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Both H5N1 and H7N9 subtype avian influenza viruses cause enormous economic

losses and pose considerable threats to public health. Bivalent vaccines against both

two subtypes are more effective in control of H5N1 and H7N9 viruses in poultry and

novel egg-independent vaccines are needed. Herein, H5 and H7 virus like particle

(VLP) were generated in a baculovirus expression system and a bivalent H5+H7 VLP

vaccine candidate was prepared by combining these two antigens. Single immunization

of the bivalent VLP or commercial inactivated vaccines elicited effective antibody immune

responses, including hemagglutination inhibition, virus neutralizing and HA-specific IgG

antibodies. All vaccinated birds survived lethal challenge with highly pathogenic H5N1

and H7N9 viruses. Furthermore, the bivalent VLP significantly reduced viral shedding and

virus replication in chickens, which was comparable to that observed for the commercial

inactivated vaccine. However, the bivalent VLP was better than the commercial vaccine

in terms of alleviating pulmonary lesions caused by H7N9 virus infection in chickens.

Therefore, our study suggests that the bivalent H5+H7 VLP vaccine candidate can serve

as a critical alternative for the traditional egg-based inactivated vaccines against H5N1

and H7N9 avian influenza virus infection in poultry.

Keywords: avian influenza virus, H5N1 subtype, H7N9 subtype, virus-like particle, baculovirus expression system,

bivalent vaccine, chickens

INTRODUCTION

H5N1 avian influenza virus (AIV) has been widely circulating in China and spread to more than 60
countries, and has caused huge economic losses to the poultry industry worldwide (1, 2). In addition
to the serious threat to the poultry industry, H5N1 subtype AIV also raises pandemic concerns. As
of September 9, 2021, H5N1 AIV has infected 863 people and caused 456 deaths (https://www.who.
int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/). Other than H5N1
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AIV, H7N9 AIV also has a significant impact on poultry
and human health. In April 2013, three residents in Shanghai
and Anhui Province, China, showed rapidly developing lower
respiratory infections and were found to be infected with
a new re-assortment of AIV known as low pathogenic
H7N9 AIV (3). Later in 2017, highly pathogenic (HP)
H7N9 AIV emerged, and caused severe human infection
and disease outbreaks in poultry (4–6). As of June 3,
2021, H7N9 AIV has infected 1,568 people and caused 616
deaths (http://www.fao.org/ag/againfo/programmes/en/empres/
H7N9/situation_update.html). Therefore, considering the dual
threat to poultry and public health posed by H5N1 and H7N9
AIVs, a bivalent influenza vaccine is needed to prevent a potential
pandemic caused by these two subtypes.

Massive vaccination of the H5+H7 trivalent (H5: Re-11;
H5: Re-12; H7: Re-2) vaccine in China contributes substantially
to the successful control of influenza virus outbreaks (7, 8).
However, the current commercial vaccine is a whole virus
inactivated vaccine and relies on embryonated chicken eggs
(ECEs) for production, which has major shortfalls including
insufficient supply of fertilized ECEs during influenza outbreaks,
a long time period required for mass production, endogenous
virus contamination, and environmental burden caused by
biohazards (9, 10). Recently, bivalent inactivated vaccines based
on the influenza virus vector, aiming to yield two antigens
in a single virus inoculation, were generated and appeared
to be immunogenic and efficacious against both HP H5N6
and H7N9 viruses in chickens (11, 12). However, production
of these whole virus vaccines is still dependent on the ECEs
system. Therefore, there is an urgent need to develop potential
alternatives of the traditional ovoculture-based H5N1 and H7N9
influenza vaccines.

Non-infectious virus-like particle (VLP) represents one of
the most promising alternatives for the traditional inactivated
vaccines, owing to its ease of production and scalability, intrinsic
safety, and stimulation of strong and persistent immunological
response (13–16). Furthermore, VLP vaccines can provide
excellent protection against homologous, heterologous, and
heterosubtypic virus infections (9, 17–19), attributing to its
strong ability to stimulate a comprehensive immune response,
including humoral, mucosal, and cellular immunities (20–24).
Numerous studies have been conducted to generate poultry VLP
vaccines and themajority of these studies centered on production
of H5 VLP in various expression systems, including baculovirus
(25–37), silkworm pupae (38, 39), and mammalian 293T cells
(40), for chicken or duck use. In addition, VLP candidates against
other subtypes, such as the H6 and H7 subtypes, were also
generated for chicken vaccination, including plant expression
system for H6 VLP (41, 42), chicken H7 VLP generated from
baculovirus (43), and silkworm pupae (44), as well as Escherichia
coli (45). However, currently, there is limited data regarding
the development of bivalent H5N1 and H7N9 VLP vaccines
for chickens.

In this study, a bivalent H5+H7 VLP vaccine was prepared
by combining H5 and H7 VLP assembled in a baculovirus
expression system. The bivalent H5+H7 VLP vaccine provided
good protection against HP H5N1 and H7N9 AIV, significantly

inhibited viral shedding as well as virus replication in immunized
chickens. In addition, the bivalent VLP vaccine was better than
the commercial vaccine regarding protection from lung injury
caused by HP H7N9 virus infection. Therefore, the bivalent
H5+H7 VLP vaccine may serve as an important alternative
for the egg-based inactivated vaccines for controlling these two
subtypes in poultry.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in strict accordance with the
recommendation in the Guide for the Care andUse of Laboratory
Animals of the Ministry of Science and Technology of the
People’s Republic of China. The protocols for animal experiments
were approved by the Jiangsu Administrative Committee for
Laboratory Animals (approval number: SYXK-SU-2016-0020)
and complied with the guidelines of Jiangsu Laboratory Animal
Welfare and Ethics of Jiangsu Administrative Committee of
Laboratory Animals. All experiments involving live viruses and
animals were housed in negative-pressure isolators with HEPA
filters in biosafety level 3 (BSL3) animal facilities at Yangzhou
University in accordance with the institutional bio-safetymanual.

Cells and Viruses
Spodoptera frugiperda Sf9 cells (ATCC # CRL-1711) were
maintained in SF900III insect serum-free medium (SFM)
(ThermoFisher Scientific, Rockford, IL) supplemented with
5% fetal calf serum (FCS) (Invitrogen, CA) at 27◦C. Sf9
suspension cells were routinely cultured in insect serum-free
SF900II SFM (ThermoFisher Scientific) at 27◦C in spinner
flasks at a speed of 120 rpm. Chicken embryo fibroblasts
(CEF) were cultured in M199 medium supplemented with
5% FCS and maintained at 37◦C with 5% CO2. HP H7N9
virus A/chicken/Guangdong/GD15/2016 (GD15) and H5N1
virus A/chicken/Shandong/TT3/2016 (TT3) were isolated and
identified previously (46). The viruses were plaque-purified for
three rounds in CEF cells and propagated in 10-day-old specific-
pathogen-free (SPF) ECEs (Beijing Merial Vital Laboratory
Animal Technology Co., Ltd., Beijing, China). The GD15 virus
was used as H7 HA, NA, and M1 gene donor, while the
TT3 virus was used as H5 HA gene donor. These two viruses
were also used as a homologous challenge virus in chicken
immunization studies.

Generation of the Recombinant
Baculoviruses
Four recombinant pVL1393 transfer plasmids encoding
GD15 HA (pVL1393-H7), TT3 HA (pVL1393-H5), GD15
NA (pVL1393-NA), or GD15 M1 (pVL1393-M1) gene was
generated as described previously (47). To generate the
recombinant baculoviruses (rBVs), Sf9 insect cells were
transfected with 500 ng of each plasmid and 100 ng of the
linearized genomic DNA of Autographa californica multiple
nucleopolyhedro virus (AcMNPV). After 72 h post-transfection,
indirect immunofluorescence assay (IFA) was carried out to
verify the rescue of these rBVs. The rescued rBVs were then
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plaque-purified for three rounds in Sf9 cells and were serially
propagated in Sf9 cell suspension culture for several passages.
The rBVs were designated as rBac-H7, rBac-H5, rBac-NA, and
rBac-M1, respectively.

Indirect Immunofluorescence Assay
To detect viral protein expression by the rBVs, Sf9 cells were
infected with the rBVs at a multiplicity of infection (MOI) of 1.
At Day 4 post-infection (p.i.), the cells were processed for IFA
as described previously (47). Briefly, the cells were washed and
fixed with cold methanol for 20min at 4◦C. The fixed cells were
then incubated with the primary antibodies, including mouse
monoclonal antibody (mAb) against the H7N9 HA protein (Sino
Biological, Beijing, China), rabbit polyclonal antibody against
the H5N1 HA protein (Sino Biological), rabbit mAbs against
the H7N9 NA (GeneTex, Irvine, CA) or M1 proteins (Bioss,
Beijing, China) for 1 h at 37◦C, respectively. After washing with
PBS, the secondary antibodies, Alexa Fluor 488 conjugated goat
anti-rabbit IgG (H+L) or Alexa Fluor 594 conjugated goat anti-
mouse IgG (H+L) (Sino Biological), were added to the cells
and incubated at 37◦C for 1 h. Fluorescence signal was observed
under a Leica fluorescence microscope. To determine 50% tissue
culture infectious dose (TCID50) of the rBVs, serial dilutions
of the indicated rBVs were added to Sf9 cells in 96-well plates.
After 96 h p.i., baculovirus infection was determined by detecting
expression of baculovirus envelope gp64 protein using the mouse
mAb against gp64 (eBioscience, CA) with IFA.

Preparation of the Bivalent H5 and H7 VLP
Vaccine
H5 and H7 VLP was assembled in Sf9 cells individually and
combined to prepare the bivalent H5+H7 VLP. To generate
the H7 VLP, Sf9 suspension cells (2 × 106 cells/mL) were co-
infected with the rBac-H7, rBac-NA, and rBac-M1 at a MOI
ratio of 1:1:1. The H5 VLP was produced according to the
same procedure. Culture supernatants were harvested at Day
3 p.i. and clarified by low-speed centrifugation (2,000 g for
20min at 4◦C) followed by ultracentrifugation at 10,000 g for
2 h at 4◦C. The obtained VLP suspension was then placed on
formvar-coated (copper 300 mash) grids, negatively stained with
1% uranyl acetate, and dried by aspiration. The VLP particles
were then examined under a transmission electron microscope
as described previously (17). For further purification, the VLP
was concentrated by ultrafiltration and the pellet was then
resuspended in PBS and stored at 4◦C. A BCA protein assay
kit (Beyotime, Nantong, China) was used to determine protein
concentration of the H5 and H7 VLP. For preparation of the
bivalent H5 and H7 VLP vaccine candidate, 7.5 µg of each VLP
antigen was mixed and adjuvanted with MONTANIDETM ISA
71R VG at a volume ratio of 1:2 (Seppic, Paris, France).

Immunization and Challenge Studies in
Chickens
To investigate the immunogenicity and efficacy of the bivalent
H5+H7 VLP in chickens, 64 4-week-old SPF White Leghorn
chickens (Gallus gallus domesticus) (Beijing Experimental
Animal Center, Beijing, China) were divided into two group (n=

32). Birds were intramuscularly (i.m.) immunized with 15 µg of
the bivalent H5+ H7 VLP, or 0.3mL of the commercial trivalent
(H5: Re-11; H5: Re-12; H7: Re-3) vaccine (Yebio, Qingdao,
China) according to the label. At Week 3 post-vaccination (p.v.),
the vaccinated birds of each group were randomized into two
subgroups andmoved into the biosafety level-3 animal facility for
virus challenge. One group (n = 16) was challenged with 106.0

50% embryo infectious dose (EID50) (in 100 µL) of the H5N1
TT3 virus, another group (n = 16) was challenged with 106.0

EID50 the HP H7N9 GD15 virus.
Moreover, another group of 22 birds was inoculated with

0.3mL of PBS as the un-immunized control. At Week 3 p.v.,
birds were randomized into two subgroups and moved into the
biosafety level-3 animal facility for virus challenge. One group
(n = 11) was challenged with the highly pathogenic H5N1 TT3
virus, another group (n = 11) was challenged with the highly
pathogenic H7N9 GD15 virus.

Sera samples were collected at Week 2 and 3 p.v. The infected
birds were then observed twice a day for clinical signs for 14 days
post-challenge (p.c.). The mortality was recorded daily. Those
severely ill or moribund birds were euthanized by inhalation
of carbon dioxide and counted in mortality the following day.
To monitor viral shedding, oropharyngeal and cloacal swabs
were collected on Day 2, 4, and 6 p.c. for virus isolation in
ECEs. To determine viral replication in birds, on Day 2 and 4
p.c., three birds of each group were euthanized, and the heart,
cecum, lung, and spleen were collected for virus titration in ECEs.
The remaining birds of each group were observed for clinical
symptoms and mortality.

Histological Examination
To evaluate the protective effect of vaccination on the lung
injury caused by virus infection, the chicken lung from each
group (n = 3) was collected on Day 2 and 4 p.c. and fixed
with 10% neutral formaldehyde and embedded in paraffin.
Tissue sections were then cut 5µm thick and stained by
hematoxylin and eosin (H & E). Histological changes were then
examined by a double-blind method and captured with a light
microscope (Olympus, Japan) as described previously (48). Lung
lesions were scored according to the following standards: 0, no
visible changes; 1, mild lesions, including dilation and minor
congestion in parabrochus and/or pulmonary chamber; a small
amount of detached epithelial cell mucus in the parabrochus;
2, moderate lesions, including moderate dilation, congestion
or hemorrhage in parabrochus and/or pulmonary chamber;
abundant detached epithelial cell mucus in the parabrochus; a few
lymphocytes infiltration in blood vessels, parabrochus, and/or
pulmonary chamber; 3, severe lesions, including severe dilation,
congestion, or hemorrhage in bronchia, parabrochus, and/or
pulmonary chamber; extensive lymphocytes infiltration around
the parabrochus and/or pulmonary chambers; a large amount of
detached epithelial and lymphatic mucus in the bronchial and
parabronchial lumen.

Hemagglutination Inhibition Assay
Hemagglutination inhibition (HI) assay was performed using 1%
chicken erythrocytes with 4 HA unit (HAU) of the homologous
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viruses using the standard method (49). Briefly, the chicken
sera were serially diluted and incubated with 4 HAU of H7N9
GD15 strain or H5N1 TT3 virus at 37◦C for 10min, and then
incubated with 25 µL of 1% chicken erythrocytes. Plates were
read after 30min of incubation at room temperature. HI titers
were recorded as the highest serum dilution that completely
inhibited the hemagglutination.

Virus Neutralization Assay
Virus neutralizing (VN) antibody titers of the serum samples
were determined as described previously (50). Briefly, a
monolayer of CEF cells were cultured in M199 medium
supplemented with 5% FCS. Heat-inactivated sera were serially
diluted with M199 medium containing 1% FCS and mixed with
equal volume of H7N9 GD15 virus (100 TCID50) or H5N1
TT3 virus (100 TCID50). After incubation at 37◦C for 1 h, the
virus-sera mixture was then transferred to CEF cells in 96-well
tissue culture plates and cultured for 4 days. VN antibody titers
were determined as the reciprocal of the highest serum dilution
that completely inhibited the cytopathic effect (CPE) caused by
virus infection.

IgG Antibody Titers Measured by ELISA
HA-specific IgG antibody titers in the sera collected at Week 3
p.v. were determined by enzyme-linked immunosorbent assay
(ELISA) as described previously (51). In brief, the flat-bottomed
96-well microplate plates were coated with 250 ng of the
purified HA protein of H7N9 A/Anhui/1/2013 (AH13) virus
(Sino Biological) or the purified TT3 HA protein expressed in
Sf9 insect cells at 4◦C overnight. PBST (PBS containing 0.05%
Tween 20) supplemented with 1% bovine serum albumin (BSA)
were added for blocking at 37◦C for 2 h. The chicken sera were
serially diluted, and then added to the well and incubated at 37◦C
for 1 h. Then, the plates were washed with PBST three times
and incubated with 100 µL of HRP-conjugated secondary IgG
(Sigma, St. Louis, USA) at 37◦C for 1 h. The plates were then
washed with PBST three times and incubated with 100µL of 3, 3’,
5, 5’-tetramethylbenzidine (TMB) liquid substrate. The reaction
was stopped by the addition 50 µL of 2M H2SO4 and the optical
density (OD) was read at 450 nm using a spectrophotometer.

Statistical Analysis
Statistical analyses were performed by the unpaired t tests using
GraphPad Prism (GraphPad Software, San Diego, CA). Data are
expressed as the mean ± standard deviation (SD). Statistical
significance was designated for differences with p-values < 0.05
(∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001).

RESULTS

Generation of the Recombinant
Baculoviruses and Assembly of the H5 and
H7 VLP
The HA genes of the H5N1 or H7N9 subtypes and the NA and
M1 genes of the H7N9 subtype were amplified and ligated into
the transfer plasmid pVL1393. The recombinant baculoviruses
expressing the HA, NA, and M1 genes were generated through

co-transfection of the transfer vectors with the linear genomic
DNA of AcMNPV. The expression of the HA, NA, and M1
proteins were detected in the transfected Sf9 cells using IFA,
indicating successful rescue of the recombinant baculoviruses
(Figure 1A). Subsequently, the H5 and H7 VLP were assembled
in Sf9 cells by co-infection of the baculoviruses expressing the
HA, NA, and M1 genes. Enveloped spherical particles were
observed by transmission electron microscopy and the diameters
of the particles were like that of natural influenza virus particles
(Figure 1B). These results showed that the H5 and H7 VLP
were successfully assembled through baculovirus co-infection,
which had similarmorphology and size with the natural influenza
virus particles.

HI and VN Antibodies Elicited by the
Bivalent H5+H7 VLP in Chickens
The H5 and H7 VLP were purified and combined at a ratio of
1:1 to prepare the bivalent H5+H7 VLP vaccine (Figure 2A).
The inclusion level of both the H5 and H7 VLP per dose
was 7.5 µg. Chickens were immunized with the bivalent
H5+H7 VLP and commercial inactivated vaccine, respectively.
The results demonstrated that the mean HI titer against H5
induced by the VLP vaccine was 4 log2, significantly higher
than that induced by the commercial vaccine at Week 2 p.v.
(Figure 2B). However, HI antibody titers against H5 elicited by
the commercial vaccine increased rapidly to 6 log2 at Week 3
p.v., which were significantly higher than that induced by the
bivalent VLP vaccine (5 log2). In addition, a different profile
was seen for H7-specific HI antibody response (Figure 2C).
Significantly higher HI titers were detected in the chickens
immunized with the commercial vaccine at Week 2 and 3
p.v. compared to the bivalent VLP vaccine. VN activity of the
antisera collected at Week 3 p.v. was determined and we found
that the commercial inactivated vaccine induced a significantly
stronger VN antibody response against H5 and H7 in chickens
(Figures 2D,E). Taken together, these findings suggest that: (1)
the bivalent VLP could induce effective antibody response against
H5 and H7 in chickens; and (2) HI and VN titers elicited by the
VLP vaccine were significantly lower than that induced by the
commercial vaccine before the virus challenge.

IgG Antibodies Induced by the Bivalent
H5+H7 VLP in Chickens
To further compare the immunogenicity of the bivalent VLP
and commercial vaccine, the level of HA-binding IgG antibody
was also measured using ELISA. The results revealed that both
the bivalent VLP and commercial vaccine elicited high levels
of H5-specific IgG antibody in chickens and antibody titers
were comparable between them, although lower HI and VN
titers were detected for the VLP vaccine (Figures 3A,C). Robust
H7-specific IgG antibody responses were observed in chickens
immunized with the VLP and commercial vaccine, while the
magnitude of the IgG antibody response induced by the VLP
vaccine was significantly higher than that of the commercial
vaccine (Figures 3B,D). Altogether, these findings suggest that:
(1) compared with the commercial vaccine, the bivalent VLP
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FIGURE 1 | Generation and characterization of H5 and H7 VLP. (A) Recombinant baculovirus (rBVs) rBac-H5, rBac-H7, rBac-NA, and rBac-M1 were successfully

identified using immunofluorescence assay (IFA) by HA, NA, and M1-specific antibody in Sf9 cells. (B) To generate H5 VLP, Sf9 suspension cells were co-infected with

rBac-H5, rBac-NA, and rBac-M1 at a MOI ratio of 1:1:1. To generate H7 VLP, Sf9 suspension cells were co-infected with rBac-H7, rBac-NA, and rBac-M1 at the

same MOI ratio. At 72 h p.i., cell supernatant was harvested for collection of the H5 and H7 VLP. A transmission electron microscope (EM) was used for observation of

the morphology and size of the H5 and H7 VLP.

induced significantly higher HA-binding IgG antibody against
H7 in chickens; and (2) the bivalent VLP and commercial vaccine
showed different IgG profiles against H5 and H7.

Protective Efficacy of the Bivalent H5+H7
VLP in Chickens
To evaluate the protective efficacy of the vaccine, each group of
the bivalent VLP or the commercial vaccine immunized chickens
were randomized into two subgroups (n = 16) and challenged
with AIV of the H5 or H7 subtypes, respectively. After lethal
virus challenge, the unvaccinated chickens rapidly died with
typical clinical signs caused by HP influenza virus infection,
e.g., skin cyanosis, depression, facial edema, hemorrhage of foot
scale, and central nervous system (CNS) signs. In contrast, all
the vaccinated chickens survived, without showing any clinical
signs during a 14-day observation period (Figures 4A, 5A).
Throat and cloacal swabs were collected at Day 2 and 4 p.c.
to monitor virus shedding. No swabs were taken from the
mock chickens challenged with H5N1 virus because they all
died at the sampling time (Figure 4A). All the mock-vaccinated
chickens challenged by H7N9 virus shed virus (Table 1), with
titers around 102 TCID50/0.1mL via the oropharynx or the cloaca
at Day 2 and 4 p.c. (Figures 5B,C). In contrast, none of the
vaccinated birds challenged by H5N1 (Figures 4B,C) or H7N9
virus (Figures 4C, 5B) shed virus during the entire observation
period. Additionally, the tissues were also collected to assess the
inhibitory effect of vaccination on systematic dissemination of
the challenge viruses. The unvaccinated chickens died within 2

days after H5 virus challenge, suggesting the occurrence of a
highly lethal systematic infection, despite that no tissue samples
were collected. In the unvaccinated chickens after H7 virus
challenge, virus was detected in the heart from 2 out of 3 birds
at Day 4 p.c., and in the cecum, lung, and spleen from all three
birds at Day 2 and 4 p.c., indicating a systematic infection of the
virus (Figures 5D–G). By contrast, no virus was detected in the
tissues collected from the vaccinated birds at Day 2 and 4 p.c
when challenged with HP H5N1 (Figures 4D–G) or H7N9 virus
(Figures 5D–G). Collectively, these results indicate that both
the bivalent H5+H7 VLP and commercial vaccine can protect
chickens from clinical disease and mortality and inhibit virus
shedding and replicationwhich are associated withHPH5N1 and
H7N9 virus infection.

Protection Against Lung Pathological
Changes Conferred by VLP Vaccination
Suppression of pathological lesions caused by virus infection is a
critical parameter of vaccine efficacy. Histopathological changes
in the lung of three chickens at Day 2 and 4 p.c. challenged with
H5 and H7 AIV were assessed. Lung section of the mock control
birds were not collected since all the birds died rapidly after
challenged with the HP H5N1 TT3 virus. As for the vaccinated
birds, when the birds were challenged with the H5N1 TT3 virus,
the lung of the bivalent VLP vaccinated chickens all showed
mild histological changes at Day 2 and 4 p.c., including mild
dilatation in the pulmonary chamber or bronchial and infiltration
of fiber cells, few detached epithelial cell mucus and erythrocytes
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FIGURE 2 | The bivalent H5+H7 VLP vaccine induces efficient HI and VN antibodies. (A) To assess the immunogenicity of the vaccine candidate, chickens were

intramuscularly (i.m.) immunized with 15 µg of the bivalent H5+H7 VLP or 0.3mL of the commercial trivalent (H5: Re-11; H5: Re-12; H7: Re-3) vaccine. (B) HI titers at

Week 2 and 3 p.v. against H5N1 TT3 virus. (C) HI titers at Week 2 and 3 p.v. against H7N9 GD15 virus. (D) VN antibody against 100 TCID50 of H5N1 TT3 virus. (E)

VN antibody against 100 TCID50 of H7N9 GD15 virus. The detection limit was below 4 log2 for the HI assay and below 10 for the VN assay.

in parabrochus (Figure 6A). By contrast, some of the commercial
vaccine immunized birds showed severe histological changes in
the lung at Day 2 and 4 p.c., while no significant differences were
observed between the two vaccine groups (Figure 6B). When
comparing the histological changes caused by HP H7N9 virus
infection, we found that only slight lung injury was observed in

VLP vaccination groups, resulting in significantly lower extent
lung injury than that of the unimmunized birds (Figure 7). In
contrast, the commercial vaccine failed to alleviate the lung
pathology caused by the HP H7N9 virus infection in some of
the vaccinated birds. To be noted, at Day 2 p.c., when challenged
with H7N9 virus, the birds immunized with the commercial
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FIGURE 3 | The bivalent H5+H7 VLP vaccine stimulates strong IgG antibody. Chickens were i.m. immunized with 15 µg of the bivalent H5+H7 VLP or 0.3mL of the

commercial trivalent (H5: Re-11; H5: Re-12; H7: Re-3) vaccine. The IgG antibody at Week 3 p.v. was determined by ELISA. (A) IgG antibody using purified HA protein

of the TT3 virus as coated antigen. (B) IgG antibody using purified HA protein of the A/Chicken/Anhui/AH13/2013 (AH13) virus as coated antigen. (C) Area under the

curve (AUC) of the IgG antibody using purified HA protein of the TT3 virus as coated antigen. (D) AUC of the IgG antibody using purified HA protein of the AH13 virus

as coated antigen.

vaccine showed significantly severe lung injury than that of the
VLP group (Figure 7B). Therefore, these results demonstrated
that the VLP was better than the commercial vaccine in terms
of alleviating pulmonary lesions caused by H7N9 virus infection
in chickens.

DISCUSSION

H5N1 and H7N9 AIV are enzootic in domestic poultry in
China (8, 52–54). Rational use of vaccination can be an
important measure for prevention and control of these two
subtypes. To contain infection and spread of H5N1 and H7N9
viruses, a trivalent inactivated commercial H5+H7 vaccine
has been administered in poultry flocks throughout China,

resulting in a remarkable decrease in virus dissemination (7, 8).
However, the current commercial vaccine is manufactured by
the traditional egg-based approach and has some drawbacks.
Therefore, there is a great need to develop a new modality
for avian influenza vaccine. In this study, the H5 and H7
VLP was generated in a baculovirus expression system and a
bivalent H5+H7 vaccine was prepared by combining these two
antigens. The bivalent VLP was immunogenic against H5N1
and H7N9 viruses in chickens, while it induced lower HI and
VN antibody titers than the commercial inactivated vaccine
(Figure 2). Both the bivalent VLP and commercial vaccine
provided good protection against challenge with H5N1 and
H7N9 viruses and significantly suppressed virus shedding and
infection. Of note, the bivalent VLP vaccine displayed a greater
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FIGURE 4 | The bivalent H5+H7 VLP vaccine confers good protection against the lethal H5N1 virus. Chickens were i.m. immunized with 15 µg of the bivalent

H5+H7 VLP or 0.3mL of the commercial trivalent (H5: Re-11; H5: Re-12; H7: Re-3) vaccine. (A) Survival rates of the birds after challenged with 106.0 EID50 of the

H5N1 TT3 virus. (B) Virus titration in laryngotracheal swabs on Day 2 and 4 p.c. (C) Virus titration in cloacal swabs on Day 2 and 4 p.c. Viral titers in the heart (D),

cecum (E), lung (F), and spleen (G) of the birds on Day 3 and 5 p.c. Viral titers were determined by measuring EID50. The detection limit was below 101.0

EID50/0.1mL for swabs and 101.48 EID50/g for organs.
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FIGURE 5 | The bivalent H5+H7 VLP vaccine confers good protection against the lethal H7N9 virus. Chickens were i.m. immunized with 15 µg of the bivalent

H5+H7 VLP or 0.3mL of the commercial trivalent (H5: Re-11; H5: Re-12; H7: Re-3) vaccine. (A) Survival rates of the birds after challenged with 106.0 EID50 of the

H7N9 GD15 virus. (B) Virus titration in laryngotracheal swabs on Day 2 and 4 p.c. (C) Virus titration in cloacal swabs on Day 2 and 4 p.c. Viral titers in the heart (D),

cecum (E), lung (F), and spleen (G) of the birds on Day 3 and 5 p.c. Viral titers were determined by measuring EID50. The detection limit was below 101.0 EID50/0.1mL

for swabs and 101.48 EID50/g for organs.
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TABLE 1 | Virus shedding of the birds challenged by H5N1 or H7N9 virus.

Groupsd Challenge virus 2 dpia 4 dpi 6 dpi Virus shedding/total Survival/total

Lb Cc L C L C L C L C

H5+H7 VLP H5N1/TT3 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10

Commercial vaccine H5N1/TT3 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10

H5+H7 VLP H7N9/GD15 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10

Commercial vaccine H7N9/GD15 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10

PBS H5N1/TT3 -d - - - - - - 0/5

PBS H7N9/GD15 4/5 3/5 1/1 1/1 - - 5/5 0/5

adpi, days post infection.
bL, Laryngotracheal swabs.
cC, Cloacal swabs.
d-, samples were not collected since birds were all dead.

capacity of inhibiting pathological changes in the lung caused by
H7N9 virus (Figure 7). Therefore, the bivalent VLP may be used
as an important alternative to the traditional egg-based vaccines
for control of H5N1 and H7N9 AIV in poultry.

Broadly protective vaccines based on multivalence strategy
have been widely used in seasonal influenza, pneumococcal
vaccines, and human papillomavirus (55). Combination of H5
and H7 antigens to produce bivalent vaccines is a common
practice for preparation of traditional inactivated vaccine in
poultry. However, there is a concern about this approach that
propagation of individual H5 and H7 viruses needs more ECEs,
leading to increase of cost-of-good and yield of biohazards.
Aiming to yield two antigens by a single virus inoculation,
some studies were performed to generate recombinant influenza
viruses expressing the HA proteins from two subtypes. Li et
al. generated a reassortant H5N6 virus based on PR8 backbone
expressing the H7N9 HA1 in-frame in the NS1 gene (11).
The reassortant virus was highly immunogenic and efficacious
against both the H5 and H7N9 HPAIV in chickens, however, no
comparison with the commercial vaccine was done. Nevertheless,
production of bivalent vaccines based on these viruses relies on
an egg-dependent system. It is accepted that the traditional egg-
based approach for influenza vaccine production has drawbacks,
such as a shortage of egg supply, yield of large amounts of
biohazards, lack of mucosal and cellular immunity, and potential
risk of endogenous virus contamination (9, 10, 56, 57).

The VLP system is a promising platform for development
of novel vaccines as alternatives for inactivated vaccines (58–
60). Numerous vaccine candidates against different influenza
subtypes were generated using the VLP platform (61). However,
reports on the development of avian bivalent or multivalent
influenza vaccines are limited. In this study, using the established
VLP platform, we generated the H5 and H7 VLPs in Sf9
insect cells and made a bivalent VLP vaccine through antigen
combination strategy. The individual VLP antigen was prepared
by co-infection with three baculoviruses expressing the HA, NA,
andM1 genes, respectively, which are required for influenza VLP
assembly (Figure 1). A previous study used a different strategy
for generation of a trivalent VLP vaccine displaying H5, H7, and
H9 HA (32). Insect cells were infected with the recombinant

baculovirus co-expressing the retroviral gag, N1 and HA proteins
of H5, H7, and H9 for VLP assembly. Of note, the efficiency of
the VLP assembly through the co-infection and co-expression
strategies needs to be compared. Furthermore, a two-dose
regimen was used in an efficacy experiment in that study,
while herein we showed that a single dose of the VLP vaccine
provided good protection from clinical signs, virus shedding, and
systematic infection post-challenge with the homologous wild
type strain. However, further studies are needed to determine
whether a single dose of the bivalent VLP vaccine could confer
full protection against challenge with a heterologous strain.

Recently, a novel bioreactor, silkworm pupae, was also used for
production of bivalent H5+H7 influenza VLP vaccines through
co-infection with recombinant baculoviruses (62). However, in
that study, pupae were infected with only two baculoviruses
expressing the H5 and H7 HA genes, and thus the obtained
VLP might be the subviral particles formed by the HA protein
because no scaffold protein, such as the M1 and gag, for VLP
assembly, was supplied. Such subviral particles formed by the
H7 HA protein alone were also reported previously (63). The
major advantage of a pupae system is the high antigen yield,
evidenced by around 300,000–500,000 HAU for H5 and H7
component in 20 pupae, respectively. Both insect cells and
silkworm bioreactor are promising systems for large-scale VLP
production (23, 64–66), and antigen yield, efficiency of VLP
assembly, antigen process, and purification of these two systems
should be compared systematically in the future.

Another significance of the present study was the
comprehensive comparison between the bivalent VLP and
the commercial vaccine. Although HI and VN titers against
both H5 and H7 induced by the VLP vaccine were significantly
lower relative to the commercial vaccine, the antibody titers were
sufficient to provide good protection, comparable to that of the
commercial vaccine (Figure 4). In addition, the VLP vaccine
appeared to be more efficient in suppressing lung pathology
caused by H7N9 virus at Day 2 p.c., which may be associated with
higher levels of HA-binding antibodies against H7 elicited by the
bivalent VLP (Figure 3). These findings agreed with previous
studies showing that in addition to HI and VN antibodies, total
HA-binding antibodies induced by H7N9 vaccines are important
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FIGURE 6 | The bivalent H5+H7 VLP vaccine inhibits lung pathological changes after the lethal H5N1 virus challenge. (A) Hematoxylin and eosin (H & E) staining

results of the birds’ lung on Day 2 and 4 post-H5N1 virus challenge. Black triangle indicates dilatation in the pulmonary chamber or bronchial; white triangle arrow

stands for infiltration of fiber cells, detached epithelial cell mucus, and erythrocytes in the parabrochus. (B) Scores of the overall histopathologic changes in the bird’s

lung post-H5N1 virus challenge. The specific information concerning the scoring criteria was listed in the Materials and Method section.

to protection (51, 67–69). The VLP vaccine technology could
allow prompt update for the emergence of variant viruses.
Currently, HPAI H5N1, and H7N9 viruses undergo continuous
antigenic variation which may result in vaccine failure. Because
the VLP is produced in a cell-based system, the methodology

may be more efficient than the egg-based system in rapid
production of vaccines during epidemics of newly emerging
viruses. In addition, the VLP strategy has potential advantages
over the traditional egg-based inactivated influenza vaccines
owing to its capacity for rapid vaccine production based on
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FIGURE 7 | The bivalent H5+H7 VLP vaccine alleviates lung injury after the lethal H7N9 virus challenge. (A) H & E staining results of the bird’s lung on Day 2 and 4

post-H7N9 virus challenge. Black triangle indicates dilatation in the pulmonary chamber or bronchial; white triangle arrow stands for infiltration of fiber cells, detached

epithelial cell mucus, and erythrocytes in the parabrochus; quad star means lymphocytes infiltration in the lung chamber. (B) Scores of the overall histopathologic

changes in the bird’s lung post-H7N9 virus challenge. The specific information concerning the scoring criteria was listed in the Materials and Method section.
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regional HPAI strains with the unnecessity of using high
biocontainment facilities. Furthermore, compared with the
commercial whole-virus inactivated vaccines, an additional
benefit of the VLP vaccines is the capacity of differentiating
infected from vaccinated animals (DIVA) since VLP vaccines
do not induce antibodies to the viral internal proteins, such
as the NP protein (26, 30). Lastly, single vaccination of
chickens with the bivalent VLP elicited immunogenicity and
conferred clinical protection comparable to that elicited by
booster with other VLP vaccination (32, 36, 39, 45). However,
for ultimately being proposed as a critical alternative to the
traditional ovoculture vaccines in poultry, some challenges still
need to be addressed for the VLP vaccine, mainly including
optimization of the manufacturing processes to achieve higher
antigen yields, minimization of the downstream processing
cost of vaccine manufacturing as well as enhancements of
broad protection against multiple variants and subtypes of
influenza virus. Last, but not least, it is essential to establish
the whole VLP production pipeline, from the upstream cell
fermentation and antigen production to the downstream antigen
quality-control and process, in vaccine enterprises for large-scale
industrial production (58) and application of VLP vaccines in
the field.

In conclusion, a non-egg-based bivalent H5+H7 VLP
vaccine candidate was generated in this study. A single dose
of this vaccine induced efficient serum antibody responses
and conferred good protection against homologous virus
challenge in chickens. Furthermore, viral shedding and
viral replication was significantly inhibited in bivalent VLP-
vaccinated birds after challenge with H5N1 and H7N9 viruses,
which was comparable to that for the commercial inactivated
vaccine. Notably, the VLP vaccine showed advantage in
suppressing the lung injury caused by H7N9 virus infection.
Therefore, the bivalent H5+H7 VLP vaccine generated
in this study can serve as a critical alternative for the
traditional egg-based inactivated vaccines to mitigate H5N1
and H7N9 infections in chickens and consequently protect
public health. In addition, our study also presented new
information for generation of bivalent influenza VLP vaccines
for poultry.
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