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Resveratrol (RSV) has been confirmed to benefit human health. Resveratrol

supplemented in the feeds of animals improved pork, chicken, and duck meat qualities.

In this study, we identified differentially expressed (DE) messenger RNAs (mRNAs) (n =

3,856) and microRNAs (miRNAs) (n = 93) for the weighted gene co-expression network

analysis (WGCNA) to investigate the co-expressed DE mRNAs and DE miRNAs in the

primary bovine myoblasts after RSV treatment. The mRNA results indicated that RSV

treatments had high correlations with turquoise module (0.91, P-value = 0.01) and

blue module (0.93, P-value < 0.01), while only the turquoise module (0.96, P-value <

0.01) was highly correlated with the treatment status using miRNA data. After biological

enrichment analysis, the 2,579 DE genes in the turquoise module were significantly

enriched in the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways. The top two GO terms were actin filament-based process

(GO:0030029) and actin cytoskeleton organization (GO:0030036). The top two KEGG

pathways were regulation of actin cytoskeleton (bta04810) and tight junction (bta04530).

Then, we constructed the DE mRNA co-expression and DE miRNA co-expression

networks in the turquoise module and the mRNA–miRNA targeting networks based

on their co-expressions in the key module. In summary, the RSV-induced miRNAs

participated in the co-expression networks that could affect mRNA expressions to

regulate the primary myoblast differentiation. Our study provided a better understanding

of the roles of RSV in inducing miRNA and of the characteristics of DE miRNAs in the key

co-expressed module in regulation of mRNAs and revealed new candidate regulatory

miRNAs and genes for the beef quality traits.

Keywords: primary bovine myoblast, resveratrol, differentially expressed analysis, WGCNA, mRNA co-expression,
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INTRODUCTION

Resveratrol (RSV) is a natural polyphenol compound found
in grapes, nuts, and some blackberries. Researchers have
studied its health-promoting effects of neuroprotection (1)
and cardioprotection (2) as well as its inhibiting actions to
tumor cell proliferation (3) and microbial activity (4) and its
diminishing effects on inflammation in humans and animals
(5, 6). Its pro-differentiation properties to human lung fibroblasts
(7), embryonic cardiomyoblasts (8), and skeletal myoblast
have also been studied (9). For example, Dirks Naylor (10)
demonstrated the RSV effects on skeletal muscle metabolism,
protein catabolism, and muscle-related ischemia and reperfusion
injury disease in a review study (10). Resveratrol could also
help to improve muscle fatigue resistance (11), reduce aging-
induced muscle loss (12), improve muscle atrophy (13), and
enhance exercise performance (14). Resveratrol is contained in
the wine grape pomace, and adding it to feed will benefit the
feed efficiency and meat tenderness in lamb (15). In addition, the
antioxidant effects of RSV improved the heat-stressed and the
transport-stressed meat quality of broilers (16, 17). Resveratrol
alleviated the skeletal muscle mitochondrial dysfunction and
oxidative damage, when 80 mg/kg/day RSV was supplied in the
intrauterine growth retardation piglets (18). The same dose of
RSV also improved the meat quality by increasing the content of
oxidative muscle fiber and decreasing the lipid accumulation in
pigs (19). Dietary RSV supplements of 300–450 mg/kg in Peking
ducks improved meat quality through decreasing abdominal fat
rate and shear force, as well-increasing the flavor amino acid
and intramuscular fat deposition (20). In cattle, the beneficial
effects of RSV have been concluded in several studies on bovine
oocyte maturation and subsequent embryonic development (21),
inhibition of apoptosis and lipid peroxidation for the fertilization
capacity of bovine sex-sorted semen (22), rumen fermentation,
methane production, and prokaryotic community composition
(23). However, the effect of RSV on beef production and quality
still needs further investigation.

The carcass composition of beef cattle is influenced by
intrinsic factors (e.g., genetic, age, and sex) and extrinsic factors
(e.g., nutrition, environment, and management) (24). Bassel
et al. (25) suggested the establishment of global co-expression
network connections between genes by considering all samples
in Arabidopsis. Gene co-expression networks are constructed
by genes with significant co-expression relationships, where
the co-expressed genes show similar expression patterns across
samples that are controlled by the same transcriptional regulatory
programs (26, 27). The weighted gene co-expression network
analysis (WGCNA) has been used in analyzing the feed efficiency,
residual feed intake, carcass traits, and lactation in cattle (28–30).

Abbreviations: ACTG1, actin gamma 1 gene; DGAT1, diacylglycerol

acyltransferase-1 gene; DE, differentially expressed; FPKM, fragments per

kilobase of transcript sequence per million base pairs sequenced; FDR, false

discovery rate; FCs, fold changes; GO, Gene Ontology; IACUC, Institutional

Animal Care and Use Committee; MAD, median absolute deviation; mRNAs,

messenger RNAs; MRFs, myogenic regulatory factors; MEF2, myocyte enhancer

factor 2; RSV, resveratrol; TPM, transcript per million; KEGG, Kyoto Encyclopedia

of Genes and Genomes; WGCNA, weighted gene co-expression network analysis.

Our previous study focused on transcriptomic changes in
bovine skeletal muscle cells after RSV treatment and was
conducted to identify the differentially expressed (DE) genes
and microRNAs (miRNAs) (31, 32); therefore, this study mainly
focuses on the combined co-expressed transcriptomes, i.e.,
messenger RNA (mRNA) and miRNA studies for bovine muscle
in response to treatment with RSV, which aims to investigate the
roles of RSV in inducing miRNA for the better understanding, to
identify the characteristics of DEmiRNAs in the key co-expressed
module in regulation of mRNAs, and to reveal new candidate
regulatory miRNAs and genes underlying the beef quality traits.

MATERIALS AND METHODS

Primary Bovine Myoblast, Transcriptome
Sequencing, and Differential Expression
Analysis
The cultured primary myoblasts from the fetal beef longissimus
dorsimuscle, the transcriptome sequencing datasets after quality
control and alignment, and the differential expression analysis
results were achieved from our previous studies (31, 32).

All the animal procedures were carried out according to
the protocols approved by the Institutional Animal Care and
Use Committee (IACUC) of the College of Animal Science and
Technology, Northwest A&F University, China. Ninety-day-old
fetal cattle were collected from Tumen slaughterhouse in Xi’an,
Shaanxi Province. First, we used 75% alcohol and 1% double-
antibody sterile phosphate buffer solution (phosphate buffered
saline, PBS) to gently wash the epidermis of the fetal cow to
eliminate blood stains and bacterial contamination in an extra-
large plate. Second, we cut the muscle tissue pieces and placed
them in a 50-ml centrifuge tube, with collagenase I digestion
in Dulbecco’s modified Eagle’s medium (DMEM) at 37◦C for
1.5 h. Third, the suspension was filtered and centrifuged, and
the supernatant was removed. Fourth, we added four times the
volume of 0.25% trypsin in the sediment at 37◦C for 30min.
Fifth, the digested sample was filtered through 1-mm stainless
steel mesh and 100-µm mesh. Sixth, we added 500 µl of a
medium containing 15% fetal bovine serum (FBS) to the pellet
to terminate the digestion, and the cells were inoculated in a 6-
cm Petri dish. After 20-min culturing, we drew the upper culture
medium and continued the culturing process in a new 6-cm Petri
dish. When the cell density reached 80–90%, we used them for
the subsequent experiments.

RNA for each cell sample was isolated for mRNA sequencing
to generate 125 or 150-bp paired-end reads and for miRNA
sequencing to generate 50-bp single-end reads on an Illumina
Hiseq platform (Illumina, USA). We removed the unqualified
reads by quality control to achieve clean reads by in-house perl
scripts that were used in our previous studies (31, 32). Then, the
miRNA tags were mapped to the reference genome of Bos taurus
(UMD_3.1.1/bosTau8) by Bowtie software (version 0.12.9) (33).
The mapped miRNA tags were used to seek the known miRNAs
using miRBase20.0 as the reference, so the potential miRNA and
the secondary structures were obtained by miRDeep2 software
(version 2.0.0.5) (34).

Frontiers in Veterinary Science | www.frontiersin.org 2 December 2021 | Volume 8 | Article 777477

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Hao et al. mRNA–MicroRNA Network for Muscle Cell

The expected number of fragments per kilobase of transcript
sequence per million base pairs sequenced (FPKM) of each
gene was calculated to achieve the average FPKM values for
the replicates. The threshold of gene expression was set for
mRNA, when the FPKM value is larger than 1. Following
the normalization formula (35), miRNA expression levels were
also estimated by transcript per million (TPM). A differential
expression analysis of two groups (case and control) for both
mRNA and miRNA was performed using the R package DESeq
(version 1.18.0) (36). The P-values were adjusted using the
Benjamini and Hochberg’s method for controlling the false
discovery rate (FDR). Differentially expressed mRNAs and DE
miRNAs were defined when the adjusted P-values were <0.05.
In addition, we calculated fold changes (FCs) between the case
and control groups based on the averaged FPKM values and
TPM values to define the up-regulated (log2FC > 0) and down-
regulated (log2FC < 0) mRNAs and miRNAs, respectively.

We used the skeletal muscle cells under the polyphenol
RSV treatment as the case group, while the skeletal muscle
cells without RSV treatment were considered as the control
group. Meanwhile, both the case and control groups had three
independent experiments separately for the skeletal muscle cell
collections. The correlation coefficients among samples were
visualized in the heatmaps using log10(FPKM + 1) for mRNA
and log10(TPM+ 1) for miRNA in Figure 1.

Gene Co-expression Network of mRNA
and miRNA and Their Associations With
RSV Treatment
The R package WGCNA (37) was used to construct the co-
expression network. It constructs a similarity matrix by Pearson
correlation coefficients to measure the similarity between the
gene expression profiles and then transforms the similarity
matrix into an adjacency matrix (A) raised to a β exponent (soft
threshold) based on the free-scale topology model. In this study,
a total of 18,329 genes were filtered from 26,332 genes in mRNA
data based on the median absolute deviation (MAD) of each gene
bigger than 0.01. The β power parameter (soft threshold) was
equal to 12 when the R2 of the free-scale topology was equal to
0.8 (Figure 2A). In the miRNA data, 650 miRNAs were filtered
from 765 genes, and the β power parameter (soft threshold) was
equal to 4 (Figure 2B).

We chose the soft threshold power (β = 12 for mRNA and
β = 4 for miRNA) based on the criterion of approximate scale-
free topology to construct a weighted gene network and detect the
consensus modules with the topological overlap matrix (TOM).
The minimum module size was set at 30 for both miRNA data
and mRNA data, and the maximum module sizes were set at
18,329 and 650 for mRNA data and miRNA data, respectively.
Based on the dissimilarity betweenmodule eigengenes (MEs), the
modules can be merged, where the first principal component of
each module represents the gene expression profiles within the
modules (38). Here, we set the cut height for module merging at
0.25, so the modules whose eigengenes are correlated above 0.75
will be merged.

A module association analysis was conducted between the ME
and the RSV treatment status (i.e., 0, 0, 0, 1, 1, 1 for three control
and three case groups, respectively) to calculate the correlations
for the relevant module identifications.We calculated themodule
significance (MS) [i.e., the average absolute gene significance
(GS) of all the genes involved in the module, where GS is
measured as log P-value in the linear regression between gene
expression and RSV treatment status] to evaluate the correlation
strengths. Normally, the module with the highest MS score is the
key module (37). Module significance genes in the association
analysis (P-value < 0.1) were assigned for functional enrichment
analysis. The hub genes were defined as the TOMvalues up to 0.8.

Gene Ontology and Pathway Enrichment
Analysis
R package clusterProfiler (version 3.6) (39) was used to test
the Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichments. Significant
enrichment was defined with the adjusted P-value <0.1 for both
GO terms and pathways.

Predicted Target mRNAs of miRNA and
mRNA–miRNA Networks
The bovine genomic sequence (release-99) and the gene
annotation file were downloaded from the Ensembl FTP
site (http://www.ensembl.org/index.html). We used TBtools to

obtain the 3
′

UTR sequence of the bovine genomic transcripts
(40). Then, the transcript stable IDs were converted to the
Ensembl stable IDs using the BioMart website (http://www.

ensembl.org/biomart). Accordingly, we found the 3
′

UTR
sequence of the genes in the turquoise modules. The binding
capability of miRNAs and their target genes in the turquoise
modules was assessed by RNAhybrid (version 2.1.2) (41), with
the minimal free energy hybridization under −20 and the helix
constraint from 8 to 12.

RESULTS

Differentially Expressed mRNAs and
miRNAs Between the RSV Treatment and
Control Groups
From our previous study (31, 32), a total of 3,856 DE mRNAs
were identified from 18,329 mRNAs based on the threshold
of adjusted P-value <0.05; meanwhile, 93 DE miRNAs were
also identified from 650 miRNAs based on the same thresholds
(Table 1). The details of log2FC, P-value, adjusted P-value, and
DE mRNAs with FPKM and miRNAs with TPM of each sample
are listed in the Supplemental File 1.

Module Identification of the Gene
Co-expression Network for mRNA and
miRNA and Their Associations With RSV
Treatment
Using 18,329 mRNA and 650 miRNA data for the sample
clustering, we found that the samples with RSV treatment
were clustered together in mRNA analysis (Figure 3A), while
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FIGURE 1 | The heatmap of correlation coefficients among samples for (A) mRNA data and (B)miRNA data. R2 indicates the square of Pearson correlation coefficient.

FIGURE 2 | R2 of the free-scale topology and mean connectivity with soft threshold (power) for (A) mRNA data and (B) miRNA data.

TABLE 1 | Summary of differentially expressed mRNAs and miRNAs.

DE mRNA

(adjusted

P-value

<0.05)

DE mRNA

(adjusted

P-value

<0.0001)

DE miRNA

(adjusted

P-value

<0.05)

Up-regulated 1,805 450 44

Down-regulated 2,051 681 49

Total 3,856 1,131 93

Differentially expressed (DE) mRNA and miRNA results were achieved from our previous

study (31, 32).

RSV-treated samples were not clustered together by miRNA
data (Figure 3B). Generally, 18,329 mRNAs were grouped into
32 modules that had similar co-expressions using the average
linkage hierarchical clustering algorithm (Figures 3C,E), where

8,311 mRNAs were grouped into turquoise module as the
key module, followed by 2,210 mRNAs into blue module, etc.
(Figure 3E; Table 2). However, miRNAs were only grouped into
eight modules (Figures 3D,F; Table 2), where 285 miRNAs were
grouped into turquoise modules as the key module, followed
by 100 miRNAs into blue modules. The mRNAs and miRNAs
that were not assigned to any modules were grouped into gray
modules (Figures 3C–F).

The eigengene adjacency heatmap indicated that these
modules of mRNAs and miRNAs could be clustered further
together into groups (Figure 4). After incorporating the RSV
treatment trait, we found that the treatment status was clustered
with blue and turquoise modules for mRNAs (Figure 4A)
and with turquoise modules in a single cluster for miRNAs
(Figure 4B).

The module–trait relationship results revealed that RSV
treatment had high correlations with turquoise module (0.91,

Frontiers in Veterinary Science | www.frontiersin.org 4 December 2021 | Volume 8 | Article 777477

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Hao et al. mRNA–MicroRNA Network for Muscle Cell

FIGURE 3 | Sample cluster with RSV treatment heatmap, dendrogram clustering plots with assigned module colors based on topological overlap analysis of

dissimilarity, and identified module size in different colors for (A,C,E) mRNAs and (B,D,F) miRNAs, respectively.

P-value = 0.01), blue module (0.93, P-value <0.01), and tan
module (−0.81, P-value = 0.05) using mRNA data (Figure 5A),
whereas only turquoise module (0.96, P-value <0.01) was highly
correlated with treatment status using miRNA data (Figure 5B).
Therefore, the turquoise module showed a strongly positive
relationship with RSV treatment no matter whether mRNA data
or miRNA data is used.

We also used the 3,856 DE mRNAs and 93 DE miRNAs for
the weighted gene network construction based on the same soft
threshold power (β = 12 for mRNA and β = 4 for miRNA)
and then visualized them in the TOM clusters (Figure 6). Here,
the minimum module size and maximum block size were set at
30 and 3,856, respectively, for mRNA and were set at 30 and

93, respectively, for miRNA. Only two cluster modules were
displayed for both mRNAs and miRNAs, i.e., turquoise and
blue modules. In the turquoise module, 2,579 DE mRNAs and
59 DE miRNAs were found, while 1,277 DE mRNAs and 34
DE miRNAs were found in the blue module. Furthermore, the
network heatmap of DE mRNAs and DE miRNAs showed a high
level of overlap densities among the two clusters (Figure 6).

Gene Ontology and Pathway Enrichment
Analysis
Based on the 2,579 DE mRNAs in the turquoise module, we
performed an enrichment analysis to reveal significant GO terms
and KEGG pathways. We found that the three most significant
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TABLE 2 | Summary of mRNA and miRNA module identifications.

Transcriptome sequencing Modules

Turquoise Blue Brown Yellow Green Red

mRNAs (n = 18,329) 8,311 (45.34%) 2,210 (12.06%) 925 (5.05%) 886 (4.83%) 824 (4.50%) 613 (3.34%)

miRNAs (n = 650) 285 (43.85%) 100 (15.38%) 58 (8.92%) 57 (8.77%) 47 (7.23%) 32 (4.92%)

FIGURE 4 | Eigengene dendrogram and adjacency heatmap of different co-expression modules for (A) mRNAs and (B) miRNAs, respectively.

GO terms were actin filament-based process (GO:0030029,
adjusted P-value = 1.86 × 10−6) with 37 DE genes that
were enriched in, followed by actin cytoskeleton organization
(GO:0030036, adjusted P-value= 4.33× 10−6) with 34 DE genes,
and actin filament organization (GO:0007015, adjusted P-value
= 6.86× 10−5) with 24 DE genes in the down-regulated category
(Figure 7A). Similarly, the three most significant pathways were
regulation of actin cytoskeleton (bta04810, adjusted P-value =

1.40 × 10−11) with 47 genes, tight junction (bta04530, adjusted
P-value = 2.32 × 10−6) with 33 genes, and axon guidance
(bta04360, adjusted P-value = 2.32 × 10−6) with 33 genes
(Figure 7B).

Networks Displaying the Relationships
Among Genes Within Co-expressed
Modules
We selected and constructed the network of four genes within the

turquoise module including two significantly up-regulated genes,

i.e., sushi domain containing 4 (SUSD4) gene and diacylglycerol

O-acyltransferase 1 (DGAT1) gene, and two significantly down-

regulated genes, i.e., fibroblast growth factor 18 (FGF18) gene and

actin gamma 1 (ACTG1) gene (Figure 8). SUSD4 has associations

with 186 genes including 8 up-regulated genes and 176 down-

regulated genes (Figure 8A). DGAT1 was closely connected with
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FIGURE 5 | Module–trait relationship heatmap between RSV treatment and control groups for (A) mRNAs and (B) miRNAs, respectively. Each row indicates module

eigengenes with the correlation coefficients (P-values in the brackets), where the red color represents positive correlation and the blue color represents negative

correlation.

70 genes where 32 genes were up-regulated (e.g., proliferating cell
nuclear antigen, PCNA) and 38 genes were down-regulated (e.g.,
phosphatase and tensin homolog, PTEN) (Figure 8B). FGF18
and ACTG1 were negatively connected with 36 and 51 up-
regulated genes, respectively (Figures 8C,D). The selected hub
gene ACTG1 was negatively related with skeletal muscle myosin
heavy chain 3 (MYH3) gene, fibroblast growth factor 2 (FGF2)
gene, and uncoupling protein-2 (UCP2) (Figure 8D).

Identification of miRNAs in the Key Module
and Target Gene Prediction of the miRNAs
for mRNA–miRNA Network
Based on the top significant RSV-induced up- and down-
regulated DE miRNAs in the turquoise module, we predicted
their target genes. The top four up-regulated miRNAs were
bta-miR-34c, bta-miR-432, bta-miR-2344, and bta-miR-154c that
targeted 21, 78, 22, and 49 down-regulated genes in the turquoise
module, respectively (Figure 9A). Likewise, the top four down-
regulated miRNAs, i.e., bta-miR-2310, bta-miR-452, bta-miR-
1814c, and bta-miR-199b targeted 59, 62, 58, and 15 up-regulated

genes in the turquoise module, respectively, where bta-miR-2310
and bta-miR-1814c targeted the same genes (n= 57) (Figure 9B).
Three up-regulated and three down-regulated miRNAs targeted
the top up-regulatedCDKN1A [adjusted P-value= 2.50× 10−104

and log2(FC) = 1.97], while five up-regulated and one down-
regulated miRNAs targeted the top down-regulated KCNK12
[adjusted P-value = 5.92 × 10−63 and log2(FC) = −2.32]
(Figure 9C).

DISCUSSION

Carcass weight is mainly influenced by the number and the
size of myoblasts that are generated from somite and through
proliferation, differentiation, and fusion into myofibers in an
embryonic stage (42). Skeletal muscle fiber characteristics can
be divided into fast and slow types based on the contraction
speed that can determine the meat quality traits such as
marbling (43). Internal (heredity) and external factors (nutrition
and environment) are combined to regulate the conversions
among the fiber types, such as arginine (44) and linoleic
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FIGURE 6 | Weighted differentially expressed (DE) (A) mRNA (n = 3,856) and (B) miRNA (n = 93) network heatmap of the co-expression interactions based on the

topological overlap matrix (TOM) dissimilarity. The gene dendrogram and module assignment are shown along the left side and the top, where the axe colors indicate

the different modules. The color intensity inside the heatmap represents the overlap degree, where a light color represents low overlap and a darker red color

represents higher overlap. DE mRNA and miRNA results were achieved from our previous study (31, 32).

FIGURE 7 | Scatter plots for the significant (A) Gene Ontology (GO) terms and (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the

down-regulated and up-regulated categories of 2,579 differentially expressed (DE) mRNAs in turquoise module. Only the top 20 significant GO terms and KEGG

pathways were visualized.

acid (45) that have been considered as the nutrients that
influence the conversion of skeletal fiber type. Researchers also
analyzed the omics data to reveal the effects of functional feed
additives to improve carcass characteristics and beef quality,
such as vitamin A, zinc propionate, etc. (46, 47). Our study

aims to illustrate the additive effects of natural polyphenol
compound RSV on primary bovine myoblast differentiation
through transcriptome sequencing.

Resveratrol effects have been extensively studied on various
cell types including cardiomyoblasts (8), fibroblasts (7),
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FIGURE 8 | The networks displaying the relationships of four key hub genes within co-expressed turquoise modules, i.e., (A) sushi domain containing 4 (SUSD4)

gene, (B) diacylglycerol O-acyltransferase 1 (DGAT1) gene, (C) fibroblast growth factor 18 (FGF18) gene, and (D) actin gamma 1 (ACTG1) gene.

hepatocytes (48), smooth muscle cells (49), mammary epithelial
cells (50), immune cells (6), and a multitude of various cancer
cell lines (3). Moreover, researchers paid more attention to the
RSV functions on human myoblast proliferation, injury, and
death, as well as the resistance against oxidative stress of RSV
to the skeletal muscle tissues in livestock (4, 11, 17, 20, 31). In
this study, we identified biologically relevant key modules of the
co-expressed mRNA andmiRNA networks for the differentiation
of bovine primary myoblast after RSV treatment. The results
showed that the significant modules of DE mRNAs and DE
miRNAs were strongly associated with RSV treatment status;

for example, the key mRNA module was turquoise module with
2,579 DE mRNAs induced by RSV, where 47 down-regulated
DE genes were enriched in the regulation of actin cytoskeleton
pathway (Figure 7B). The actin cytoskeleton is essential for
cell proliferation, differentiation, migration, phagocytosis, and
exocytosis, even when cells experience oxidative damage (51).
The actin cytoskeleton is also essential to maintaining the
stability of skeletal muscle functions. The absence of ACTG1
resulted in muscle weakness and a progressive myopathy in
mice (52); meanwhile, the reduced expression of ACTG1 was
closely associated with up-regulated MYH3 induced by RSV
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FIGURE 9 | mRNA–miRNA network of the top four differentially expressed (DE) miRNAs in the (A) up-regulated status (bta-miR-34c, bta-miR-432, bta-miR-2344,

and bta-miR-154c) and the (B) down-regulated status (bta-miR-199b, bta-miR-2310, bta-miR-1814c, and bta-miR-452) in the key turquoise module and their

targeted DE genes. (C) mRNA–miRNA network of the top two DE genes and the targeting DE miRNAs. DE mRNA and miRNA results were achieved from our

previous study (31, 32). The green color indicates the down-regulated miRNAs and genes, while the red color indicates the up-regulated miRNAs and genes.

(Figure 8D). MYH3 plays an important role in the skeletal
muscle metabolism and the content of distinct types of skeletal
muscle fibers (53). Thus, we suggested that RSV had functions
on the type switch of the primary bovine myoblast fiber, which
was consistent with the previous studies of RSV effects on C2C12
cells (54, 55).

Skeletal muscle development is elaborately regulated by
myogenic regulatory factors (MRFs), growth factors (e.g., TGF-β
and IGFs), signal pathways (e.g., IGF1-Akt-mTOR and Smad2/3
pathway), and non-coding RNAs (miRNAs) (56–58). MiRNAs
play important roles in regulating myogenesis and regeneration,
hypertrophy and atrophy, muscle disease, and aging (59, 60).
In recent years, the identified functions of miRNAs in skeletal
muscle development have been widely studied in cattle. Our
study also identified 59 DE miRNAs in the turquoise module
including bta-miR-432 and bta-miR-365-3p. They were highly
expressed in skeletal muscle tissues and differently expressed in
the fetal and adult stages of Qinchuan cattle; they may participate
in the myoblast differentiation with vital roles (61, 62).

Network construction that integrates miRNA andmRNA data
to identify the complex transcriptional regulating mechanism
of RSV is more significant to the biological pathways for
primary bovine myoblast than a separate analysis. This study

found that ACTG1 could be targeted by the significantly RSV-
induced up-regulated bta-miR-432 that potentially activated
the IGF2/AKT signaling pathway to promote the proliferation
and differentiation of myoblasts (61) (Figure 9A). Interestingly,
the RSV-induced down-regulated bta-miR-2310 and bta-miR-
1814c could co-target 57 RSV-induced up-regulated DE genes,
such as DGAT1 that is the functional candidate gene for
the improvement of meat and carcass fatness quality in beef
cattle (63) (Figure 9B). DGAT1 was also positively connected
with the myoblast proliferation gene (PCNA) and negatively
related with PTEN, which regulated the skeletal satellite cell
proliferation and differentiation (64) (Figure 9B). The RSV-
induced miRNAs participated in the complex co-expression
networks to regulate primary myoblast differentiation through
affecting mRNA expressions, which subsequently participated in
regulating skeletal development, metabolism, and skeletal muscle
fiber type switch, thereby functionally regulating the cattle carcass
weight and meat quality.

CONCLUSIONS

In summary, RSV treatments had high correlations with the
turquoise module (0.91, P-value = 0.01) and blue module
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(0.93, P-value <0.01) using mRNA data, but only had high
correlations with the turquoise module (0.96, P-value <0.01)
using miRNA data. The two top GO terms of actin filament-
based process (GO:0030029) and actin cytoskeleton organization
(GO:0030036) and the two top KEGG pathways of regulation
of actin cytoskeleton (bta04810) and tight junction (bta04530)
were revealed using 2,579 DE genes in the turquoise module.
The mRNA–miRNA network was then constructed based on the
co-expressions of DE mRNA and miRNA in the key module.
Our study provided a better understanding of the roles of RSV
in inducing miRNA and of the characteristics of DE miRNAs
in the key co-expressed module in regulation of mRNAs and
revealed new candidate regulatory miRNAs and genes for beef
quality traits.
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