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Streptococcus suis (S. suis) can decrease its virulence or modify local conditions

through biofilm formation, which promotes infection persistence in vivo. Biofilm formation

is an important cause of chronic drug-resistant S. suis infection. The aim of this

study was to evaluate whether tylosin effectively inhibits S. suis biofilm formation by

interacting with O-acetylserine (thiol)-lyase B (CysM), a key enzymatic regulator of

cysteine synthesis. Biofilm formation of the mutant (1cysM) strain was significantly lower

compared to the wild-type ATCC 700794 strain. Tylosin inhibited cysM gene expression,

decreased extracellular matrix contents, and reduced cysteine, homocysteine, and

S-adenosylmethionine levels, indicating its potential value as an effective inhibitor of

S. suis biofilm formation. Furthermore, using biolayer interferometry technology and

fourier-transform infrared spectroscopy, we found that tylosin and CysM could be

combined directly. Overall, these results provide evidence that tylosin inhibits S. suis

biofilm formation by interacting with CysM.

Keywords: Streptococcus suis, biofilms, tylosin, inhibition, O-acetylserine (thiol)-lyase B (CysM)

INTRODUCTION

Streptococcus suis (S. suis) can cause meningitis, septicemia, pneumonia, endocarditis, and arthritis
in pigs. Because it is a zoonotic pathogen, it poses a significant harm to public safety (1). In addition,
S. suis has the ability to form a biofilm that further increases the risk of drug resistance (2, 3). The
oral and upper respiratory tracts of pigs, particularly the tonsils and nasal cavities, are important
reservoirs of S. suis (4). Although most carrier strains are non-virulent, pathogenic strains can
colonize the respiratory mucosal surfaces without causing clinical disease, which is the first step in
the development of invasive disease in pigs, with subsequent hematogenous and/or lymphogenous
dissemination (4).

The intimate contact between S. suis and surface structures present on host epithelial cells
are critical for resisting innate defense mechanisms and allowing successful competition with
resident commensal microorganisms for limited nutritional resources and available space (4). The
persistence of S. suis in the oral cavity can contribute to increased disease pathogenicity (5). S.
suis biofilm formation establishes important conditions to ensure its long-term persistence, and
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decrease its virulence in order to establish long-term infections
such as meningitis and endocarditis in its host.

Zhang et al. (6) first demonstrated that S. suis biofilm
formation contributes to the induction of meningitis using
the intracranial subarachnoid route of infection (7) found that
S. suis decreases its virulence by forming a biofilm which
promotes persistence of infection in vivo. Biofilms protect
bacteria from host and environmental stresses (8). The molecular
mechanisms used to perpetuate the virulence of bacteria vary
significantly across species, depending on the presence of gene
mutations, as well as the nature of proteins that orchestrate
biofilm formation (9). All these processes are influenced by
the presence of bacterial biofilm-associated proteins (BAP),
which drive biofilm formation via their interaction with
proteins or enzymes of an already established biosystem.
This may completely circumvent the host’s entire immune
system (10, 11). Extracellular matrix (ECM) formation is also
an important factor in regulating the formation of bacterial
biofilm, including exopolysaccharides, extracellular DNA, and
extracellular protein (12). Following biofilm formation, bacteria
present a high degree of drug resistance, and can evade
the host’s immune response, making infections chronic and
difficult to control (13, 14). Therefore, the identification of the
regulatory mechanisms involved in S. suis biofilm formation as
suitable new drug targets have emerged as an important for
future research.

S. suis biofilm formation is regulated by a variety of factors
(15), such as ornithine carbamoyltransferase, autoinducer-
2 signaling, and collagen-binding 40 (cbp40) proteins (16).
Deletions and overexpression of genes which regulate AI-2
also promote biofilm formation (3). The cysteine biosynthesis
pathway, an amino acid metabolism pathway of bacteria, and its
associated enzymes, substrates, and products are closely related to
biofilm (17). In the cysteine biosynthetic pathway, O-acetylserine
(thiol)-lyase B (CysM) is expressed not only under anaerobic
conditions, but also catalyzes the synthesis of L-cysteine from
O-acetylserine sulfhydrylase (OASS) and thiosulfate (18). Due
to the lack of OASS expression in mammals, inhibition of
CysM may represent a potential drug target (19). In 1969,
researchers successfully isolated and purified the CysM protein
from Salmonella typhimurium, and analyzed its physical and
chemical properties (20). The CysM protein is fold type II
pyridoxal 5’-phosphate-dependent enzymes composed of two
identical subunits with a total molecular weight of ∼68,000
Da. The structure of the CysM isozyme of Escherichia coli has
been determined and a structural model of its catalytic reaction
has been proposed (21). The cysteine produced by bacteria
is metabolized to homocysteine by cystathionine-γ-synthetase
(metI) and cystathionine-β-lyase (metC). In the methionine
cycle, homocysteine, as the substrate of the methionine cycle,
generates S-adenosylmethionine under the activity of methionine
synthase (metE) and S-adenosylmethionine synthetase (metK).
The resulting S-adenosylmethionine is then regenerated by
the action of three enzymes, methylase, S-adenosylcysteine
ribosidase (mtnN), and S-ribosylhomocysteine lyase (luxS),
which are involved in the synthesis of homocysteine, and form
AI-2 as a by-product. Thus, we assume that the CysM and

cysteine biosynthetic pathways may play important roles in the
formation of S. suis biofilm (22).

Tylosin is a 16-membered macrolide antibiotic active against
both Gram-positive and Gram-negative bacteria (23) which
was first obtained from the culture of Streptomyces fradiae in
1960 (24). Tylosin is also widely used to prevent Mycoplasma,
Staphylococcus aureus, Pseudomonas aeruginosa, and S. suis
infections that cause respiratory disease (25). Macrolides not only
exert good antibacterial and growth-promoting effects, but they
have also been investigated for their inhibitory activity on biofilm
formation (26). Nonetheless, there is little research on the effects
of tylosin on S. suis biofilm.

Thus, in the present study, we explored the role played by
tylosin in the inhibition of biofilm formation of Streptococcus
suis and the mechanisms involving tylosin inhibitory activity on
biofilm formation via the CysM protein.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The S. suis wild-type strain ATCC 700794) (27) was exposed to
320µg/mL tylosin and used to construct the cysM (accession
number: KX077891.1) deletion strain (1cysM) and cysM
complementary strain (C1cysM). The specific details for these
procedures are provided in the Supplementary File. All strains
were grown in Todd-Hewitt broth (THB) or Todd-Hewitt broth
agar (THA) supplemented with 5% (v/v) fetal bovine serum, 37◦C
with agitation.

Effect of Tylosin on the Growth Rates of S.
suis
The minimum inhibitory concentration (MIC) of S. suis to
tylosin was estimated using the microtiter broth dilution
method. We previously found that 1/4 MIC of tylosin effectively
inhibits S. suis biofilm formation (27). Additional experiments
confirmed that the wild-type ATCC 700794, mutant (1cysM)
and complementary (C1cysM) strains responded similarly to
tylosin. In this study, all three strains were treated with and
without the 1/4MIC of tylosin. All strains were incubated at 37◦C
for 24 h, and the absorbance of the samples was measured every
hour at 600 nm (27).

Crystal Violet Staining and Scanning
Electron Microscope
The wild-type ATCC 700794, mutant (1cysM) and
complementary (C1cysM) strains were grown in THB medium
for 24 h and diluted to 1.0 × 106 CFU/mL in fresh THB. For
crystal violet staining, the diluted bacterial solution was diluted
10 times in 100 µL THB medium containing 1/4 MIC, 1/8
MIC, and 1/16 MIC tylosin and inoculated in 96-well tissue
culture plates, which were then placed in a 37◦C incubator for
standing culture for 72 h. A negative control (with THB alone)
was also used. Biofilm formation of the mutant (1cysM) strain
supplemented with 100 and 500µM cysteine (Sigma Aldrich)
were analyzed. The medium, free-floating bacteria, and loosely
bound biofilm were removed, and the wells were washed three
times with sterile physiological saline. The remaining attached
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bacteria were fixed with 100 µl of 99% methanol (Guoyao Ltd,
China) per well, and after 15min, plates were emptied and left
to dry. Then, plates were stained for 5min with 100 µl of 2%
crystal violet (Guoyao Ltd, China) per well. Excess stain was
rinsed off by placing the plate under running tap water. After
the plates were airdried, the dye bound to the adherent cells was
resolubilized with 100 µl of 33% (v/v) glacial acetic acid (Guoyao
Ltd, China) per well. The amount of released stain was quantified
by measuring the absorbance at 570 nm with a microplate reader
(DG5033A, Huadong Ltd, Nanjing, Jiangsu, China) (28).

For scanning electron microscope (SEM) imaging, the diluted
bacterial solution was diluted 10-fold in 2mL THB liquid
medium containing the 1/4 MIC of tylosin was inoculated into 6-
well tissue culture plates (containing 0.5 × 0.5 cm sterile frosted
glass slide), which were then placed in a 37◦C incubator for
standing culture for 72 h. A negative control (with THB alone)
was also used. SEM micrographs were obtained at the electron
microscopy core facility laboratory at the School of Life Sciences,
Northeast Agricultural University. The specific procedures for
both two experiments have been described (28).

Determination of Matrix Content in S. suis

Biofilm by Tylosin
The wild-type ATCC 700794, mutant (1cysM) and
complementary (C1cysM) strains were subsequently co-
cultured with the biofilm (29). The bacterial concentration was
diluted to 1 × 106 CFU/mL, and the diluted bacterial solution
was diluted 10-fold in 2mL THB liquid medium containing the
1/4 MIC of tylosin, and inoculated into 24-well tissue culture
plates. These were then placed in a 37◦C incubator for standing
culture for 72 h. A S. suis bacterial solution with the same
concentration was inoculated as the control group. After a 72-h
incubation, the THB medium was decanted from the 24-well
plate, and the biofilm formed at the bottom of the 24-well plate
was re-suspended in 3mL of 0.8% normal saline. The protein
was determined by the Bradford method, the DNA was extracted
by the Phenol-chloroform method, and the polysaccharide
level was determined by the Congo red binding method. The
specific experimental steps were performed as described by Desai
et al. (29).

Real-Time Polymerase Chain Reaction
The effects of the 1/4 MIC of tylosin on cysM, cysE, metI, metE,
metK,mtnN, and luxS gene expression were investigated by real-
time PCR (RT-PCR). The strains were incubated at 37◦C for
24 h. Relative copy numbers and expression ratios of the selected
genes were normalized to the expression of the 16S-rRNA gene
(housekeeping gene). The specific primers used in this study are
listed in the Supplementary Table. The specific methods used
were described in detail in our previous study (27).

Determination of Cysteine Content
The wild-type ATCC 700794, mutant (1cysM) and
complementary (C1cysM) strains were inoculated into 5mL
of THB liquid cultures and incubated under shaking culture
at 37◦C for 24 h. The bacteria were collected, and the bacterial
sample was washed three times with PBS, then centrifuged.

The precipitate was re-suspended in 0.5mL PBS, ultrasonically
disrupted, and centrifuged, and the supernatant was collected. A
0.2mL volume of bacterial supernatant was used to determine
cysteine content using a cysteine detection kit (BC0180, Solarbio)
according to manufacturer instructions. In summary, 0.3mL of
the extraction solution was added to the bacterial supernatant
and was thoroughly mixed, before being centrifuged at 11,000
rpm at 4◦C for 10min. The supernatant was retrieved and
reagents 1 and 2 were added to the supernatant, mixed well, and
allowed stand for 15min. The absorbance was then measured at
600 nm, and the process was repeated 3 times. Cysteine reduces
phosphotungstic acid to form tungsten blue; thus, an absorption
peak was expected at 600 nm. According to the absorbance of
cysteine standards with different concentrations at 600 nm, a
standard curve was established and was used to determine the
cysteine content in the bacterial cultures. Similar cultures of
activated bacterial solutions containing the The wild-type ATCC
700794, mutant (1cysM) and complementary (C1cysM) strains
in the presence of 1/4 MIC of tylosin were evaluated.

Determination of Homocysteine and
S-Adenosylmethionine Content
The wild-type ATCC 700794, mutant (1cysM) and
complementary (C1cysM) strains were inoculated into
separate THB liquid cultures. After agitating cultures at
37◦C for 24 h, a 10mL sample of bacteria was collected.
The bacterial sample was washed three times with PBS,
then centrifuged and the pellet was resuspended in 0.5mL
PBS, ultrasonically disrupted, and centrifuged, and the
supernatant was collected. The specific determination methods
of homocysteine and S-adenosylmethionine were performed
according to the instructions of the homocysteine ELISA
kit (YX-080325, Sinobstbio) and the S-adenosylmethionine
ELISA kit (YX-190113, Sinobstbio). Samples, standards,
HRP-labeled antibodies, chromogenic solution, and stop
solution were added to coated wells with homocysteine and
S-adenosylmethionine. A colorimetric reaction was positively
correlated with homocysteine levels. The absorbance of different
concentrations of homocysteine and S-adenosylmethionine
was determined at 450 nm to establish a standard curve, which
was used to calculate the homocysteine content of the bacterial
samples. The activated bacterial solutions of the the wild-type
ATCC 700794, mutant (1cysM) and complementary (C1cysM)
strains were inoculated into a THB liquid culture medium, in
the presence of a tylosin solution with a final concentration of a
1/4 MIC tylosin. The samples were prepared as indicated above
and subjected to ultrasonic crushing prior to measuring the
homocysteine and S-adenosylmethionine levels.

Direct Binding Test Between Tylosin and
CysM Protein
The S. suis CysM protein, with a purity of over 90%,
was successfully expressed and purified (Supplementary File).
Briefly, a plasmid construct encoding pET30a-cysM was
introduced into the BL21 expression strain, and subjected to a
shaking culture at 37◦C up to the OD600 value of∼0.4–0.6. Next,
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1mM isopropyl-β-D-thiogalactopyranoside (IPTG) was added to
induce expression of CysM, and was cultured overnight at 37◦C.
Meanwhile, a control group without IPTG was also prepared.
Control bacteria and induced bacteria were collected, crushed by
ultrasonication, and centrifuged, and the whole bacteria solution,
supernatant, and precipitate were collected and analyzed by
SDS-PAGE. Purification was carried out in two steps, Ni
column (GE) purification and molecular sieve chromatography
(Superdex75, GE). The three elution steps were performed
for the Ni-column (20mM, 40mM, and 250mM imidazole
in PBS buffer). All proteins were analyzed by SDS-PAGE at
each stage.

CysM concentrations were adjusted to 150µg/mL after
obtaining purified protein, and combined with PBS containing
0.05% Tween-20 and 1 mg/mL BSA, and coupled to the Forte Bio
Octet NTA sensor. Tylosin was dissolved in water and diluted
twice serially, using a 6-gradient concentration (1,000, 5,000,
25,000, 125,000, 625,000, 3125,000 nM). The tylosin dilution
series was added to different wells of the sample plate. The NTA
sensor was set to interact with tylosin at different concentrations,
and the binding and dissociation curves of tylosin and CysMwere
determined. The dissociation time was set to 1 min.

Infrared Spectrum Analysis of CysM
Protein in Combination With Tylosin
Fourier-transform infrared spectroscopy (FT-IR) analysis of the
protein was performed using the KBr tablet method (30). Pure
CysM protein and CysM protein-tylosin lyophilized powders
were ground and mixed with KBr powder at a mass ratio of
1:150, and KBr was used to set the scanning background. The
scanning parameters were set as follows: scanning range: 4,000–
400 cm−1, resolution: 4 cm−1, and number of scans: 32. OMNIC
and Orign 8.5 software were used for deconvolution of the
infrared spectrum andmultipeak fitting of the infrared spectrum.

Statistical Analysis
Data were analyzed using the SPSS software program (version
17.0). Continuous numerical data were described as the mean
± standard deviation (SD) and compared between groups using
a Student’s t-test or Wilcoxon test, as appropriate. Statistical
significance as set at P < 0.05.

RESULTS

Effects of Tylosin on the Growth of S. suis
To evaluate the effects of tylosin on the growth of S. suis,
we constructed a growth curve using the wild-type ATCC
700794, mutant (1cysM) and complementary (C1cysM) strains
(Figure 1). The growth rates of each did not differ in the
presence of 1/4 MIC of tylosin. However, the growth rate of
the mutant (1cysM) strain was lower than that of the wild-
type ATCC 700794 strain (P < 0.01), and the growth rate of the
complementary (C1cysM) was recovered to that of the wild-type
ATCC 700794 strain (P > 0.05).

Inhibition Effect of Tylosin on S. suis

Biofilm
The biofilm formation of the wild-type ATCC 700794, mutant
(1cysM) and complementary (C1cysM) strains in the presence
of tylosin was determined using crystal violet staining. As shown
in Figure 2A, compared to the wild-type ATCC 700794 strain,
the biofilm formation associated with the mutant (1cysM)
strain decreased significantly (P < 0.01), while the biofilm
formation of the complementary (C1cysM) strain was restored,
although not completely (P < 0.05). The biofilm formation of
the complementary (C1cysM) strain was significantly decreased
(P < 0.05) in the presence of the 1/4 MIC, 1/8 MIC, and 1/16
MIC tylosin concentrations; biofilm formation of the wild-type
ATCC 700794 strain was significantly decreased only at 1/4 MIC
tylosin (P < 0.05). Biofilm formation of the mutant strain1cysM
was significantly decreased (P < 0.01) at both 1/4 MIC and
1/8 MIC tylosin. Furthermore, when the mutant (1cysM) strain
was treated with varying amounts of cysteine (100 and 500µM),
biofilm formation was restored (P < 0.05) (Figure 2B).

Effects of Tylosin on Biofilm Morphology of
S. suis
Treatment with tylosin at the 1/4 MIC was used to inhibit
the biofilm formation of the wild-type ATCC 700794, mutant
(1cysM) and complementary (C1cysM) strains and the
morphological changes induced in the biofilm morphologies by
bacteria were observed by SEM. The wild-type ATCC 700794
strain was closely arranged and adhered to the surface of the
cover glass (Figure 3). Its morphology differed from that of the
free bacteria and generated a large area of bacterial aggregates
to form a mature biofilm. Only a small number of bacteria
in the mutant (1cysM) strain adhered to the surface of the
cover glass; the three-dimensional structure of a mature biofilm
could not be formed. The complementary (C1cysM) strain
was closely arranged, and large areas of bacterial aggregates
adhered to the surface of the cover glass to form a mature
biofilm. However, the overall morphological structure of the
biofilm was relatively weaker compared to that of the wild-
type ATCC 700794 strain Only a small number of bacterial
cells adhered to the surface of the slide, and the morphology of
the biofilm of the wild type strain ATCC 700794, the mutant
(1cysM) strain and the complementary (C1cysM) strain were
inhibited and appeared incomplete in the presence of 1/4
MIC tylosin.

Effects of Tylosin on the Extracellular
Matrix Content in the Biofilm of S. suis
We verified whether tylosin could inhibit biofilm formation
by ECM content. As shown in Figure 4A, compared to the
wild-type ATCC 700794 strain, the extracellular polysaccharide
content of the mutant (1cysM) strain biofilm matrix was
significantly decreased after cysM gene knockout (P < 0.01),
while the extracellular polysaccharide content was restored in the
complementary (C1cysM) strain (P < 0.05); The extracellular
polysaccharide contents of the wild-type ATCC 700794 strain,
the mutant (1cysM) strain and the complementary (C1cysM)
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FIGURE 1 | Effects of tylosin on growth curves of Streptococcus suis. *P < 0.05 indicates a significant difference between the wild-type strain ATCC 700794 and the

mutant (1cysM) strain at 24 h.

FIGURE 2 | (A) Biofilm formation of the wild-type ATCC 700794 strain, the mutant (1cysM) strain and the complementary (C1cysM) strain treated with tylosin or not.

(B) Biofilm formation of the mutant (1cysM) strain treated with cysteine (100µM and 500µM) (*P < 0.05 and **P < 0.01 indicate significant difference).

strain were all significantly decreased compared with each
respective control group in the presence of 1/4 MIC of
tylosin (P < 0.01).

As shown in Figure 4B, compared to the wild-type ATCC
700794 strain, the extracellular DNA content in the biofilm
matrix of the mutant (1cysM) strain decreased significantly after
knockout of the cysM gene (P < 0.01), while the extracellular
DNA content was restored in the complementary (C1cysM)
strain (P < 0.05), although not completely (P < 0.01). Compared
to each control group, the extracellular DNA content of the
biofilm matrix of the wild-type ATCC 700794, mutant (1cysM)

and complementary (C1cysM) strains were all significantly
decreased (P < 0.01).

As shown in Figure 4C, compared to the wild-type ATCC
700794 strain, the extracellular protein content in the biofilm
matrix of the mutant (1cysM) strain was significantly decreased
(P < 0.01), while the extracellular protein content of the
biofilm was restored in the complementary (C1cysM) strain
(P < 0.05); Compared to each control group, the extracellular
protein content in the biofilm matrix of the wild-type ATCC
700794 strain and the complementary (C1cysM) strain were
significantly decreased (P < 0.01), while the extracellular protein
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FIGURE 3 | Effect of tylosin on the biofilm morphology of the wild type strain ATCC 700794, the mutant (1cysM) strain and the complementary (C1cysM) strain

(Group descriptions are marked below each picture).

content in the biofilm matrix of the mutant (1cysM) strain was
not significantly different (P > 0.05).

Regulatory Effect of Tylosin on Cysteine
Metabolism Pathway Genes
We assessed whether tylosin could inhibit biofilm formation by
regulating the expression of the cysM, cysE, metI, metE, metK,
andmtnN gene. As shown in Figure 5, the expression of the wild-
type ATCC 700794 strains cysM, cysE, metI, metE, metK, and
mtnN genes was significantly decreased in the presence of 1/4
MIC tylosin (P < 0.05).

Tylosin Regulation of Related Metabolites
in the Cysteine Synthesis Pathway
The wild-type ATCC 700794, mutant (1cysM) and
complementary (C1cysM) strains were exposed to the 1/4
MIC of tylosin. Compared to the wild-type ATCC 700794 strain,
the cysteine content of the mutant (1cysM) strain decreased
significantly (P < 0.01), while the cysteine content was restored
in the complementary (C1cysM) strain (P < 0.05) (Figure 6A).
Compared to each control group, the cysteine content of the
wild-type ATCC 700794, mutant (1cysM) and complementary
(C1cysM) strains were markedly decreased in the presence of
1/4 MIC of tylosin (P < 0.05).

Compared to the wild-type ATCC 700794 strain, the
homocysteine content of the mutant (1cysM) strain was
significantly decreased (P < 0.05), while the cysteine content

was restored in the complementary (C1cysM) strain (P
< 0.01) (Figure 6B) and compared to each control group,
the homocysteine content of the wild-type ATCC 700794,
mutant (1cysM) and complementary (C1cysM) strains were
all significantly decreased under the activity of the 1/4 MIC of
tylosin (P < 0.05).

Compared to the wild-type ATCC 700794 strain, the S-
adenosylmethionine content of the mutant (1cysM) strain
significantly decreased (P < 0.01), while the cysteine content
of the complementary (C1cysM) strain did not return to levels
before knockout of the cysM gene (P > 0.05) (Figure 6C). The
S-adenosylmethionine content of the wild-type ATCC 700794,
mutant (1cysM) and complementary (C1cysM) strains were
significantly decreased compared to the respective control groups
(P < 0.01) in the presence of 1/4 MIC of tylosin.

Expression and Purification of the CysM
Protein
S. suis was induced overnight at 37◦C with a 1mM concentration
of IPTG, and the protein produced was expressed and purified
by Ni column and molecular sieve chromatography. Following
Ni column purification, only one detection peak appeared (The
3rd peak at+ 1mL) (Figure 7), indicating that the protein purity
was high. After SDS-PAGE analysis, there was an additional
expression band that was consistent with the expected result at
about 40 kDa. Purification of the CysM protein was successful
and produced a single band, with a purity of >95%. These results
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FIGURE 4 | Effect of tylosin on the extracellular matrix of the wild-type ATCC 700794 strain, the mutant (1cysM) strain and the complementary (C1cysM) strain

treated or not treated with tylosin. (A) Effect of tylosin on the extracellular polysaccharide content; (B) effect of tylosin on extracellular DNA content; (C) effect of tylosin

on extracellular protein content (**P < 0.01 indicate significant difference).

indicated that the purified protein met the requirements for
subsequent experiments (Figure 7).

Detection of Direct Interaction Between
CysM and Tylosin
We verified whether tylosin directly binds to the CysM protein
based on a biomacromolecule interaction test and FT-IR analysis.
As shown in Figure 8A, the binding of tylosin to the CysM
protein reached equilibrium within 60 s, and binding affinity was
dose-dependent as the concentration of tylosin increased. The
results indicated that tylosin interacted with CysM protein, and
that the dissociation equilibrium constant was calculated as Kd=
140µM. The results indicated that tylosin could directly interact
with the CysM protein.

Before and after tylosin acted upon the CysM protein, we
obtained the fitting chromatogram of its secondary structure
(Figure 8B). Changes in the secondary structure of CysM
influenced the changes in the vibration frequency (1,600–1,700
cm−1) of the protein amide I band. The structures corresponding
to each CysM protein peak included a β-fold, α-helix, β-
turn, random coil, and anti-parallel β-fold. To determine the
relative percent content of the secondary structure represented
by each subpeak, we calculated the relative area of each
subpeak. Compared to CysM protein alone, in the absence of
tylosin treatment, the composition and content of the secondary

structure of CysM protein changed significantly after exposure
to the 1/4 MIC of tylosin: the α-helix content increased by
26.38%, the β-sheet content decreased by 8.39%, the β-corner
content decreased by 32.66%, the random coil content increased
by 15.33%, and the anti-parallel β-sheet content decreased by
0.66%. These results indicated that tylosin interacts with the
CysM protein by influencing its secondary structure composition
and content and altering its conformation.

DISCUSSION

The ability of S. suis to form a biofilm plays an important role in
its virulence and the development of drug resistance (16). This
biofilm allows S. suis to colonize the respiratory mucosal surfaces
without causing overt clinical disease, and facilitates persistence
in the oral cavity (4, 5). Furthermore, this biofilm contributes
to the induction of meningitis (6). S. suis may also decrease its
virulence by forming a biofilm able to achieve persistent infection
in vivo (7). A better understanding of S. suis biofilm formation as
a pathogenicmechanism and therapeutic target could assist in the
prevention and management of S. suis infection (16).

In this study, we found that 1/4 of MIC tylosin inhibited S.
suis biofilm formation; after treatment, the stereo-structures of
the biofilm were no longer detectable. Furthermore, 1/4 MIC of
tylosin decreased the ECM content (i.e., polysaccharides, DNA
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FIGURE 5 | Regulatory effects of tylosin on cysteine metabolism pathway genes. Effect of 1/4 of MIC of tylosin on mRNA expression of the cysteine metabolism

pathway genes in the wild-type ATCC 700794 strain (*P < 0.05 and **P < 0.01 indicate significant difference).

and protein) of the S. suis biofilm. The mechanisms by which
tylosin inhibits the formation of biofilm need to be further
explored. However, S. suis biofilm formation is known to be
regulated by various factors (15).

For example, cysteine biosynthesis pathway plays an
important role in the biofilm formation of some bacteria
(17). In Staphylococcus mutans, O-acetylserine sulfatase (CysK)
overexpression increases cysteine synthesis, which in turn
promotes biofilm formation (31). Furthermore, in vitro testing
has showed that CysK gene deletion inhibits biofilm formation
by reducing polysaccharide production (32). Thus, we also
explored whether a similar phenomenon occurs in S. suis.
In this study, we constructed the cysM gene deletion mutant
(1cysM) strain and the cysM gene complementary (C1cysM)
strain (Supplementary File). The ability of the mutant (1cysM)
strain to form a biofilm was reduced, while the ability of
the complementary (C1cysM) strain to form a biofilm was
restored. However, compared to the wild-type ATCC 700794
strain, the growth of the mutant (1cysM) strain was modified
(P < 0.01) insofar as CysM no longer influenced S. suis
biofilm formation.

The latter finding may also be related to other factors, such as
the influence of the quorum sensing (QS) system of the mutant
(1cysM) strain. In previous studies, the QS system was identified
as a key factor affecting the formation of S. suis biofilm (16). The
inability of the complementary (C1cysM) strain to fully recover
the ability to form a biofilm (P < 0.05) may also indirectly reflect
this phenomenon. However, when the mutant (1cysM) strain
was treated with varying amounts of cysteine, biofilm formation

was restored. Thus, it is not difficult to see that CysM may play
an important role in the biofilm formation of S. suis.

We also explored whether tylosin inhibits biofilm formation
by interfering with CysM and the cysteine biosynthesis
pathway, which consists of a sulfuration pathway, an anti-
sulfuration pathway, and a methionine cycle. This process
generates intermediate metabolites cysteine, homocysteine, and
S-adenosylmethionine are very important in the cysteine
biosynthesis (33). Tylosin could inhibit cysM, cysE, metI,
metE, metK, and mtnN gene expression and reduce cysteine,
homocysteine, and S-adenosylmethionine levels, indicating that
tylosin interferes with cysteine synthesis. However, some
complex changes appeared in biofilm formation, which were
attributed to alterations in the ECM (i.e., polysaccharides, DNA,
and protein) and cysteine pathway metabolites (i.e., cysteine,
homocysteine and S-adenosylmethionine) after exposure to 1/4
MIC of tylosin in the mutant (1cysM) and complementary
(C1cysM) strains. Tylosin thus participated in a complex
mechanism to influence S. suis biofilm formation, and CysMmay
not be the only factor.

We also explored the interaction between CysM and tylosin by
BLI and FT-IR analysis. BLI is an optical analysis technology that
monitors the interaction between biological macromolecules and
small ligand molecules in real-time (34). FT-IR is a new method
for studying the interaction between drugs and proteins, as well
as the relationship between structure and function at the level of
secondary protein structural changes (35). The direct interaction
between tylosin and CysM might also influence S. suis biofilm
formation. However, this is only a preliminary exploration of
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FIGURE 6 | Regulation by tylosin of related metabolites in the cysteine synthesis pathway. (A) Effects of tylosin on cysteine content; (B) effects of tylosin on

homocysteine content; (C) effect of tylosin on S-adenosylmethionine content (*P < 0.05 and **P < 0.01 indicate significant difference).

FIGURE 7 | Purification and SDS-PAGE of CysM protein. (A) Ni column-purified protein absorption curve; (B) SDS-PAGE of CysM protein lane 1: Protein Maker; 2:

CysM protein before induction; 3: CysM protein supernatant after induction; 4: CysM protein precipitate after induction; and 5: Purified mature CysM protein.

these direct effects. The assessment of protein crystallization,
small-molecule activity, and amino acid binding site mutations
could provide further insight into the interaction between CysM
and tylosin.

In conclusion, this study provided evidence suggesting
that tylosin inhibits S. suis biofilm formation via its
interactions with the CysM protein. However, findings
from this study were derived under in vitro conditions.
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FIGURE 8 | Detection of direct interaction between CysM and tylosin. (A) Binding dissociation curve of tylosin and CysM; (B) FT-IR analysis of combination between

tylosin and CysM.

The effective serum concentration of tylosin in vivo that
interacts with CysM may be different compared to in vitro
conditions. Future studies should perform an the in-depth
exploration of CysM and tylosin interactions. It is also
necessary to verify the results of the present study in vivo using
appropriate models.
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