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In the past decade, the potential to translate scientific discoveries in the area of

regenerative therapeutics in veterinary species to novel, effective human therapies has

gained interest from the scientific and public domains. Translational research using a

One Health approach provides a fundamental link between basic biomedical research

and medical clinical practice, with the goal of developing strategies for curing or

preventing disease and ameliorating pain and suffering in companion animals and

humans alike. Veterinary clinical trials in client-owned companion animals affected with

naturally occurring, spontaneous disease can inform human clinical trials and significantly

improve their outcomes. Innovative cell therapies are an area of rapid development

that can benefit from non-traditional and clinically relevant animal models of disease.

This manuscript outlines cell types and therapeutic applications that are currently being

investigated in companion animals that are affected by naturally occurring diseases.

We further discuss how such investigations impact translational efforts into the human

medical field, including a critical evaluation of their benefits and shortcomings. Here,

leaders in the field of veterinary regenerative medicine argue that experience gained

through the use of cell therapies in companion animals with naturally occurring diseases

represent a unique and under-utilized resource that could serve as a critical bridge

between laboratory/preclinical models and successful human clinical trials through a

One-Health approach.
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INTRODUCTION

For centuries, starting at a time when physicians cared for both
human patients and their animals, human and veterinary health
have been intertwined. Veterinarians, physicians, and other
scientific health and environmental professionals, in an initiative
now referred to as “One Health,” have started capitalizing on
this approach to improve the lives of all species (1–5). Due to
shared commonalities such as pathophysiology of specific disease
states, co-morbidities, and extrinsic factors, which may influence
treatment outcomes in people and animals, a One Health
approach has the potential to better predict therapeutic success
and efficiently translate promising medical advances in human
and veterinary patients (2). Notably, the field of regenerative
medicine can benefit from the incorporation of companion
animals in the assessment of novel therapies and thereby change
the trajectory of care for human and veterinary patients (4, 6–8).

The significant number of failures of phase II and III human
clinical trials in reproducing the success of preclinical trials has
raised awareness of model fidelity (9–11). Rodent models play
an invaluable role in biomedical research; however, awareness of
the beneficial role of companion animals in translational research
is increasing. Naturally occurring diseases in these species
caused by complex interactions between multiple genes and
environmental factors may provide several distinct advantages
over induced models of disease for translational studies and for
discovery science for which acceptable models are lacking (9).
Currently, there are at least 462 canine, 223 feline, and 132 equine
potential models of human diseases associated with Mendelian
traits (www.omia.org) and many more that are not associated
with specific genetic causes that provide critical model features
of high fidelity.

Companion animals are relatively outbred with a longer
life-span and larger size permitting diagnostic and treatment

options that cannot be performed in rodent models and with
basic biochemical and physiological processes whichmore closely

resemble those in humans when compared to rodents (Figure 1)
(17). Imaging and longitudinal biologic sampling may not be
feasible yet in rodent models, which is particularly important
in monitoring for clinical efficacy and side effects associated
with novel therapies to minimize veterinary and human patient
risk. Furthermore, companion animals are exposed to external
and environmental factors, which influence disease development,
progression, impact of therapeutics, and subject these patients
to traumatic injury in a manner similar to human patients
(2, 5). Critical to the ongoing success and protection of these
valuable models is an increased demand for sophisticated,
cutting-edge care for companion animals and the resulting
surge in veterinary clinical trials. These veterinary clinical
trials not only provide valuable insight into efficacy and safety
of therapies for extrapolation in humans but improve the
standard of care for veterinary patients. Given the value of
a One Health approach, we argue that regenerative therapies
in veterinary species in translational and clinical practice are
beneficial for the efficient advancement of the field. The goal
of this commentary is to review the use of various cell types
and their derived products for regenerativemedicine applications

FIGURE 1 | Naturally occurring diseases are shared between companion

animal and human patients. Representative diseases in different organ

systems affecting multiple species are depicted. (1) Arthroscopic image of a

human knee joint affected by severe osteoarthritis. Osteoarthritis is one of the

most common orthopedic conditions affecting humans and companion

animals. (2) Heart of a dog affected by myocardial disease. Specific cardiac

disorders, well known in humans, are also seen in veterinary patients. (3)

Corneal endothelial dystrophy in the eye of a person is similar to that seen in

dogs. (4) Gastroduodenal endoscopy in a cat reveals inflammatory bowel

disease. Its appearance and pathogenesis have extensive similarities with the

human condition. (5) Periodontal disease in a person is similar to the disease

seen in dogs and cats with prevalence positively associated with increasing

age. (6) Tendon injury is a common sport injury, whether the athlete/patient is

human (seen here), horse, or dog. (7) Mandibular reconstruction to repair

critical-size bone defects using regenerative approaches in dogs are informing

similar approaches in humans (12–14). (8) Inflammatory brain disease in dogs

serves as a model for this human condition in clinical trials using stem cells. (9)

A cirrhotic liver arising from chronic hepatitis in a dog shares parallels with the

human condition. (10) Stem cell therapy for the treatment of chronic

gingivostomatitis in cats, a chronic oral mucosal inflammatory disorder,

provides hope for successful treatment of similar human disorders such as

lichen planus through immunomodulation (8, 15, 16).

in companion animals including practices from cell processing
and development to distribution and administration to assist in
improved translational applications.

CELL TYPES AND CELL-BASED
PRODUCTS

Mesenchymal Stromal Cells
The most well-studied cell type in veterinary medicine, ex-
vivo expanded mesenchymal stromal cells (MSCs) are plastic-
adherent cells that have regenerative and immunomodulatory
properties via paracrine activity (18). When maintained in
serum-supplemented media, plastic-adherent MSCs replicate
quickly and maintain anti-inflammatory, angiogenic, and
regenerative properties (18). The source tissue should be
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identified when discussing MSCs because cells from varying
sources have differing properties. Well-accepted acronyms for
tissue of origin include bone marrow-derived (BM-MSC),
adipose-derived (AD-MSC), and umbilical cord tissue-derived
(UC-MSC) (19). MSCs derived from all of these tissue types have
been investigated in companion animal models for the treatment
of a variety of diseases, from osteoarthritis to inflammatory
bowel disease (IBD). To best use data from these spontaneous
animal models, both the disease and MSCs should be thoroughly
characterized. MSCs from some animal species can have variable
properties when compared to other species such as humans, and
any differences should be evaluated for their potential impact
on outcomes (20). When using MSCs, the International Society
for Cell and Gene Therapy (ISCT) recommends that an array of
functional assays be included that reflect the expected functional
benefit when used therapeutically (19).

Specialized Immune Cells
First approved by the U.S. Food and Drug Administration (FDA)
in 2017 to treat B-cell acute lymphoblastic leukemia (B-ALL)
and diffuse large B cell lymphoma (DLBCL), chimeric antigen
receptor T cells (CAR-T) therapies are one of the most promising
new treatments for cancer (21, 22). CAR-T cell therapies use
the patient’s T cells modified by gene therapy to express a
recombinant receptor that allows targeted cytolysis. Based on
the positive and negative experiences of using CAR-T cells,
other specialized immune cells, such as natural killer (NK) cells,
are also being evaluated as novel cancer treatments. Despite
their promise, therapeutic obstacles and optimal management
of significant side effects for these therapies remain issues to
overcome (21, 22). Although rodent and primate models may
be critical in initial development, these preclinical models fail to
capture some critical aspects of human disease and experiences;
spontaneous canine cancers complement these models in testing
and optimizing the safety and efficacy of therapies including
feasibility, toxicity profiles, immune correlates, and outcomes
(21, 23). In doing so, these therapies can provide new treatment
options for canine patients and can lead to dual species product
approvals, i.e., using the animal data to support “go/no-go”
decisions and regulatory approval of both the veterinary and
human product (Figure 2). Canine CAR-T cells have been
developed by several laboratories and have been used in a small
pilot study in dogs with advanced DLBCL (22–24).

Pluripotent Stem Cells
Pluripotent stem cells (PSCs) can be maintained in vitro
indefinitely under the appropriate culture conditions and give
rise to all somatic and germ cells within the adult organism. The
most stringent biologic assay of pluripotency is the tetraploid
(4N) complementation assay in which putative PSCs are injected
into a 4N blastocyst embryo that is then transplanted into a
surrogate mouse mother (25). The pup that will be born will
be composed of the stem cell progeny cells exclusively. Human
PSCs cannot be tested as such due to ethical reasons and are
typically tested for their ability to form teratomas once injected
into an immunodeficient mouse recipient, proving the PSC
capacity to form tissues of all three embryonic layers: endoderm,

mesoderm, and ectoderm. PSCs were originally isolated from
the inner cell mass of the blastocyst embryo, but in 2006 a
method to reprogram adult, somatic cells into embryonic stem
cell (ESC)-like cells was discovered (26). These so-called induced
pluripotent stem cells (iPSCs) have revolutionized the field of
regenerative medicine and personalized medicine because this
technology has enabled the generation of autologous synthetic
replacement tissues to cure numerous devastating diseases.

Research of veterinary species-specific PSC biology is in its
early stages, and species-specific regulators of pluripotency are
poorly understood (27). While several groups have reported on
the generation of canine (28–31), feline (32) and equine (33, 34)
ESCs and iPSCs, robust and reproducible cell lines and protocols
are still elusive. A pioneering clinical trial investigating the use of
canine iPSC-derived neuronal progenitor cells for chronic spinal
cord injury in two pet dogs was recently published (35). Findings
indicate that transplanted progenitor cells did not form a tumor;
however, no clinical or electrophysiological improvements were
noted on follow-up examinations.

Organoids
Organoids are ex-vivo generated 3 dimensional (3D) cell
structures that resemble an organ structure and cellular
complexity (36). They have recently become of interest to the
field of regenerative medicine as they could potentially mimic
the organ of interest in vitro better than traditional 2D culture
systems. These systems are preferred because 2D systems do not
accurately reflect the response of organs to therapies or represent
the safety or “tolerability” of certain pharmaceuticals (37). If
stem cells can be utilized to form the organ of interest through
stimulation in a microniche environment, which forms the tissue
that composes the organ, more efficient and affordable studies
can be done to determine the efficacy of treatments. Several
groups have produced organoids from veterinary species, such
as feline liver organoids to model hepatic steatosis (38), canine
urinary bladder organoids to study muscle-invasive bladder
cancer (39), and others (40).

Exosomes/Extracellular Vesicles
Extracellular vesicles (EVs) are secreted by most cell types,
and their function is in facilitating intercellular communication.
They include exosomes, microvesicles, and apoptotic bodies,
which have important therapeutic potential in controlling
inflammation, enhancing regeneration, and repairing injured
tissues (41). EVs derived from stem cells most likely have the
same functions as the stem cells but avoid issues of potential
immunogenicity that are often perceived as important in cellular
therapies. EV’s have been studied in many applications such as
regenerative therapies, drug delivery, and immunomodulatory
therapy (42). For example, EVs from canine AD-MSCs have
been investigated in a mouse model of IBD, which spontaneously
affects humans, dogs, cats, and horses (43).

CELL PROCESSING

Since every part of cell handling and processing can affect cellular
phenotype, it is critical that standardized, detailed protocols are
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FIGURE 2 | Comparison of the US FDA approval process for human and veterinary cell-based products and opportunities to use data from naturally occurring

models for dual species product approval. (A) Prior to conducting clinical investigations, an Investigational New Drug (IND) or Investigational New Animal Drug (INAD)

application is filed with FDA Center for Biologics Evaluation and Research (CBER) or Center for Veterinary Medicine (CVM), respectively. For efficiency, INitial Targeted

Engagement for Regulatory Advice on CBER producTs (INTERACT) and pre-IND meetings on the human side and Pre-Investigation Development (PID) meetings

under the Veterinary Innovation Program (VIP) may be requested; for those wishing to pursue ‘dual species product approval’, i.e., using animal data for regulatory

approval for both the veterinary and human product, it may be helpful to meet with both Centers early in the process. For veterinary drugs, clinical studies are not

broken into phase 1, 2, and 3 studies as in human medicine. (B,C) Including appropriate naturally occurring/spontaneous animal models in the human drug

investigation process (T0.5) can better inform whether proceeding to human clinical studies is worthwhile and, with planning, can not only save time and money but

may lead to dual species product approval without significant extra investment. Once clinical studies have been completed, human drugs require additional

submissions such as a Biologics License Application (BLA) or New Drug Application (NDA) for FDA review; veterinary products require submission of a New Animal

Drug Application (NADA). Once a product receives FDA approval, post-approval monitoring must be performed to ensure continued safety and efficacy. For more

information see: Lee MH, Au P, Hyde J, et al. “Translation of Regenerative Medicine Products into the Clinic in the United States: FDA Perspective.” Translational

Regenerative Medicine, edited by Anthony Atala and Julie Allickson, Elsevier Inc., 2015, 49–74.

developed. Such protocols allow accurate assessment and design
of comparative studies, which can help explain variable and
unexpected outcomes and direct future studies, best practices,
as well as scaled-up manufacturing. It is critical to acknowledge,
identify, and understand cellular differences between species
in order to develop species-specific cell processing protocols.
Key variables include media (incl. fetal bovine serum (FBS)),
oxygen, pH, cell culture substrate, cell seeding density, passaging
frequency, harvesting, preservation, and distribution chain

methodologies. This in turn highlights an important caveat with
regards to the One Health approach in that one cell type working
in one animal species may not be directly translated to a similar
human type or a human condition. While all model systems have
inherent limitations, the incorporation of naturally occurring
disease in veterinary species along with traditional pre-clinical
animal models of disease into a novel translational bio-medical
research paradigm, may increase the predictive value of such data
and its applicability to human medicine (44, 45).
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Culture Conditions
The impact of culture conditions on cell growth and function
cannot be overstated. FBS is highly variable in content and
potency from lot to lot, and its use can result in variability in
culture outcomes, may be a cause of adverse reactions in vivo and
transmission of infectious agents, and has raised animal welfare
concerns (46, 47). For these reasons, serum-free and xeno-free
media are used for cell processing of human cells used in clinical
studies. The development of species-specific, serum-free media is
needed in veterinary medicine. Oxygen tension is another aspect
of cell culture, which has not received the same attention in
veterinary cell processing protocols as it has in human protocols
despite the role it plays in cell health and phenotype. Ambient air
oxygen tension is hyper-physiologic and has been associated with
reduced potency and increased cytogenetic abnormalities (48).

Fresh vs. Cryopreserved
The utility of freshly harvested cells compared to thawed cells
in regenerative applications remains a topic of debate. Several
studies have shown that cryopreservation impacts cell function
even when cell viability is high and surface markers are preserved
(49, 50). The significance of the effects of cryopreservation
may depend on the cryopreservation methods used, the cell
application/desired outcome, and the species. Themethod details
should be disclosed in publications, and viability, as well as
functional assays, should be considered to assess the cells used
in clinical trials.

Manufacturing and Shipment
Practical manufacturing of cell therapy products will require
scalable systems, which can be broadly classified as static or
dynamic in nature. Static systems include T-flasks and stacked
plate systems, which, while simple to operate, are labor-intensive
and do not allow for great control of culture conditions.
Alternatively, dynamic systems, including bag bioreactors,
stirred suspension, and vertical-wheel bioreactors, are much
more amenable to scale-up and automation. Shipment, which
includes the shipping container and suspending agent as well
as temperature, time, and movement, can similarly significantly
affect cell viability, sterility, and function. Methods to test and
ensure cell viability, quality, and sterility need to be implemented
for all cell types and species as studies have previously noted
significant variability in cell viability that likely affected study
outcomes (51). An additional need and challenge is to investigate
sustainable methods of providing cell therapies for all researchers
and manufacturers in the field: decreasing the environmental
impact of cell therapies increases the potential for their use, helps
decrease the significant cost of providing these therapies, and
decreases the counter-productive negative health impact these
therapies have on the intended recipients.

QUALITY CONTROL

Similar across all species and applications, effective, large-scale
use of cell therapies requires quality controls similar to other
drug products but with some additional challenges. Quality
control must be assessed from the early stages with screening

of donors, through careful monitoring during processing, and
ultimately with performance, sterility, potency, and functional
assays of the final, delivered product. Donor screening is
dependent on species and risk assessment and can draw from
experience and techniques used for safe blood transfusion and
organ transplantation to decrease spread of infectious disease
and to identify optimal cell donors. Specific cell therapies may
require additional donor screening techniques, such as testing
for chromosomal abnormalities in PSC lines, to determine
maximum efficacy (52). Sterility can be assessed by direct
observation of cell morphology, growth characteristics, and
visual presence of infectious organisms as well as culture
at various stages in product development including the final
product at the time of delivery. However, challenges exist
regarding the need for reliable, rapid microbial testing methods
to allow safe and timely product release (53). Challenges
also exist in determining the best methods for assessing cell
quality, function, and potency. Validated, feasible, and clinically-
relevant assays are needed and may have to be product-specific
considering the variability noted in tissue type, species, and
disease application (54). Continued evaluation of the target
and off-target effects and mechanisms of action of individual
cell therapies are needed to provide additional information to
evaluate short- and long-term safety and will greatly increase the
potential for cell product approval.

CELL DELIVERY

Cell delivery, survival, integration, and functionality are all
critical in the long-term effectiveness of cellular therapies. The
first decision is the administration route, which can be systemic
or local. Systemic delivery has the advantage of being easier,
but cells will be transported non-specifically to many areas
of the body unless they are modified to home to specific
locations. Alternatively, cells may be delivered directly to the
desired site of action: injected into a defect (i.e., into a
tendon or ligament defect where there is a core lesion and
in which case there may be up to 95% cell retention) or
transplanted as either a single cell suspension, as suspended
cell aggregates, as micro-encapsulated clusters, or as tissue-
engineered constructs. In the case of suspended single cells
or aggregates, the viscosity, composition, and temperature-
dependent behavior of the substrate can bemanipulated to ensure
fast delivery and high viability. In the case of encapsulated
or tissue-engineered cell delivery, the physical, chemical, and
structural properties of the biomaterial can be tailored to ensure
the correct mechanical, chemical, and biological functioning
of the cells/tissues. The size of companion animals allows
investigation of all translationally applicable methods of cell
delivery, which is not always feasible in preclinical laboratory
animal models.

There has been growing interest in recipient characteristics
and the ways that the variations in major histocompatibility
complexes (MHC) may affect the survivability of cell products
when delivered as therapies into several species (55, 56). Recent
literature insinuates that repeated injections of MSCs of differing
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haplotypes may determine the efficacy of treatments (57). More
research in this area is forthcoming.

IMMUNOGENICITY ASPECTS OF CELL
THERAPY

Immune recognition and subsequent destruction of allogeneic
cells administered for therapeutic purposes is a topic of great
interest in the regenerative medicine field. While allogeneic
MSCs were considered to be immune-privileged, numerous pre-
clinical, veterinary and human clinical studies have demonstrated
that while MSCs employ multiple immune-evasive mechanisms,
administered MSCs induce an immune response that is, at
least partially, responsible for the lack of long-term engraftment
(58, 59). Specifically, several groups demonstrated the formation
of alloantibody in multiple species including cats, horses, pigs,
macaques, rats, and humans in response to systemic infusion
of allogeneic MSCs (58, 60, 61). However, the significance of
such antibody development is currently unknown with regards
to clinical outcome as patients demonstrate various clinical
improvement despite antibody development and repeated
dosing. The innate immune system, which has a key role in the
initiation of the adaptive response, is further activated by the
administration of the allogeneic MSCs (62, 63). The decreased
immunogenicity of allogeneic MSC is driven by multiple
mechanisms. MSCs express low levels of MHC class I and no
MHC class II molecules when not activated. Moreover, human
MSCs also express HLA-G, a non-classical MHC molecule
that suppresses effector leukocyte function and was initially
described in placental trophoblasts as a key player in maternal
immune tolerance (64, 65). Moreover, MSCs secrete numerous
paracrine factors (e.g., IDO, NO, PGE2, TGF-β, PD-L1 etc.) that
shift classical monocytes to an immunomodulatory phenotype,
suppress effector T cell activation and proliferation, and promote
the differentiation of T regulatory cells.

While MSCs treatment delivers a therapeutic benefit in
the absence of long-term engraftment (likely due to paracrine
mechanisms), immune tolerance that enables long-term
engraftment is critical for the transplantation of iPSC/EC-
derived cells and tissues from mismatched donors. When
human iPSCs were initially reported in 2007, hope for personal
regenerative medicine application was on the horizon (26, 66).
However, autologous iPSC treatments are not feasible at
this time due to the high costs associated with the creation,
characterization, and validation of iPSC lines from individual
patients. As such, much effort is invested in efforts to create
universal off-the-shelf iPSC-derived grafts. Such efforts include
the creation of cryo-banks for HLA-homozygous iPSC lines to
enable the clinical use of MHC-matched iPSC-derived grafts
(67, 68). Efforts to create a universal iPSC line via genetic editing
are further underway. Specifically, most research is targeting the
deletion of MHC I to prevent cytotoxic CD8T cell-mediated
toxicity and at the same time to avoid NK attack that is driven by
the lack of MHC I expression. Deletion of β2M and CIITA genes
to prevent MHC-I expression and the induction of NK inhibitors
such as HLA-E and CD47 have been reported (67, 69–71).

Companion animals such as dogs, cats, and horses may represent
a very attractive platform to study the immune compatibility
of genetically modified universal iPSCs given the presence of
well-defined breeds along with a more outbred population.

CURRENT VETERINARY CLINICAL TRIALS
USING CELL-BASED THERAPIES

While numerous peer-reviewed manuscripts describing the
use of MSCs in various veterinary clinical trials have been
published, the Center for Veterinary Medicine (CVM) at the
FDA has not yet approved any MSC or other animal cell-based
therapy product for clinical use at the time of manuscript
preparation (March 2021). Readers are referred to an informative
recent paper reviewing veterinary clinical trials in the field of
regenerative medicine (6). Currently, no central, searchable
system exists for veterinary clinical trials. Animal studies are
not listed on clinicaltrials.gov, and there is no requirement to
publicly list animal clinical studies. It is therefore difficult to
gain an overview of the field. Of note, the American Veterinary
Medical Association (AVMA) operates an Animal Health
Studies Database (AAHSD) that allows investigators and the
general public to search for veterinary clinical trials, though
trial registration is voluntary (https://ebusiness.avma.org/aahsd/
study_search.aspx). A search via this database at the time of
publication yielded no active studies and nine completed studies
in the field of regenerative medicine. The FDA has recently
launched a webpage where animal studies using cell-based
products filed with FDA CVM can be listed (https://www.fda.
gov/animal-veterinary/development-approval-process/clinical-f
ield-studies-animal-cells-tissues-and-cell-and-tissue-based-prod
ucts-actps). Participation is voluntary and is provided as a
service by FDA to help facilitate study enrollment for clinical
trials with an active FDA file that is in good standing. Other
regulatory bodies are encouraged to provide similar listing
services to aid in enrollment of clinical trials as well as providing
an overview of the field. Active discussions focused on the
development of veterinary cell-based therapy registries to track
study information are ongoing.

EFFECTIVE USE OF ANIMALS MODELS

Animal models of disease have had an undeniable contribution to
human research, providing significant contributions to medical
understanding and advancement and preventing potential
human harm. However, preclinical animal research has an
unpredictable translation to humans, which raises ethical
concerns as well as represents a large use of resources with
no measurable benefit. Robinson et al. noted three areas of
concern with animal models of disease: study design and
data analysis, inherent heterogeneity of animal and human
subjects, and the translation of preclinical animal trials to human
clinical trials (72). Several other papers have highlighted similar
concerns including issues with induced animal disease models
and concerns over the impact of captivity on study results (73).
As noted above, natural animal disease models in companion
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animals can overcome many of these concerns, including
providing beneficial treatment to the animals themselves, but
one would undermine their value by assuming they are
without limitations. There are generally four options for disease
models available today: human subjects research, induced
disease models, artificial models, and naturally occurring animal
disease models. Each of these models has its strengths and
weaknesses, which can vary for the disease being studied.
For example, spontaneous disease models can have increased
variability, require longer study time, and, in the case of
regenerative medicine, there is known variability in cell
function between species (74). To truly optimize resources and
outcomes, veterinarians, physicians, researchers, statisticians,
and regulatory agencies need to work together to define needs,
characterize models, share knowledge and information, design
strong and relevant studies, and correctly assess the study
results. Ultimately, optimal outcomes may require combining
several models in a thoughtful and coordinated fashion to create
impactful, sustainable translational applications.

CONCLUSIONS AND CONSENSUS
STATEMENT

The development of therapeutic cell products has unique
challenges that require a non-conventional, translational research
approach and regulation. Specific challenges that are unique to
cellular therapy include cellular engraftment, biocompatibility,
and graft vs. host immune response.Moreover, given the inherent
capacity of stem cells to self-renew and differentiate, stem
cell-derived cellular products present unique safety challenges
with delayed neoplastic transformation as a primary concern.
Transplantation of human stem cell products into animal models
does not model host response or graft behavior, regardless of
the integrality of the recipient immune response. Given the
critical significance of host-graft immune compatibility, a novel
approach is warranted in which not only the disease of interest
needs to be modeled but also the candidate therapy/cells.

We propose a novel paradigm for translational research of
cellular therapeutic products that integrates a selective and highly
informed use of spontaneous disease in animals. Veterinary

clinician scientists are motivated and trained to facilitate such
a paradigm shift toward a One Health approach. Academic
veterinary hospitals, centers for veterinary clinical trials, and
basic science laboratories are primed to provide the knowledge,
infrastructure, and skill required to design and successfully
execute meaningful translational research projects.

Importantly, current funding allocated by the NIH and
other medical research funding agencies for such translational
research projects is insufficient to capitalize on the potential
benefit to human and veterinary patients. Addressing the
immediate and critical need for funding and regulatory agencies
to endorse companion animal, translational cellular therapies
and to provide competitive monetary support for translational
medicine research teams rooted within veterinary sciences would
provide the means to actualize the potential of cellular therapies.
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