the distribution, which matches well between
real and synthetic networks, is more important than its location
in terms of absolute values. As it is shown in Table 2, about
47% of farms are of breeding type and since they placed at
the beginning of the pig production chain, when infection
starts from one of the fattening, trader or slaughterhouse farms,
they do not get infected any more and therefore have the
smallest value of SDTC on average. So the breeding farms
appear less important nodes for surveillance targets. To the
contrary, the important farms with the high values of SDTC are
in the middle of the pig production chain, such as fattening
farms or traders. Since the number of sentinels is small, it
is easier and more cost efficient for authorities to implement
disease control strategies such as test screening, vaccination,
and other countermeasures later on after outbreak detection like
trade limitations, isolation, or killing-infected animals in the
contaminated holdings.

When we consider the static view of the real pig trade
network, and merge multiple edges between farms, the number
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FIGURE 10 | The tail of capacity distribution of (A) real pig trade network which estimated from batch size and (B) one realization of a synthetic data, here capacity

values generated from the fitted probability distribution.

FIGURE 11 | The distribution of loyalty value (A) computed from the real dataset, (B) generated from the fitted probability function in the model, and (C) computed

from the output of the model.

of edges from 6.3 million in temporal view reduced to 258,333
in static one. In case of the synthetic networks, however, it
is decreased from 7.27 to 1.162 million. Thus, the average
degree for static view of real network is around 4.5, and for
synthetic it is 20.2. To reduce the average degree of network,
we would need to limit the partners of every farm by increasing
the loyalty parameter in the model. But this also depends
on the capacity of the partners and the generated batch size
for every movement. Therefore, if we limited the number
of partners to a small value and they have no capacity for
buying new animals, the number of total movements (edges)
would reduce a lot. This would also have an effect on the
structure of network. As it is shown in Figure 11, although
the exposed loyalty values in the model are very close to the
real ones, the observed loyalty for the generated network is
different. We can state that the degree of the generated networks
depends on a combination of loyalty, capacity, and batch size,
all of these are taken from different probability distributions.
Due to randomness of all these values, some combinations
are unexpected, which leads to a decrease in the accuracy of
the results.

Another issue regarding the real dataset is missing data. Some
farms appear as buyers only and have no selling information.
As mentioned in section farm type, in the classification method
we could consider them as slaughterhouses and if so, then the
number of slaughterhouses in the 4 years observation period
increased to 3,627. However, we know that the total number of
slaughterhouses in 2011–2015 was roughly 2000. If we would
not consider those nodes as slaughterhouses, they could be of
any other types like breeding, fattening, or traders. Therefore,
the number of farms of each type is not precise and the
estimations of all parameters in our model are affected by
this issue.

All in all, our simple model was able to reproduce
the most important disease-related features of the real
network, even though we do not claim that the structure
and dynamic of the synthetically generated networks is
equivalent to the real network. We believe it is better to have
a model that has too many potential spreading paths rather
than too few. Hence, we are on the “safe” side by rather
overestimating impact than underestimating it, when assessing
epidemic impacts.
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5. CONCLUSION

Understanding the effects of network structure on disease
spreading processes is essential for improving the early detection
of outbreaks. To study this, outbreaks on realistic networks
must be simulated and analyzed. To generate reliable results,
one must make sure that such simulations do not depend
on specific peculiarities of the used sample of network data
that are not representative of the long-term network structure.
Although generalizable insights require the study of many
realistic networks, available real-world data are sparse. In this
paper, we have shown how to overcome this lack of data
by using synthetically generated network data that displays a
similar structure to real-world pig trade data. To this end,
we presented an algorithm for generating such synthetic data
to be used in epidemic simulations. The performance of this
model was evaluated by comparing the synthetically generated
data with a 4-year interval of the German pig trade network
comprising on the order of 100,000 holdings and several millions
of animal movements. For this comparison, we used not only
standard measures of network-topological features but also a
novel measure of node importance for the surveillance of disease
spreading called SDTC. Our results show that our algorithm
produces data that strongly resemble the real data in terms of
these criteria. Epidemic modelers can hence use these synthetic
networks to study spreading on realistic networks and derive
policy implications. In a follow-up study, we will use the SDTC
measure to derive better strategies for selecting holdings to
regularly test in order to detect outbreaks earlier, and will use our
synthetic network data to evaluate these strategies.
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