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Oral melanoma is a common canine tumor whose prognosis is considered ominous,

but poorly predicted by histology alone. In the present study the gene and protein

expression of Leukotriene A4 hydrolase (LTA4H) and Fragile-X-mental retardation-related

protein1 (FXR1), both reported as related to metastatic potential in different tumors,

were investigated in canine oral melanoma. The main aim of the study was to confirm

and quantify the presence of LTA4H and FXR1 genes and protein in oral melanomas.

A secondary aim was to investigate their association with histologic prognostic criteria

(mitotic count, Ki-67 index). Formalin-fixed-paraffin-embedded canine oral melanomas

(36) were collected and histopathological evaluation carried out. Immunolabelling for

LTA4H and FXR1 and Ki-67 were performed. RT-PCR evaluated LTA4H and FXR1 gene

expressions. Histologically, most tumors were epithelioid cell melanomas (19/36) and

were amelanotic, mildly or moderately pigmented (5, 12 and 13/36 respectively), only

6 were highly pigmented. Mitotic count ranged 1-106, Ki-67 index ranged 4.5–52.3.

Thirty-two (32/32) melanomas immunolabelled for LTA4H and 33/34 for FXR1. RT-PCR

values ranged 0.76–5.11 1Ct for LTA4H and 0.22–6.24 1Ct for FXR1. Molecular and

immunohistochemical expression of both LTA4H and FXR1 did not statically correlate

with mitotic count or Ki-67 index. The present study demonstrates LTA4H and FXR1 gene

and protein in canine oral melanoma, however their expression is apparently unrelated to

histopathologic prognostic criteria. Although LTA4H and FXR1 seem unrelated to tumor

behavior, their extensive expression in the present cohort of cases suggest that they may

play a role in canine oral melanoma oncogenesis.
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INTRODUCTION

Melanoma is a common neoplasia in dogs, that can be a diagnostic and prognostic challenge.
Melanoma represents about 3% of all canine tumors and 7% of all canine malignant tumors. It
originates in the oral cavity (62%), the skin (27%), the digit (6%) and, less commonly in the eye
(5%) (1, 2). Melanoma is the most common malignant tumor of the oral cavity in dogs (3).

Oral melanomas are traditionally considered malignant, rapidly growing, invasive tumors that
often recur after surgical resection and frequently metastasize, via lymphatic or blood vessels, to

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2021.767887
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2021.767887&domain=pdf&date_stamp=2021-12-13
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chiara.giudice@unimi.it
https://doi.org/10.3389/fvets.2021.767887
https://www.frontiersin.org/articles/10.3389/fvets.2021.767887/full


Nordio et al. LTA4H and FXR1 in Canine Oral Melanoma

regional lymph nodes, lungs and viscera (2, 4). In dogs, the
reported average survival time after diagnosis of oral melanoma
spans 5–7 months (1, 5, 6). However, a subset of oral melanocytic
tumors with a more favorable clinical course and prolonged
survival have been reported, mainly in dogs with histologically
well-differentiatedmelanocytic neoplasms (6–10). Several studies
evaluated histological and immunohistochemical prognostic
markers and possible threshold values to define morphological
standards (6–8), but obtained different or even conflicting results.
Currently, a parameter to effectively predict the likely progression
of the disease in individual dogs is still not available.

Recent studies both in human and veterinary medicine
have focused on finding genetic markers that may have a
good predictive value, with specific emphasis on the potential
development of metastatic disease (11–14). The studies of Onken
and Malho investigated genetic biomarkers of uveal melanoma
in humans and dogs, respectively (11–13). They highlighted the
existence of different molecular classes of expected survival based
on the differential expression of a set of genes. Among them,
an increased expression in Leukotriene A4 hydrolase (LTA4H)
and Fragile X mental retardation-related protein 1 (FXR1) genes
were related to metastasizing behavior in both human and canine
uveal melanoma.

LTA4H is a cytosolic hydrolytic enzyme, which catalyzes the
conversion of leukotriene A4 into leukotriene B4 inside the
arachidonic acid cascade. LTA4H expression is widely distributed
in several different tissues (15). Leukotrienes are mediators
of inflammation and chronic tissue inflammation has been
linked to increased risk for the development of cancer (16).
Aberrant arachidonic acid metabolism is suspected to have a
role in carcinogenesis due to the imbalance shifted toward
the pro-carcinogenic lipoxygenase pathways (5-, 8- and 12-LO)
instead that anti-carcinogenic (15-LO) (16, 17). LTA4H has been
previously described to be over-expressed in different types of
tumors in humans, mice, rats, dogs and cats (18–28). LTA4H
was also specifically demonstrated to be overexpressed in human,
canine and feline ocular melanomas (10, 12, 28).

FXR1 is a cytoplasmic RNA binding protein, highly conserved
among vertebrates and expressed in different tissues. FXR1
belongs to a family of RNA binding proteins consisting of
the Fragile X Mental Retardation Protein (FMRP), responsible
for the human fragile X mental retardation syndrome, and
the Fragile X Mental Retardation Syndrome-Related Protein
2 (FXR2) (29, 30). FXR1 acts in the inflammatory process
controlling the expression of tumor necrosis factor-α (TNF-
α) at a post transcriptional level (31, 32) and has a role in
muscular cells development (33). Moreover, its role has been
investigated in different tumors such as squamous cell carcinoma
(34), pulmonary carcinomas (35, 36), colorectal cancer (37),
prostate cancer (38) and Wilms tumor (39). FXR1 is supposed to
affect DNA stability with two pathways (40), either using miRNA
pathway to regulate target mRNA expression (41) or playing a
role in post-transcriptional regulation directly interacting with
mRNA and affecting its stability (33). In lung tumorigenesis, for
example, FXR1-dependent regulation of mRNA may specifically
regulate ERK (extracellular-signal-regulated kinases) signaling
pathway (36). Moreover, FXR1 recruits transcription factor

STAT1 or STAT3 to gene promoters and, through the regulation
of transcription, mediates cell proliferation in human cancers
harboring TP53 homozygous deletion (42).

Our study aimed to investigate the expression of LTA4H and
FXR1 in canine oral melanoma, at both genetic and protein level.
A secondary aim of the study was to identify possible correlations
between the expression of LTA4H/FXR1 and statistically proven
histologic prognostic parameters, i.e., mitotic count and Ki-
67 index.

MATERIALS AND METHODS

Cases and Histopathology
Oral melanomas samples (n = 36) were collected and routinely
formalin-fixed and paraffin-embedded (FFPE) (43) from the
diagnostic service of histopathology at the University of Milan
and the private San Marco Laboratory in Padova (Italy) during
the period 2011–2017.

Four micrometer-thick sections of each sample were stained
with hematoxylin and eosin (H&E) and evaluated on light
microscope by two board certified pathologists (LN, CG). Mitotic
count was calculated as the number of mitoses on 10 consecutive
high power fields, starting in the area (0.237 mm2) with the
highest mitotic activity (7).

Pigmentation of melanomas was semi-quantitatively
evaluated on the whole section as: “negative/–” when no
pigment was detectable, “mild/+” when 1 to 10% of neoplastic
cells contain pigment, “moderate/++” 10 to 50% of cells
were pigmented, and “high/+ + +” when >50% of cells
were pigmented. In samples with no detectable pigment, the
diagnosis of melanoma was confirmed through anti-PNL2
immunohistochemistry (see following section) (5, 44).

Additionally to the FFPEs, out of the 36, fresh samples were
collected in double (two melanoma plus the adjacent not affected
tissue) and stored in RNA later at −80◦C for the subsequent
molecular genetic analyses.

Immunohistochemical Detection of LTA4H,
FXR1, Ki-67, and PNL2
Serial paraffin sections were cut 4µm thick and mounted
on poly-lysine coated slides (Menzel-Gläser, Braunschweig,
Germany). Immunohistochemical staining with the
standard avidin-biotin-peroxidase complex (ABC) method
was performed.

Briefly, sections were deparaffinized in xylene and rehydrated
through a descending series of ethanol concentrations.
Incubation with H2O2 10% in Tris buffer saline (TBS; pH
7.4) for 2 h at 55◦C in a laboratory stove was used to bleach
heavily pigmented sections and to block endogenous peroxidase
activity (45). In the set up phase of the protocol, selected samples
of pigmented oral melanomas were treated with and without
bleaching to assess if immunoreactivity was maintained.

Antigen retrieval was then performed by heating the slides
in citrate buffer solution (pH 6.5) in a water bath at 95◦C for
30min (for LTA4H and FXR1) (46), in citrate buffer solution in
pressure cooker for 18min (for Ki-67) (47) and in microwave
oven in EDTA buffer solution (pH 8.5) for 10min at 500W
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(for PNL2) (44), followed by cooling down in buffer at room
temperature (RT) for 30min. Sections were therefore incubated
for 20min at RT with normal horse (LTA4H, Ki-67, PNL2) or
goat (FXR1) serum (dilution 1:70) to block any non-specific
protein binding and therefore incubated with primary antibodies
at 4◦C overnight in a humidified chamber:

• mousemonoclonal leukotriene A4 hydrolase/LTA4H antibody
(1E9 clone) (NBP1-47829; Novus Biologicals, Littleton, Co,
USA), 1:100 dilution;

• rabbit polyclonal anti-FXR1 antibody (ab50841; Abcam,
Cambdrige, UK), 1:100 dilution;

• mouse monoclonal anti-human Ki-67, clone MIB-1 (GA626;
Dako, Glostrup, Denmark;), 1:600 dilution;

• mouse monoclonal anti Melanoma-Associated Antigen,
clone PNL2 (MON3307; Monosan, Uden, Netherlands),
1:50 dilution.

Sections were then rinsed in TBS three times for three
minutes each and incubated with the secondary anti-mouse
(LTA4H; Ki-67; PNL2) or anti-rabbit (FXR1) biotinylated
antibody (1:200, 30min RT) (Vector Laboratories, Burlingame,
CA, USA, BA 1000 and BA 2000, respectively) followed
by rinsing in TBS and therefore incubation with the ABC
reagent (30 minutes RT) (PK-6100; Vector Laboratories,
Burlingame, USA). After rinsing in TBS, the 3-amino-
9-ethylcarbazole (AEC) chromogen (SK-4200; Vector
Laboratories, Burlingame, CA, USA) was applied for 15min
and, after rinsing in tap water, slides were counterstained with
Mayer’s haematoxylin (SS C030X; Diapath srl, Martinengo,
Italy) for 2min. Slides were therefore dried and mounted
in aqueous mounting agent (108562; Aquatex, Merck,
Darmstadt, Germany).

Canine skeletal myocytes adjacent to the neoplasm, and
neutrophils were adopted as internal positive controls for
FXR1 and LTA4H immunolabelling, respectively (46, 48).
Epithelium of intestinal crypts in a section of normal
canine intestine was adopted as positive control for Ki-
67, a section of partially pigmented canine melanoma was
adopted as positive control for PNL2. Negative controls
were carried out by replacing the primary antibodies with
mouse or rabbit IgG (Santa Cruz; Dallas, TX, sc-2025 and
sc2027, respectively).

Immunolabelled sections were evaluated at optic microscope.
LTA4H and FXR1 labeled sections were semi-quantitatively
scored, considering the percentage of positive cells (<10, 11–
30, 31–50, 51–70, >70%), cellular localization of the signal
(nuclear/cytoplasmic), intensity of staining (mild, moderate,
intense). The immunoreactive score adapted from Remmele and
Stegner (IRS score) (49) was calculated combining the intensity
and percentage of positivity as follows: IRS score (0–12) =

percentage of positive cells (no positive cells= 0, 1–10% positive
cells= 1, 11–50% of positive cells= 2, 51–70% of positive cells=
3, >70% of positive cells = 4) ∗ intensity of staining (no positive
cells = 0, +/mild = 1, 2+/moderate = 2, 3+/marked = 3).
For statistical purposes, IRS scores were further categorized into
three cumulative classes of expression, as follows: class 1 (mild

expression) corresponded to IRS scores 0–3, class 2 (intermediate
expression) to IRS scores 4–8 and class 3 (marked expression) to
IRS scores 9–12.

Ki-67 index was calculated as the mean number of positively
labeled neoplastic cell nuclei in 5 fields at 400× (7). The number
of positive nuclei was counted using a digital automatic counter
(QCapture Pro 6.0). PNL2 positivity was evaluated as presence or
absence of the signal.

Relative Expression of LTA4H and FXR1
Total RNA was extracted from eight sections 10 µm-thick
cut from each FFPE tissue block using the RecoverAll Total
Nucleic Acid Isolation Kit (AM1975; Thermofisher Scientific;
Massachusetts, USA) and from frozen fresh samples using
RNeasy Minikit (74104; Qiagen; Hilden, Germany). RNA was
eluted in a final volume of 60 µl of water after an on-column
DNase treatment (Qiagen; Hilden, Germany), quantified using
NanoDrop ND-100 Spectrophotometer (Thermofisher Scientific;
Massachusetts, USA) and immediately stored at −80◦C until
molecular analyses.

Two hundred nanograms of RNA were retro-transcribed
to cDNA using the QuantiTect Reverse Transcription kit
(205311; Qiagen; Hilden, Germany) following the manufacturer’s
protocol. An additional reaction without retrotranscriptase
enzyme was performed to verify the complete DNA removal.
cDNAs were stored at−80◦C until subsequent use.

Amplification condition, the dynamic range and the efficiency
of each qPCR reaction were assessed on cDNA produced from
a fresh tissues. Furthermore, the integrity of the RNA extracted
from FFPE samples was verified through the amplification of a
fragment of B2M gene from all cDNA.

The relative expression of LTA4H and FXR1 genes for
each FFPE was calculated after a 1Ct measure using the
B2M and ACTB genes as references. The synthesized cDNA
samples were amplified in duplicate using the iQ5 Real-Time
PCR instrument (Bio-Rad, California, USA) and Universal
SYBR R© Green Supermix (1708880; Bio-Rad, California, USA)
as fluorescent molecules. Primers sequences were described by
Malho and coauthors (11) and the final concentration of forward
and reverse primers was 250 nM for FXR1, B2M and ACTB and
400 nM for LTA4H genes, respectively (Supplementary Table 2).
The thermal profile was 98◦C for 30 s, 40 cycles of 98◦C for 15 s,
50–58◦C for 15 s, 72◦C for 15 s and amelting profile was included
after the last amplification cycle in order to exclude the presence
of aspecific amplifications. Cycle threshold (Ct) values of each
target were determined for each sample to estimate1Ctmeasure.

Statistical Analysis
Molecular and immunohistochemical levels of LTA4H and FXR1
were compared between tumors with low (<19.5) and high Ki-
67 index (≥19.5) and tumors with low (<4) and high (≥4)
mitotic count, according to the prognostic thresholds proposed
by Bergin and colleagues (7). Adopted statistical tests were
the Mann Whitney U test and the Kruskal-Wallis test (p <
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0.05). Correlation between immunohistochemical IRS scores and
molecular1Ct was assessed by the Spearman Rho test (p< 0.05).

RESULTS

Case Selection and Histology
Thirty-six specimens of oral melanomas from 32 dogs were
included in the study (two samples were recurrence and one was
a necropsy sample of cases already included in the study, and
one dog had two distinct masses in different sites of the oral
cavity). Dogs belonged to different breeds and ranged 5–18 years
of age (mean 11.8, median 12). Fifteen animals were male, fifteen
were female, and for two animals sex was not reported. When
the specific site of the tumor was provided, oral melanomas were
located in the gum (n= 10, 27.8%), labial mucosa (n= 5, 13.9%),
palate (n= 2, 5.6%) and tonsillary region (n= 1, 2.8%).

Histologically, melanomas exhibited different morphological
types (epithelioid, spindle or mixed) and various degree of
pigmentation. Nineteen tumors (52.8%) were classified as
epithelioid, nine (25%) as spindle and eight (22.2%) as mixed.
Pigmentation was evaluated as absent in 5 tumors (13.9%),
mild/+ in 12 (33.3%), moderate/++ in 13 (36.1%) and high/++

+ in 6 (16.7%). Mitotic count ranged 1–106 (mean 23.8, median
15). Five tumors had a mitotic count <4, whereas 31 had mitotic
count ≥4 (Supplementary Table 1).

Immunohistochemical Expression of
LTA4H, FXR1 and Ki-67
Of the originally selected 36 cases, 2 cases were excluded
from the immunohistochemical results because they were
poorly reactive, and 2 cases were excluded from the anti-
LTA4H staining because no further material was available in
the paraffin block. Immunoreactivity was of equal intensity in
the preliminary subset of samples treated with and without
bleaching, confirming the maintenance of immunoreactivity
after the bleaching protocol (Supplementary Table 1).

Thirty-two melanomas were LTA4H-positive (32/32)
(Figures 1A,B), with a percentage of positive neoplastic cells of
31–50% in 2 cases, 51–70% in five and above 70% in 25 cases. The
intensity of staining was from mild to intense. The localization
of the positivity was cytoplasmic (n = 19), nuclear (n = 3), or
both nuclear and cytoplasmic (n = 10). IRS score varied from
3 to 12. 18/32 cases (56.3%) were classified as IRS score class 2,
14/32 cases (43.8%) as class 3.

FXR1 immunolabelling stained positive in 33/34 tested oral
melanomas (Figure 1C). The percentage of stained cells was
<10% in 6 cases, between 11 and 30% in 5 cases, between 51
and 70% in 9 and >70% in 8 cases. Fourteen cases were intensely
stained, 13 moderately and 6 mildly. The immunostaining was
always cytoplasmic. IRS score varied from 0 to 12. 6/34 cases
(17.6%) were classified as IRS score class 1, 13/34 cases (38.2%)
as class 2 and 11/34 cases (32.4%) as class 3.

Ki-67 index was assessed in 28/34 cases, due to insufficient
paraffin block material. The average number of positive
neoplastic nuclei ranged 4.5–52.3, with a mean of 16.9 and a
median of 13.7. Ki-67 index was beneath 19.5 in 19 cases and
above 19.5 in 9 cases.

The comparison of groups with low and high Ki-67 index
(<19.5 and ≥19.5) with the levels of immunohistochemical
scores of LTA4H and FXR1 revealed no statistically significant
differences (p = 0.212 and 0.138, respectively). Groups with
low and high mitotic count (<4 and ≥4) had no significantly
different levels of immunohistochemical FXR1 (p = 0.153) but
had significantly different IRS scores of LTA4H (p = 0.017). The
intracellular localization of LTA4H immunohistochemical signal
(nuclear, cytoplasmic, or nuclear and cytoplasmic) showed no
statistical correlation with LTA4H IRS score (p= 0.532).

LTA4H and FXR1 Gene Expression
Thirty-six FFPE cases of canine oral melanoma were analyzed
with qPCR to quantify the expression of the target genes LTA4H
and FXR1 (Supplementary Table 1).

B2M and ACTB were preliminary tested as housekeeping
genes in a subset of 10 samples, to assess if the expression trend
was stable. Despite the presence of a difference in the threshold
cycles (Ct) of B2M and ACTB (paired t-test: t9 = 8.48; p <

0.0001), the relation between the two genes expression was linear
(p < 0.0001), thus indicating that the ratio of expression between
B2M and ACTB was constant. The Ct of these two housekeeping
genes were related by the equation:

Ct B2M =7.3+.82∗Ct ACTB (R2= 0.92).

Therefore, B2M was chosen as housekeeping gene to complete
the analyses of the samples in order to quantify the relative
expression of the investigated target genes.

Among the analyzed samples, RNA extraction suitable for
cDNA synthesis and qPCR assays was obtained in twenty-three
out of thirty-six cases and in these samples LTA4H and FXR1
were successfully amplified. Gene expression results, reported as
1Ct, comparing the Ct of the target gene with the Ct of the
housekeeping gene, were ranged 0.76–5.11 for LTA4H and 0.22–
6.24 for FXR1. In three samples the amplification of FXR1 gene
was not quantified due to the Ct value being out of the dynamic
range of the reaction.

Molecular expression of both LTA4H and FXR1 genes did not
differ among groups with low and high Ki-67 index (<19.5 and
≥19.5) (LTA4H p = 0.502, FXR1 p = 0.635), nor among groups
with low and high mitotic count (<4 and≥4) (LTA4H p= 0.501,
FXR1 p = 0.140). LTA4H molecular and immunohistochemical
values were correlated (p = 0.014, rho = −0.539), but FXR1 was
not (p= 0.122, rho= 0.337) (Figure 2).

DISCUSSION

In the present study, a caseload of canine oral melanomas was
investigated for the expression of two targets, i.e., LTA4H and
FXR1, at both gene and protein level.

Anamnestic and histological data of dogs included in the study
were mostly consistent with previous literature reports: dogs
were equally distributed among sexes and variably distributed
among breeds, with a preponderance of mixed breed. Adult-
old aged dogs were most represented (mean 11.8 years of age)
(7, 50) and tumors mainly affected the gum (2). Consistently with
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FIGURE 1 | Canine oral melanoma, immunohistochemistry. (A) Anti-LTA4H staining, diffuse nuclear signal. AEC chromogen, bar 50µm. (B) Anti-LTA4H staining,

diffuse cytoplasmic signal. AEC chromogen, bar 100µm. (C) Anti-FXR1 multifocal intense signal. AEC chromogen, bar 50µm.

literature (1–5, 8), neoplastic cell histo-morphology was highly
variable, with epithelioid cell type predominantly observed, and
in the vast majority of cases <50% of neoplastic cells were
pigmented Although a “high” degree of pigmentation (at least
50% of pigmented cells) has been correlated with longer survival
times in canine oral melanomas, the prognostic significance of
the degree of tumor pigmentation is still debated, most likely due
to the subjectivity in the quantification of the pigment (7, 8).

The main aim of the present study was to investigate
the occurrence of LTA4H and FXR1 genes and proteins in
canine oral melanoma. LTA4H and FXR1 have been previously
found to be over-expressed in both human and canine uveal
melanomas (11, 12, 14) and LTA4H has also been reported to
be upregulated in feline ocular melanomas (28). Additionally,
the immunohistochemical expression of FXR1 protein has been
demonstrated in a small caseload of canine uveal and oral
melanocytic tumors (46).

In the present cohort of cases, LTA4H and FXR1 were detected
at both gene and protein levels. The qPCR relative expression
of LTA4H and FXR1 genes exhibited marked differences among
tested cases of oral melanoma, conversely immunohistochemical
positivity showed negligible expression differences. Comparing
immunohistochemical results, expressed as IRS score, with qPCR
results, expressed as 1Ct, a correlation among protein and gene
expression was significant only for LTA4H. This discrepancy
between immunohistochemical and qPCR results can have
different explanations. First, immunohistochemistry, although
useful in providing information concerning the localization of
antigens, is not a quantitative technique, as opposite to RT-
PCR. Second, protein tissue expression does not instantly reflect
possible alterations during the synthesis process, which can take
place from transcription to post-translational modifications, i.e.,
protein expression does not necessarily mirror gene expression.
Third, while the use of FFPE tissues allows to enroll archive
specimens, formalin ficxation procedure can induce degradation
of the tested molecules. However, in the present caseload, DNA
quality was assessed through the amplification of house-keeping
genes and only samples in which the RNA extraction was
considered suitable for cDNA synthesis and qPCR assays were
further included in the study. Finally, molecular analyses may be

influenced by residual constitutive expression of genes in normal
adjacent tissues or extracellular matrix.

The secondary aim of the present study was to evaluate the
possible association LTA4H and FXR1 genes and proteins with
established histologic prognostic criteria, i.e., mitotic count and
Ki-67 index (7, 42), in order to test if LTA4H and FXR1 presence
and level of expression could be related to the biological behavior
of the tumor.

Data on the expression of the investigated targets were
compared with mitotic count, and no difference between
melanomas with mitotic count < or > 4/10 HPF (8) was
observed for FXR1 neither at gene nor at protein levels,
while a significantly difference was observed for LTA4H
protein but not gene expression No statistically significant
association was observed between LTA4H and FXR1 when
their gene and protein expressions were compared with Ki-
67 index (adopting a value of 19.5 as a discriminating
threshold) (7).

Overall, the results of this study indicate that LTA4H and
FXR1 are extensively expressed in canine oral melanomas and
suggest that they can play a role in tumor oncogenesis process.
However, their gene and protein expressions resulted poorly
related to histological prognostic criteria suggesting that they
are not associated to canine oral melanoma biological behavior,
conversely to what has been demonstrated in canine and human
uveal melanomas.

It should be noted that, in previous studies, the overexpression
of LTA4H and FXR1 genes has been specifically associated
with increased metastatic risk of uveal melanoma, while
in the present study LTA4H and FXR1 were compared
with histopathologic prognostic criteria, but not specifically
with the presence of metastases. In this regard, it is worth
considering that canine uveal and oral melanocytic tumors
are characterized by different biological behavior. Indeed,
while uveal melanomas are generally slowly progressive
and slowly metastasizing tumors, oral melanomas are
aggressive tumors with rapid progression and frequently
already metastasized at the time of diagnosis (2, 4, 51, 52).
Therefore, the more homogeneous, rapidly aggressive,
behavior of canine oral melanomas enrolled in the study
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FIGURE 2 | LTA4H and FXR1 IRS scores: comparison among groups with low and high Ki-67 index (upper row) (upper left p = 0.212, upper right p = 0.138) and

among groups with low and high mitotic count (MC) (lower row) (lower left p = 0.017, lower right p = 0.153).

may affect the lack of discriminating value of the markers that
we investigated.

In conclusion, in the present study the expression of LTA4H
and FXR1 has been verified in canine oral melanoma at both
gene and protein levels, and even though we failed to identify
a significant correlation with known histopathologic criteria of
prognosis, further investigations on a larger cohort of cases
and possibly including follow up data are necessary to define

the role of FXR1 and LTA4H in the pathogenesis of canine
oral melanoma.
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