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Bovine viral diarrhea virus (BVDV) is an economically important disease in Australian beef

farming. The disease typically results in low-level production losses that can be difficult

to detect for several years. Simulation modeling can be used to support the decision to

control BVDV; however, current BVDV simulation models do not adequately reflect the

extensive farming environment of Australian beef production. Therefore, the objective of

this study was to develop a disease simulation model to explore the impact of BVDV on

beef cattle production in south-east Australia. A dynamic, individual-based, stochastic,

discrete-time simulation model was created to simulate within-herd transmission of

BVDV in a seasonal, self-replacing beef herd. We used the model to simulate the effect

of herd size and BVDV introduction time on disease transmission and assessed the

short- and long-term impact of BVDV on production outputs that influence the economic

performance of beef farms. We found that BVDV can become established in a herd

after a single PI introduction in 60% of cases, most frequently associated with the

breeding period. The initial impact of BVDV will be more severe in smaller herds, although

self-elimination is more likely in small herds than in larger herds, in which there is a 23%

chance that the virus can persist for >15 years following a single incursion in a herd

with 800 breeders. The number and weight of steers sold was reduced in the presence

of BVDV and the results demonstrated that repeat incursions exacerbate long-term

production losses, even when annual losses appear marginal. This model reflects the

short- and long-term production losses attributed to BVDV in beef herds in southeast

Australia and provides a foundation from which the influence and economic utility of

BVDV prevention in Australian beef herds can be assessed.
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INTRODUCTION

Endemic diseases are responsible for significant economic
losses in the Australian beef industry. A report commissioned
in 2015 indicated that bovine viral diarrhea virus (BVDV)
was the second-most economically significant endemic disease
affecting Australian beef production (1). BVDV is a small,
highly infectious, enveloped RNA virus of the genus Pestivirus
(2). Serological studies have shown that cattle in all states
across Australia are exposed to the virus, with a herd-
level seroprevalence between 48% (Tasmania) and 86% (South
Australia) (3). A review of BVDV in the eastern states of
Australia conducted in 2012 revealed that the national herd-level
seroprevalence of the disease has remained at ∼60% since 1967
(3, 4).

Loss of production in beef herds is typically characterized
by the reproductive effects of BVDV. Early embryonic death
and abortion as a result of virus exposure can lead to reduced
pregnancy rates and increased calving intervals (5). This effect
on reproduction can be severe if a naïve cattle population is
exposed to the virus, especially during the breeding period. In-
utero infection from 30 to 120 days gestation is likely to result in
the birth of a persistently infected (PI) calf (2, 6). PI calves are
the main source of viral persistence within a cattle population
and the presence of a single PI calf has been attributed to herd
seroconversion rates of up to 97% in a six-month period (7–10).
PI calves are also attributed with increased calf mortality, with a
35–50% probability of death or culling before one year of age (10).
In contrast, transiently infected (TI) animals (susceptible animals
that are acutely infected) only shed the virus for up to 14 days
and are generally subclinical, making them an inefficient source
of horizontal transmission between herds (6, 8).

In a herd with endemic BVDV infection, the reproductive
and immunosuppressive effects of the disease typically result
in low-level annual production losses which can be difficult to
detect, but the loss over several years can be significant (11).
The production losses attributed to BVDV can influence the
export market. Australia is the world’s third largest exporter of
beef products and is able to compete for global markets due to
superior disease status and production of high-quality products
(12). As an OIE-Listed disease, BVDV influences international
trade under the Sanitary and Phytosanitary Agreement (13, 14).
Strategies for the control of BVDV have become increasingly
important, with some countries using test and cull schemes and
others using a combined approach with vaccination (2, 15).

Despite these interventions, the success of nationwide control
of BVDV is highly variable and modeling has been used to
study country-specific disease dynamics and facilitate decisions
for disease control (16). Disease modeling can quantify the effect
of specific disease control measures on morbidity, animal health
and welfare, as well as economic impacts, effects on reproduction

Abbreviations: BVDV, bovine viral diarrhea virus; PI, persistently infected; TI,

transiently infected; NSW, New South Wales; B, bulls; CC, cull cows; WS, weaned

steers; WH, weaned heifers; FC, first-calving cows; MC, mature cows; CF, calf

at foot; BRD, bovine respiratory disease; GAM, generalized additive mixed; CV,

coefficient of variation; NZ, New Zealand.

and subclinical disease (17). Simulation modeling of BVDV has
been used by several countries to justify the implementation of
nationwide control and disease mitigation strategies (16, 18, 19).
However, dairy systems predominate the production industries
in most of these countries. Due to the role of PI calves in
BVDV transmission, differences in reproductive and calf-rearing
practices between dairy and beef production systems mean that
BVDV simulation models for the dairy industry do not reflect the
effect of the disease in beef systems (9).

Simulationmodels have been used to assess the effect of BVDV
in beef herds in Scotland, Ireland, United States and France (20–
24). These studies used modeling to assess the economic utility
of BVDV control strategies, as well as the benefits of on-farm
mitigation strategies (17). In the absence of an official national
BVDV control program, the responsibility of BVDV control in
Australia falls on individual producers. Therefore, the Australian
beef industry would benefit from a BVDV simulation model to
guide mitigation of the disease at farm-level. Existing BVDV
models simulate dairy production systems or beef systems in
which cattle are housed in close quarters for a portion of the year,
which is not typical of beef production in Australia. Han et al.
(25) illustrated a difference in the impact of BVDV on pastoral
beef farms when compared to other modeling studies, likely due
to differences in housing and farm management. These findings
demonstrate the need for country specific BVDV simulation
modeling that is able to reflect the management practices of
different beef farms.

The objective of this study was to develop a disease simulation
model to investigate the impact of BVDV on Australian beef
farms and inform the need for intervention in environments
typical of beef farming in southeast Australia. The study
compares the short- and long-term impacts of BVDV on beef
production to highlight the production losses that can occur in
the absence of disease prevention strategies.

MATERIALS AND METHODS

Simulation Model
A dynamic, individual-based, stochastic discrete-time simulation
model was created using the software R (26) to assess the effect
of BVDV on a beef herd representative of seasonal, single-
calving, self-replacing beef production systems in south-eastern
Australia. The annual production calendar is based on the “Beef
Calendar of Operations” published by the local government for
south-east NSW (27). Simulations in which BVDV transmission
was modeled (Scenario 1–3) were used to assess the short-
and long-term effect of BVDV on beef production parameters,
compared to a baseline scenario without BVDV (Scenario 0).
Mitigation strategies were not simulated. The total number of
infected animals was an additional output of interest for Scenario
1–3. BVDV transmission was characterized according to herd
size and timing of virus introduction, which also allowed for
comparison of simulation output parameters to published values
for external validation of the model.

On each day of the simulation (one time-step), the model was
updated in five stages: (1) disease transmission; (2) movements
between groups on the farm; (3) removal of animals (through
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FIGURE 1 | Schematic of the annual production calendar, animal movements and transitions between animal groups for the simulated beef herd.

deaths, culls or sales); (4) pregnancy status; and (5) addition
of animals (through purchases or births). Model parameters
including herd structure and contact rates are described below.
A Bernoulli process was used to model stochasticity for the
probability of daily infection, mortality risk, probability of
conception and daily probability of abortions. Sensitivity analysis
was conducted to assess the influence of model parameters on the
outputs of interest, as described below.

Herd Structure
The herd consisted of bulls (B), cull cows (CC), weaned steers
(WS), weaned heifers (WH), first-calving cows (FC) and mature
cows (MC). Each animal group was assigned to a single virtual
paddock (Paddock 1–5, respectively) with the exception of MCs,
which were split into age-related groups (≥ Paddock 6). The
maximum number of MC paddocks was based on the bull-to-
cow ratio and varied according to breeding herd size (minimum
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TABLE 1 | Parameters used to represent a self-replacing beef system in south-east Australia in a BVDV simulation model.

Parameter Value References

Breeding herd size 50, 100, 200, 400, 800 (28)

Heifer retention 0.20

Bull: cow ratio 1:20

Maximum cow age (years) 10 (29)

Bull cull rate (per year) 0.33 (30)

Age of first joining (days) 450 (31)

Oestrus interval (days) Uniform (18, 24) (32)

Uterine involution (days) PERT (36, 45, 55) (32, 33)

Gestation period (days) PERT (279, 283, 287) (34)

Annual probability of infertility

Heifers 0.02 (20)

Cows 0.08

Conception rate

Heifers 0.70 (35)

Cows (1st oestrus) 0.55

Cows (2nd oestrus) 0.67

Cows (3rd oestrus) 0.70

Natural abortion rate (annual) 0.035 (33)

Calf sex (male: female) 0.50 (20)

Calving target 0.90 (28)

TABLE 2 | Disease parameters used in a simulation model of BVDV in a self-replacing beef herd.

Parameter Value References

Probability of effective contact PI within-herd (pPI)
PERT (0.03, 0.11, 0.50)

Nj
(33)

PI between-herd (pPIk ) pPI × PERT (0.1, 0.2, 0.4) (20, 36, 37)

TI within-herd (pTI) pPI × 0.05 (33)

TI between-herd 0 (7)

Latency period (days) 4 (36)

Shedding period (days) PERT (7, 10, 14) (6, 36, 37)

Maternal antibody duration (days) PERT (120,180, 240) (36)

Conception rate (BVDV infected) Heifers 0.42 (35)

Cows (1st oestrus) 0.33

Cows (2nd oestrus) 0.39

Cows (3rd oestrus) 0.42

TI reduced fertility duration (days) U (42, 60) (38, 39)

Morbidity risk TI adult 1− e−(U (0.10, 0.3)
365 ) (40)

TI calf 1− e−(PERT (0.02, 0.24, 0.69)
365 ) (41)

Annual mortality rate Adult (ma) PERT (0.008, 0.017, 0.024) (28)

Healthy calf (mc) PERT (0.03, 0.045, 0.06) (33, 42, 43)

Morbid calf (mm) PERT (0.35, 0.5, 0.66) (10, 44)

Nj , Number of animals in group j.

twoMC paddocks andmaximum 32MC paddocks for a breeding
herd of 50 and 800 animals, respectively).

Figure 1 provides a detailed illustration of the annual
production calendar and animal movements used in the
simulation model. Bulls were distributed between the WH, FC
and MC paddocks (≥ Paddock 4) to simulate the start of the
breeding period (joining). An estrus counter for each individual

breeding animal (WH, FC and MC) was decreased by one unit
daily to simulate the duration of the estrus cycle, and was
predetermined from a uniform distribution of 18–24 days for
each individual animal (reproduction parameters are described
in Table 1). When the counter reached zero, the animal had a
chance to conceive (see Table 1). The probability of conception
for FC and MCs was dependent on their estrus cycle number
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and BVDV infection status (Tables 1, 2). WHs had the same
probability of conception for all estrus cycles because they did not
undergo uterine involution prior to joining. If conception did not
occur, the estrus counter was restarted. If the animal conceived, a
gestation period was assigned from a PERT distribution of range
279–287 (mode 283). At the start of every joining period, a fixed
percentage of cows and heifers were made infertile, to reflect the
expected infertility rate of heifers and cows (Table 1). To simulate
seasonal breeding, bulls were removed from theWH and FC/MC
paddocks at days 42 and 63 calendar year, respectively, based
on industry recommendations (45, 46). Bulls were randomly
selected and culled annually after the breeding period, according
to the annual bull cull rate and an average life expectancy of 3
years (Table 1).

Any WH that was not pregnant at day 126 following the end
of the breeding period (simulated pregnancy testing) was culled
from the herd (Figure 1). FC and MCs with a calf at foot (CF)
that were empty at pregnancy testing were culled at weaning (27).
CFs remained in the same group as their dam until weaning at
day 173 of the calendar year (6–9 months of age). At weaning, all
CFs were distributed into Paddocks 3 and 4, where they became
WS and WH, respectively. The WH bred in this season were
moved to Paddock 5 to become the new FCs and the previous
FCs were distributed to the MC paddock with the fewest animals.
If the breeding herd size was sufficient to meet targets in the next
joining period, the oldest MCs were moved to Paddock 2 and
became CCs, to be culled the following year at weaning (29).

A CF was added to the herd when the gestation counter
was equal to the breeding animal’s assigned gestation period,
signifying the end of gestation. In the absence of BVDV, a BVDV-
susceptible, healthy calf was produced with a 0.5 probability of
being male (20). The estrus counter for the breeding animal was
recommenced from between 36 and 55 days to represent uterine
involution, with the exception of FCs which were assigned an
additional 20–30 days of involution (33, 34). Any breeding
animal that did not produce a calf (due to abortion following
pregnancy testing) was culled after the calving period. One
month prior to joining, bulls were purchased to maintain a bull-
to-cow ratio of 1:20 (30). WH in Paddock 4 were selected for
retention based on live weight on day 336 of the calendar year,
prior to the joining period. The lightest WHs were removed from
the herd as sale animals if they were not required to maintain
breeding herd numbers (Figure 1). If numbers of replacement
heifers were not sufficient to maintain breeding herd targets, the
youngest CCs from Paddock 2 were moved back into the MC
paddocks for joining. All WS were removed from the herd as sale
animals at Day 15 of the calendar year at 14–16 months of age.
WS that were 380–500 kg satisfied the weight requirements for a
premium price at sale (47).

Disease Dynamics
Infection dynamics for BVDV were based on an extension of
the Reed-Frost model for individual-based, discrete-time disease
modeling (48). Disease transmission on any day was dependent
on the total number of effective animal contacts and the total
number of TI and PI animals present within the population.
Infection from a PI animal to a susceptible individual could

occur through direct contact between cattle within a group, or
via aerosols, vectors or fomites between groups (8, 9). Previous
studies have determined that spread from TI cattle to other
groups is negligible and therefore, transmission of the virus due
to contact with TI animals could only occur within a group
(7, 49).

Indirect transmission of BVDV has been demonstrated via
shared needles during vaccination and reused rectal gloves
during pregnancy testing (8) and therefore, increased probability
of infection during health management was reflected in the
simulation model through vaccination and pregnancy testing.
Four vaccinations were simulated annually (Figure 1): initial CF
vaccination (Day 42), second CF vaccination (Day 63), booster
CF vaccination at weaning and booster B, WH, FC and MC
vaccination prior to joining (Day 336).

When accounting for all routes of transmission of BVDV, the
daily risk of infection for an individual animal in group j (λj) is
described by equation 1:

λj = 1− ((1− pPI)
IPIj × (1− pTI)

ITIj × 5k;k 6=j(1− pPIk)
IPIk

×(1− pPI)
IPIh

∗
× (1− pTI)

ITIh
∗
)

(1)

∗For animals involved in management practices on that day.
in which: IPIj = the number of persistently infected animals

within paddock j; pPI = the probability of daily effective contact
between individuals for PI transmission within paddock j; ITIj =
the number of transiently infected animals within paddock j; pTI
= the probability of daily effective contact between individuals
for TI transmission within paddock j; IPIk = the number of
persistently infected animals in paddock k; pPIk = the probability
of daily effective contact from PI animals in paddock k to animals
in paddock j (k = 1, . . . , n, k 6= j). IPIh and ITIh represent the
number of PI animals and the number of TI animals involved
in a health management practice, respectively. The value for pPI
in the current model study was derived from values used in
Han, Weston (33), and the values for pPIk and pTI were scaled
according to pPI (Table 2).

Morbidity, Mortality and BVDV Effect on
Pregnancy
BVDV infection in TI females can cause oophoritis which will
reduce the probability of conception (38, 39). In the model, non-
pregnant animals that recovered from transient infection had
a reduced probability of conception (the same probability of
conception as an animal with active BVDV infection) for 42–60
days (Table 2). If an animal became infected while pregnant, the
likelihood of abortion, development of a PI calf, weak-born calf
and the probability of a calf born with permanent immunity to
BVDVwas based onMcCormick 2010 (Supplementary Table 1).
Breeding animals that recovered from transient infection prior to
conception produced naïve calves that received passive immunity
from colostrum. The duration of maternal immunity was 120–
240 days, following which the calf became fully susceptible (36).
A pregnant PI animal that did not abort their conceptus always
produced a PI calf (6).

The daily individual mortality risk (mr) was derived from the
relationship between risks and rates as described by Vynnycky
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TABLE 3 | Scenario and introduction time categories for within-herd simulation of

BVDV in an Australian beef herd.

Scenario Description

Scenario 0 No disease introduction

Scenario 1 Introduction of a single PI animal every 15 years

Scenario 2 Introduction of a single PI animal every 6 years

Scenario 3 Introduction of a single PI animal every 3 years

Introduction time

1 Day 1–73

2 Day 74–146

3 Day 147–219

4 Day 220–292

5 Day 293–365

TABLE 4 | Characteristics of BVDV transmission for a single PI introduction

(Scenario 1) in a simulated beef herd.

Input variable Iterations with

infection

established (%)

Iterations* with virus

self-elimination (%)

Overall 2,983 (59.66) 2,739 (91.82)

Breeding herd size 50 546 (55.70) 546 (100.0)

100 563 (56.40) 560 (99.50)

200 606 (59.70) 585 (96.50)

400 611 (60.00) 539 (88.20)

800 657 (66.40) 509 (77.40)

Introduction time 1 911 (91.60) 838 (92.00)

2 752 (73.90) 687 (91.40)

3 318 (31.60) 293 (92.00)

4 421 (41.40) 388 (92.20)

5 581 (59.90) 533 (91.70)

*Only iterations in which infection was established are included.

and White (48):

mr = 1− e(−
mi
365 ) (2)

in which: e= Euler’s number andmi = the annual mortality rate
based on the animal type (ma, mc and mm for adults, healthy
calves and morbid animals, respectively). The mortality rates of
adult cattle and healthy calves were derived from industry data
from Meat & Livestock Australia (28) (Table 2). Most studies
suggest that approximately half of all PI calves die within the
first year (50, 51). Houe et al. (10) and McCormick et al. (44)
found that the annual mortality rate of PI calves was ∼35 and
66%, respectively. Therefore, annual PI calf mortality was based
on a PERT distribution with 50% as the mode (range 0.35–0.66).
Weak-born calves will exhibit high mortality in the first week
of life, as well as poor growth rates up to weaning (6, 52, 53).
Therefore, in the current model, weak-born calves had the same
mortality rate as a PI animal until they reached seven days
old. The mortality risk of a TI individual was not affected by
BVDV infection.

Immunosuppression due to BVDV infection can increase
the risk of secondary infections, causing calf diarrhea and
bovine respiratory disease (BRD) (40, 54, 55). However, due to
the variations in management practices and BVDV incidence
between farms, it is difficult to accurately model the effect of
BVDV on the incidence of specific secondary infections, or the
effect of secondary infection on mortality. In the current model,
risk of secondary infection due to immunosuppression from
BVDV was characterized as a reduction in growth rate due to
morbidity. All weak-born calves and all but 10% of PI calves were
morbid throughout their entire lives [Taylor and Rodwell (52)
reported 3 out of 30 PI animals with similar growth performance
to healthy cattle]. TI calves <six months old that were infected
with BVDV after birth had a risk of becoming morbid for the
duration of their infectious period (Table 2). Transient infection
is subclinical in 70–90% of adult cattle (40). Therefore, TI
adults had a uniform probability of 0.1–0.3 of becoming morbid
throughout the duration of their infectious period.

Modeling Daily Liveweight Gain
The model simulated live weight gain for CF, WS, WH and
FC. Daily weight gain was calculated as an animal-specific
percentage of individual animal live weight, derived from
industry standard targets (Supplementary Table 2). Calves were
assigned a birthweight from 32 to 40 kg based on the gestation
period of their dam, with longer gestation periods producing
heavier calves at birth (46, 56, 57). The growth rate of calves
reared by an FC is 10–15% less than that of calves reared by
an MC (58). Furthermore, female calves will grow about 5%
slower than their male siblings until 400 days of age (59). These
variations in weight gain were reflected in the model using
animal-specific growth percentages for CF steers, heifers, and
FC-reared calves (Supplementary Table 3).

An outbreak of BVDV on a beef herd in central Queensland
Australia recorded significant variability in the weight of PI
grower steers at weaning and sale (52). There is also evidence
that TI animals and calves born weak following intra-uterine
infection exhibit sub-optimal growth rates compared to virus
negative animals (40, 54, 60). In the current model, weak-born
and morbid PI calves had reduced daily live weight gains until
450 days of age (Supplementary Table 2) (52, 61).

Disease Simulation Scenarios and Model
Outputs
Simulations commenced at the start of joining and prior to
each scenario (Table 3) the model was run for a five-year burn-
in period to reach a stable herd population. Initially, beef
production was simulated for a period of 15 years without BVDV
to obtain baseline production outputs for an uninfected herd
(Scenario 0).

In Scenario 1, a single animal (< 3 years old) was randomly
selected and converted to a PI animal to simulate introduction of
a PI animal into the farm from an external source. The model
was run for a simulation period of 15 years with no further
introduction of the virus. The day of BVDV introduction was
recorded and categorized according to the time of year (Table 3).
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FIGURE 2 | The maximum annual BVDV infections following a single PI introduction in a simulated beef herd. Line plots illustrating the influence of (A) introduction

time and (B) breeding herd size on the number of animals (per breeding animal) that became infected by BVDV in the highest year of BVDV transmission. Points

represent the median value, while error bars represent the 95% range.

Scenario 1 was used to examine the impact of herd size and
introduction time on the infection dynamics of BVDV.

Scenario 2 and 3 examined the impact of BVDV introduction
frequency by simulating the introduction of a PI animal at regular
intervals over a 15-year period (Table 3). As with Scenario 1,
a random animal from the herd was converted to a PI animal
in the first year of the simulation, and then again at 6- and 3-
year intervals for Scenario 2 and 3, respectively. Each subsequent
disease introduction event in Scenario 2 and 3 occurred on the
same day of the calendar year to aid internal validation and
interpretation of results.

Model outputs of interest were those that contribute to the
economic performance of an Australian beef herd, including:
the number of heifers retained for breeding, the number of
cows culled, the number of bulls purchased, the annual number
of steers sold and the number of those steers that were under
the target weight to obtain a premium price at sale (47). It is
assumed that the number of surplus heifers sold would follow
the same trend as steer sales (due to indiscriminate calf deaths)
and so, heifer retention was used as a surrogate of heifer sales.
An increase in heifer retention will not only imply a reduction in
the number of surplus heifers sold but can also be an indicator
of poor reproductive performance in the breeding herd when
mature cows are sold due to poor conception rates (46).

PI animals are the main contributors to BVDV transmission
and persistence within a herd. Therefore, if a PI animal was
born following disease introduction, we characterized this as

establishment of infection within the herd. Self-elimination of the
virus was classified as the last year that any infected animals (TI
and PI animals) were present in the herd. The cumulative number
of infected (TI and PI) animals was also of interest in those
scenarios with BVDV transmission. Simulations were repeated
for all scenarios until the model outputs reached convergence,
with input variables changing every iteration according to the
distributions in Tables 1, 2.

The effect of disease introduction frequency on performance
was also demonstrated by taking the “per breeding animal”
difference in outputs from Scenarios 1–3 compared to Scenario
0, at the cumulative 5-, 10- and 15-year values for all outputs of
interest to enable direct comparisons between herd sizes.

Model Validation
Internal validation of the model was achieved using the
rationalism and the tracing methods (36). Implementation
without disease introduction ensured that the breeding herd
size and replacement practices were performing as expected,
given industry-derived parameters, and to determine the
burn-in period of the model. Implementation with BVDV
transmission tested variation in outputs in response to variation
in transmission parameters. Individual animals were followed
throughout the simulations to identify inconsistencies in model
activity. The disease status of each newborn calf was recorded
annually to ensure that vertical transmission aligned with the
disease status of the herd.
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FIGURE 3 | Year of BVDV elimination in those iterations with virus establishment following a single PI introduction in a simulated beef herd. Boxplots illustrating the

year at which BVDV self-eliminated from the herd following virus introduction at different times of the production calendar (A) and in different herd sizes (B). Boxes

represent the 25 and 75% percentiles while whiskers represent the 2.5 and 97.5% percentiles. Outliers removed for improved scale and readability. Asterisk (*)

indicates that no self-elimination occurred in the 95% range.

External validation was achieved by comparing the
model outputs to published data from the BVDV literature.
Transmission characteristics of the virus and model outputs such
as pregnancy risk, abortion rate and calf deaths were validated
against corresponding values from Australian BVDV outbreaks
using the modeling scenario, breeding herd size and introduction
time that best fit the context of published cases.

Convergence Testing
The number of iterations required to achieve convergence
for each modeling scenario was identified using the method
described in Brookes et al. (62). Briefly, the coefficient of variation
(CV; standard deviation/mean) of a sample from each model
output was calculated. This was repeated, increasing the sample
size each time, causing CV to approach zero until the number of
iterations (sample size) was sufficient to achieve output stability
(CV < 0.025; the lower part of a 95% confidence interval).
Convergence testing was performed on the 15-year cumulative
values (expressed as a proportion of breeding herd size) of the
main model outputs of interest for each scenario.

Sensitivity Analysis
Sensitivity analysis was used to determine the influence of
input variables on the outputs of the scenario with the most
variation (as determined by convergence testing). Only input
variables that changed with every iteration of the model (based
on a uniform or PERT distribution) were included in the

analysis, as well as breeding herd size and introduction time
(Supplementary Table 4). Collinearity was expected between the
parameter for “number of effective PI contacts within a paddock”
and “number of effective PI contacts between a paddock” and
therefore, the latter was omitted from the analysis. The 15-year
cumulative values for the number of infected animals, as well
as the outputs contributing to economic performance in beef
farming, were used in the sensitivity analysis.

Scatter plots were used to assess for collinearity between
input parameters. Generalized additive mixed models [GAM
model; gamm function in the mcgv package (63)] with a negative
binomial link function were used to model the relationships
between input and output data with a smooth function to account
for non-linear relationships between some input parameters and
model outputs. The GAM model then was used to predict the
minimum and maximum effect of each independent variable on
the model outputs (while all other independent variables were
fixed at their median value), which were checked visually to
ensure that the GAMmodel results were sensible.

RESULTS

Convergence
The outcome of convergence testing for all scenarios is illustrated
in Supplementary Figures 1–4. The output with the most
variation over 15 years was the total number of infected animals,
followed by the number of bulls purchased. It was deemed that
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FIGURE 4 | Daily infection dynamics for different BVDV introduction scenarios over 15 years in a simulated beef herd. Introduction of a single PI animal in the first year

of the simulation (Scenario 1; A), introduction of a single PI animal every 6 years (Scenario 2; B) and introduction of a single PI animal every 3 years (Scenario 3; C) for

15 years. Percentage of daily viremic (TI and PI) animals (red) and daily seropositive animals (blue), with maternal immunity not represented. Solid red and blue lines

indicate the median value for viremic and seropositive animals, respectively, while shaded areas represent the 95% range. Dot points and annotations represent the

highest median values following each introduction of a PI animal (values following initial PI introduction in Scenario 3 are removed for improved readability).

variation in all outputs of interest for all Scenarios was <2.5%
after 5,000 iterations.

Description of BVDV Transmission
Characteristics
BVDV became established in 59.66% (n = 2983) of all iterations
following a single PI introduction and therefore, quantitative
analysis of all results that follow are based on these iterations.
BVDV was least likely to become established in a herd with

50 breeders and after an incursion at Introduction Time 3
(Table 4). The maximum number of viremic animals following
establishment of BVDV was highest (at the median value) after
an incursion at Introduction Time 2 (median 0.49 infected
animals/breeding animal) and was lowest at Introduction Time 5
(median 0.35 infected animals/breeding animal; Figure 2A). The
maximum annual number of viremic animals/breeding animal
following a single PI introduction had an inverse relationship
to breeding herd size, with 50-breeders resulting in a median
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FIGURE 5 | Boxplot illustrating the cumulative effect of BVDV introduction frequency on production outputs relating to steer sales in a simulated beef herd. The values

depict the production loss for BVDV introduction compared to a disease-free herd. The dotted red line highlights zero, which would represent “no difference” between

the disease-free scenario and the scenarios with BVDV. Values either side of the line indicate the impact of BVDV on the number of steers sold (A) and the number of

steers sold that were too lightweight to qualify for a price premium (B)/breeding animal. Boxes represent the 25 and 75% percentiles while whiskers represent the 2.5

and 97.5% percentiles. Outliers removed for improved scale and readability.

0.54 (95% range 0.02–1.74) infected animals/breeding animal
compared tomedian 0.38 (95% range 0.00–1.21) for 800-breeders
(Figure 2B).

Of the iterations that resulted in establishment of BVDV, self-
elimination occurred in 91.82% (n = 2739) of cases (Table 4).
There was no influence of Introduction Time on the likelihood
of self-elimination once the disease was established (92% of
iterations resulted in self-elimination for all Introduction Times).
Introduction Time 1 had the shortest time to self-elimination

(median 4 years, 95% range 3–5) and Introduction Time 3
resulted in the longest time to self-elimination (median 6 years,
95% range 2–10; Figure 3A). The virus was most likely to persist
beyond the simulation period (15 years) in a herd with 800-
breeders and self-eliminated in 100% of iterations with 50-
breeders (Table 4). The virus self-eliminated from a herd of 50-
and 800-breeders at median 4 years (95% range 1–8) and median
6 years (4–15; ∗No self-elimination occurred in the upper 95%
percentile), respectively (Figure 3B).
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FIGURE 6 | Boxplot illustrating the cumulative effect of BVDV introduction frequency on economic outputs relating to reproduction animals in a simulated beef herd.

The values depict the production loss in for BVDV introduction compared to a disease-free herd. The dotted red line highlights zero, which would represent “no

difference” between the disease-free scenario and the scenarios with BVDV. Values either side of the line indicate the impact of BVDV on the number of heifers

retained for breeding (A), the number of cows culled (B) and the number of bulls purchased for replacement (C)/breeding animal. Boxes represent the 25 and 75%

percentiles while whiskers represent the 2.5 and 97.5% percentiles. Outliers removed for improved scale and readability.

Figure 4 highlights the relationship between herd immunity
and the prevalence of viremia for the different outbreak scenarios.
In all three scenarios, initial introduction of BVDV in the naïve
herd resulted in maximum daily prevalence of viremic animals
at median 3% (95% range 0.30–15%) of the total herd. Herd
seroprevalence was highest at the start of the third year of
the simulation (median 55%, 95% range 0.60–97%), following
a steady decline in immunity as animals left the herd. In

Figures 4B,C, BVDVwas introduced in 6- and 3-year increments
after the first incursion, respectively. In both scenarios, the
second incursion resulted in a smaller increase in viremic animals
(median 1%, 95% range 0.30–11% and median 2%, 95% range
0.60–10% for six and three years, respectively) compared to the
initial introduction. The highest daily prevalence of viremia was
even lower for subsequent BVDV introductions every three years
(median 2%; 95% range 0.40–8%; Figure 4C).
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BVDV Influence on Production Outputs
The number and weight of steers sold were most affected by
BVDV. Initial introduction of BVDV in a naïve herd resulted in a
reduction of steers sold at median 0.025 steers (95% range −0.32
to 0.270) per breeder over five years. Of these steers, median
0.015 steers/breeding animal (95% range −0.130 to 0.155) had
liveweight at sale insufficient to reach the premium price range.
Figure 5 demonstrates that the negative effects of BVDV on steer
sales are cumulative as introduction of the disease becomes more
frequent, with a reduction of median 0.082 (95% range −0.605
to 0.425) steers sold/breeding animals in Scenario 3 over 15
years (this equates to 4 and 66 steers for a 50- and 800-breeder
herd, respectively).

The number of cows culled from the herd was also affected
by BVDV, but to a lesser extent than steer sales (Figure 6B).
Compared to a disease-free herd, BVDV resulted in median 0.01
(95% range −0.18 to 0.20) more cows culled/breeding animal in
the first five years of disease exposure (all Scenarios) and median
0.024 (95% range −0.24 to 0.30) more cows culled/breeding
animal when BVDVwas introduced every three years for 15 years
(Scenario 3). BVDV presence and introduction frequency had no
influence on the median number of heifers retained in the herd
or bulls purchased over 5, 10 or 15 years (Figures 6A,C).

External Validation of Model Outputs
A description of the model outputs and reference values used
for external validation of the model are summarized in Table 5.
The mean herd viremic prevalence (1%), median age of PI
animal death (6.7 months) and the median herd seroprevalence
two years after a single BVDV introduction (40%) were all
analogous to the corresponding median/mean values obtained
in the literature. The mean prevalence of PI animals (0.7%),
the median pregnancy risk (88%) for a naïve herd and the calf
mortality rate in an infected herd (5%) was also within the range
of the external reference values (0.2–0.8%; 85–89% and 5–7%,
respectively) (64, 65). The median value for abortion rate, calf
mortality rate and the percentage of light sale steers following
a single BVDV introduction did not match the external data;
however, the 95% range of these parameters did include their
corresponding reference value.

Sensitivity Analysis
Sensitivity analysis was conducted using Scenario 1 (most
variation in model outputs). Scatter plots indicated no evidence
of collinearity and so all parameters in Supplementary Table 4

were included in the analysis. The influence of the input
parameters on model outputs of interest are illustrated in
Supplementary Figures 5–10. Introduction time of the virus,
breeding herd size and the number of effective contacts for PI
animals resulted in the most variation in the total number of
animals infected over 15 years. The adult mortality rate and the
calf mortality rate resulted in the greatest variation for the total
number of steers sold, and annual calf mortality was also the
biggest contributor to the total number of underweight steers
sold. The number of heifers retained for breeding and the number
of cows culled was most dependent on breeding herd size and the
mortality rate of adult cattle. Apart from breeding herd size, all

other input variables had a negligible impact on the total number
of bulls purchased in the simulation period.

DISCUSSION

The individual producer is solely responsible for the prevention
and control of BVDV in Australia. This novel disease simulation
model reflects the impact of BVDV in settings consistent
with Australian beef production at the individual farm level.
Convergence testing demonstrated stability in all of the model
outputs, illustrating little variation between simulations. Model
outputs indicated that a single BVDV incursion is likely to cause
the birth of at least one PI animal (meaning that infection is
established in the herd) in ∼60% of all simulations. The timing
of BVDV introduction in relation to the production calendar
had the most influence on establishment, which was most likely
for the 73 days prior to joining through to 146 days after the
joining period. This is recognized as the highest risk period for
persistent infection in developing fetuses (8, 69, 70). Introduction
of animals is one of the main pathways in which BVDV can
enter a herd and it is common for Australian beef producers
to purchase breeding animals (such as bulls or replacement
heifers) in conjunction with the joining period (27). This model
demonstrates that an established BVDV outbreak is likely to
occur in a beef farm with no preventative measures in place,
especially when replacement practices coincide with joining.

Once BVDV has become established in a beef herd, the model
demonstrates that herd size characterizes the severity and length
of the outbreak. The proportion of animals in the simulated
farm that were viremic at the peak of infection had an inverse
relationship to breeding herd size; however, the distribution
of MCs in simulated paddocks may have contributed to these
results. The number of MCs in each paddock is fixed in this
model, based on the bull-to-cow ratio. Smaller herds will have
a higher proportion of breeding animals in a single paddock
when compared to a large herd, in which the breeding herd is
spread across multiple paddocks. BVDV transmission within a
paddock will initially result in a higher proportion of infected
animals in a smaller herd. Transmission within a paddock
diminishes over time as animals become immune to infection
and so, transmission between paddocks becomes responsible for
BVDV persistence within the farm. Therefore, the duration of a
BVDV outbreak in the model increased as herd size increased.
A herd of 50-breeders had a maximum outbreak duration of
8 years following a single introduction, compared to an 800-
breeder herd, in which 23% of outbreaks continued after 15
years. In reality, it is reasonable to assume that larger farms
would consist of more paddocks than those with smaller herds
to achieve ideal stocking rates to maximize production (71).
The relationship between herd size, outbreak severity and virus
persistence demonstrated by the results of this study suggest that
timely elimination of BVDV may require less intervention in
smaller herds.

While the median duration of BVDV outbreak in the
simulated 400-breeder herd (4 years) was shorter than that
reported for a similar sized Australian outbreak, the 95% range
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TABLE 5 | Comparison of model outputs to corresponding values from the published literature for external validation of a within-herd BVDV simulation model. All model

outputs are presented as median (95% range) unless otherwise indicated.

Parameter Simulation model Reference

Description Value Value Description Source

Viremia Prevalence of viremic animals in an endemic

setting (Scenario 3) for 15-year period

1%* (0–7) 1%* (0–5) Reported prevalence of viremic animals in

Australia

(64)

All Introduction Times and herd sizes

Self-elimination (years) of BVDV following a

single introduction (Scenario 1)

4 (1–15a) 6–8 The time (years) between BVDV Ab detection

and absence of Ag-positive animals in a NSW

400-breeder beef herd with no BVDV control

(65)

Introduction Time 5 and 400-breeder herd

Seroprevalence Prevalence of seropositive animals in an

endemic setting (Scenario 3) for a 15-year

period

37%* (0–86) 53%* (43–62) Reported prevalence of Ab positive animals in

Australia

(64)

All Introduction Times and herd sizes

Prevalence of seropositive animals the second

year after a single introduction (Scenario 1)

40% (0–96) 42% Herd seroprevalence two years after suspected

time of infection in a breeding herd of 400

animals

(65)

Introduction Time 5 and 400-breeder herd

Prevalence of seropositive animals in the fourth

year after a single introduction (Scenario 1)

52% (0–78) 75% Herd seroprevalence four years after suspected

time of infection in a breeding herd of 400

animals

(65)

Introduction Time 5 and 400-breeder herd

PI animals Prevalence of PI animals in an endemic setting

(Scenario 3) for a 15-year period using all herd

sizes and introduction times

0.7%* (0.0–3.8) 0.5%* (0.2–0.8) Reported prevalence of PI animals in Australia (64)

0.9% (0.0–3.0) Prevalence of PI calves supplied to the Tick

Fever Research Centre QLD from 1990 to 1996

(66)

Age of death (months) for PI animals 6.7 (0.4–18.9) 6.5 The age (months) at which half of all PI animals

are expected to die in 10 danish herds

(50)

All Scenarios, Introduction Times and herd

sizes

Pregnancy risk Annual pregnancy risk with no active BVDV

infection (Scenario 0).

88% (84–91%) 85–89% Pregnancy risk for breeding herd in NSW beef

herd of 400-breeders

(65)

No Introduction Time and 400-breeder herd

Decrease in pregnancy risk due to a single

BVDV introduction (Scenario 1)

1% (−3 to 4) 2–7% Difference in pregnancy risk following the

suspected time of BVDV exposure in a QLD

herd with 800-breedersb

(52)

Introduction Time 2 and 800-breeder herd

Abortion rate Increase in abortion as a result of a single

BVDV introduction (Scenario 1).

1% (−2 to 6) 5% The foetal losses attributed to BVDV exposure

between day 51 and 210 of gestation for

207-breeders in QLD

(67)

Introduction Time 1 and 200-breeder herd

Calf mortality rate Annual calf mortality with no active BVDV

infection (Scenario 0)

3% (1.2–5) 1–2% Normal calf mortality rate in a NSW beef herd

of 400-breeders

(65)

No Introduction Time and 400-breeder herd

Increase in calf mortality due to a single BVDV

introduction (Scenario 1).

5% (2–8) 5–7% Calf mortality rate expected to be due to BVDV

following an outbreak in a NSW beef herd of

400-breeders

(65)

Introduction Time 1 and 400-breeder herd

Marking rate Decrease in branding rate due to a single

BVDV introduction (Scenario 1)

2% (−4 to 9) 3% Difference in branding rate for unvaccinated

(against BVDV) heifers to vaccinated heifers in a

study examining vaccine efficacy in Australia

(68)

Introduction Time 1 and 800-breeder herd

4% Decrease in branding rate suspected to be due

to a BVDV outbreak in a QLD herd with

800-breeders

(52)

(Continued)
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TABLE 5 | Continued

Parameter Simulation model Reference

Description Value Value Description Source

Sale animals Percentage of lightweight steers at sale

following a single BVDV introduction (Scenario

1)

3% (−4 to 10) 6% Percentage of steers estimated to be

lightweight at slaughter (at 2–3 years old)

following an outbreak of BVDV in a QLD beef

herd with 900-breeders

(52)

Introduction Time 5 and 800-breeder herd

Bold = Analogous model and reference values.

*Mean value used instead of median.
aVirus elimination did not occur during 15-year simulation.
bExact figures were not available for pre-BVDV exposure in this case study.

Ab, antibody; Ag, antigen, QLD, Queensland, Australia; NSW, New South Wales, Australia.

included the published values for elimination time [6–8 years;
Allworth et al. (65)]. In the case study, Allworth et al. (65)
speculates that BVDV was introduced into the NSW farm via
breeding stock. It was not possible to ascertain the infection
status of these animals retrospectively, and it is possible that
introduction of multiple infected animals may have contributed
to a longer time to elimination. In addition to elimination
time, data from the model for the 400-breeder herd showed
that the 2-and 4-year seroprevalence in the 73-day period
prior to joining were comparable to the values reported by
Allworth et al. (65). The model also demonstrated that the
highest daily prevalence of viremia following subsequent BVDV
introductions became lower as herd seroprevalence increases; a
relationship which is well recognized in the literature (11). These
examples, as well as those found in Table 5, further validate the
disease transmission component of the BVDV simulation model
described in this study.

Dairy, intensive beef and extensive beef farming operations
require different approaches to BVDV detection and prevention
as a result of variations in farmmanagement (20, 21, 69, 72). Due
to the subclinical nature of BVDV, in most cases interventions
on an individual farming level are not considered until an effect
on production is identified (73–75). In Australia there is minimal
contact between beef producers and cattle between management
events and so producers are unlikely to recognize a subtle drop
in annual production (76). The annual impact of BVDV on
pregnancy loss, abortion and calf mortality recorded by the
simulation model was modest, even at its highest following initial
exposure of a naïve herd. However, the study demonstrated that
the impact of repeat BVDV incursions as little as every three
years can result in long-term impacts that would affect beef
farm productivity; in particular the number of steers sold and
the liveweight of those steers. Economic analysis is needed to
determine whether these long-term production impacts reduce
farm revenue enough to prompt action by the producer.

Long et al. (77) found that BVDV is of low concern to 68% of
Australian beef producers, with other diseases and management
issues taking priority. Motivating producers to address BVDV
is a challenge that is not specific to Australia (75, 78). Apart
from undetected losses, difficulty in communicating the negative
impacts of BVDV to stakeholders is partly due to the wide

variation in outcomes that could occur during an outbreak of
BVDV. Poor conception and reduced pregnancy risks are often
identified during BVDV outbreaks (70); however, this study,
consistent with Allworth et al. (65), found that the pregnancy risk
in a herd of 400 animals was largely unaffected by BVDV. The
joining practices used in this model and described by Allworth
et al. (65) are similar to industry-recommended joining practices
for seasonal calving beef herds in NSW (McConchie 2007, MLA
2019). These short duration joining periods are designed to limit
infertility andmight also reduce the apparent reproductive effects
of BVDV infection. If pregnancy risks are unaffected, this could
explain the marginal impact of simulated BVDV infection on
culling rates, which are largely dictated by pregnancy status (46).
Given the aforementioned relationship between the timing of
reproductive practices and disease behavior, any discrepancies
between the reproductive results of this study and the published
effects of BVDV could be due to differences in reproductive
management and/or model uncertainty; both of which should
be considered when interpreting model outcomes. However,
the model has identified a range of possible consequences
of BVDV infection that might be used as best- and worst-
case scenarios to inform decision-making for seasonal-calving
Australian beef farms.

A limitation of this model is an inability to account for the
impact of secondary infections that may exacerbate the effects
of BVDV. Immunosuppression is a documented consequence
of BVDV infection that is suggested to facilitate secondary
infections that may increase abortion, calf mortality and reduce
growth performance (79–81). In this study, immunosuppression
only affects growth rate and therefore, it is likely that the
model underestimates the impact that BVDV might have on
productivity in the field. Another limitation of the model is the
use of a NZ parameter for BVDV transmission. Whilst this is
based on extensive production, it should be noted that this model
does not account for the effect of the Australian climate on virus
survival. Furthermore, a limitation of individual-based models is
the assumption of homogenous mixing between animals within
a group. However, in reality, beef cattle exhibit a social hierarchy
which results in clustering of animals within a group whichmight
affect disease transmission (82). Future studies modeling BVDV
in Australia would benefit from serological data which could be
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used to identify transmission characteristics of the disease specific
to the Australian environment.

Using simulation modeling, this study described the impact
of BVDV on a farm characteristic of Australian beef farming.
Exposure to BVDV is most likely to cause an outbreak when the
virus is introduced in conjunction with the breeding period and
there is a high (60%) likelihood that BVDV will be established in
a beef herd after the introduction of a single PI animal. The initial
impact of a BVDV outbreak will be more severe in smaller beef
herds; however, the virus takes longer to self-eliminate as herd
size increases. Themodel canmeasure the underlying production
losses that can occur from long-term outbreaks of BVDV which
might otherwise go unnoticed in the field; however, economic
analysis is required to determine the financial implications of
BVDV in Australian beef production. Future studies can use this
model to investigate BVDV prevention strategies for Australian
beef farms.
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