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In animal husbandry, feed e�ciency is a crucial economic trait. In this

study, the general linear model was used to perform association analysis

for various genotypes and feed conversion ratio (FCR)-related traits. Reverse

transcription-quantitative PCR (RT-qPCR) was used to detect the expression of

SHISA3 and RFC3 mRNA levels in 10 tissues from 6 sheep. The results showed

that SNPs in the NC_040257.1:c.625 T > C and NC_040261.1:g.9905 T > C

were analyzed whether they were associated to feed e�ciency parameters in

Hu sheep (body weight, feed intake, average daily growth, and feed conversion

ratio). NC_040257.1:c.625 T > C was shown to be significantly associated

with body weight at 80, 100, and 120 days as well as feed conversion ratio

(P < 0.05), whereas NC_040261.1:g.9905 T > C was found to be significantly

associated with average daily weight gain from 80-140 days (ADG80-140) and

FCR (P < 0.05). In Hu sheep, the CC genotypes of SHISA3 and RFC3 were

the most common genotypes related to feed e�ciency traits. Furthermore,

the feed conversion ratio of the combined genotypes TTSHISA3-CCRFC3,

TTSHISA3-CTRFC3, TTSHISA3-TTRFC3, CTSHISA3-CCRFC3 and CTSHISA3-CTRFC3

was significantly better than the FCR of CCSHISA3-TTRFC3. RT-qPCR results

showed that the expression levels of SHISA3 were lower in the lung than in

spleen, kidney, muscle and lymph (P < 0.05), and RFC3 was the lung had

a highly significant higher expression level than the heart, liver, spleen, and

muscle (P < 0.01). In conclusion, SHISA3 and RFC3 polymorphisms can be

used as genetic markers for improving feed conversion e�ciency in Hu sheep.
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1. Introduction

Sheep farming plays a vital role in the regional economic

development of Northwest China. According to studies, the cost

of feed accounts for between two-thirds to three-quarters of the

entire cost in a housed sheep farming system (1). Improving

the efficiency of sheep feed consumption not only increases

farmer income, but also decreases methane gas emissions

for environmental protection (2). The feed conversion ratio

(FCR) is a traditional metric for assessing feed efficiency (FE),

which is defined as the ratio of feed intake to body weight

(BW) growth per unit time (3, 4). Therefore, improving FE

has become a major concern for sheep farmers. With the

fast advancement of science and technology, whole genome

sequencing is now extensively employed in livestock and poultry

breeding, including pigs (5–9), cattle (10–13) and other species

(14). Many relevant candidate genes and quantitative trait loci

associated to feed efficiency were screened using sequencing

technology, which may be used for marker-assisted selection

(MAS) to enhance FE and lower production costs (15–21).

In Hu sheep, it was discovered that ME1 gene polymorphism

was significantly associated with FCR and RFI (P < 0.05),

whereas CA1 gene polymorphism was significantly associated

with FCR (P < 0.05) and the polymorphism in gene RTP4 were

significantly associated with RFI (P < 0.05) (17, 22). According

to methodological research using genome-wide association

analysis, the genes CREB1, STEAP4, CTBP1, RIP140, SMURF2,

FBF1, DTNBP1, SETD7, and RBM11 may be candidates for

fat deposition in sheep tails (23, 24). According to research,

synonymous mutations in ELOVL5 are associated to tail width,

tail fat weight, and relative tail fat weight (P < 0.05). FASN

synonymous mutations were shown to be related to tail length

and breadth (P < 0.05) (25).

In this work, we selected two candidate genes, SHISA3 and

RFC3, which showed differential expression in previous studies

on residual feed intake (21), while circulating RNAs associated

with lamb feed efficiency were identified as miRNA target genes

in studies (22). SHISA family member 3 (SHISA3) is a gene

that codes for proteins. SHISA3 belongs to the SHISAs family

of endoplasmic reticulum-resident proteins, which has eight

members (SHISA2–SHISA9) and is mostly involved in head

development in non-human animals such as Xenopus, mouse,

and chicken (26–28). SHISA3 research is mostly focused on

human cancer. SHISA3 has been found to be a tumor suppressor

gene, inhibiting carcinogenesis, invasion, and metastasis by

increasing—catenin degradation (29). SHISA3 gene expression

has been shown to be dysregulated in colorectal cancer (30),

laryngeal squamous cell carcinoma (31), and nasopharyngeal

carcinoma (32) in subsequent research. This demonstrates the

crucial role of SHISA3 in clinical tumor identification and

prediction. However, the effect of SHISA3 gene with sheep

FE is not clear. The eukaryotic replication factor C (RFC)

complex is part of the DNA polymerase, which consists of five

subunits (RFC1-5) (33, 34). It functions as a AAA+ ATPase

that is required for DNA replication, damage repair, and cell

cycle checkpoint regulation in all eukaryotes (35–40). The RFC

is a clamp loader that helps to lengthen the DNA strand by

loading proliferating cell nuclear antigen (PCNA) onto primed

DNA (41). The replication factor C subunit 3 (RFC3) is a

subunit of the RFC complex. Reduced RFC3 expression has been

shown to inhibit cancer cell proliferation by forming complexes

with proliferating cell nuclear antigen (PCNA) (42). RFC3

has recently been described to be largely focused on human

malignancies, such as liver, breast, esophageal, and ovarian

cancers, where it plays a significant role in cell proliferation,

invasion, and metastasis (42–45). However, the effect of RFC3

on animal FCR remains unclear.

Thus, the following hypotheses were proposed in this study:

(1) the presence of polymorphisms in the SHISA3 and RFC3

genes; (2) the different genotypes of the polymorphic loci are

associated with feed efficiency in sheep. To test the validity of

the hypothesis, the purpose of this study was to identify SHISA3

and RFC3 polymorphisms, to associate different genotypes of

polymorphic loci with feed efficiency attributes in sheep, and to

examine SHISA3 and RFC3 expression levels in various tissues

of sheep.

2. Material and methods

2.1. Ethical statement

All animal experiments were conducted out in compliance

with the rules and recommendations of Gansu Province’s

NPC government and were authorized by Gansu Agricultural

University’s Animal Health and Ethics Committee (Animal

Experimentation License No. 2012-2-159).

2.2. Animal management, data collection,
and DNA isolation

In this research, 1,382 male Hu sheep lambs were obtained

from Defu Agricultural Technology Co., Ltd (Gansu, China).

Their birthplaces were from different farming enterprises, and

the detailed sources refer to the study of Lin et al. (46). Before

weaning at 56 days of age, all of the lambs were in excellent

development condition and fit, and they had all finished a

standardized vaccination schedule administered by a practicing

veterinarian. After weaning, the lambs were transported in

batches to Defu Agricultural Technology Co., Ltd. and housed

inside in separate 0.8 × 1m enclosures until the trial ended.

All lambs were given the same feed and were subjected to the

same management settings as in our prior research (1). It can be

briefly summarized in three phases: a 14-day transition period,

a 10-day acclimation period and a 60-day formal experiment.
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The transition phase consisted of transitioning from traditional

feed to 100 percent pellet feed and then maintaining it until the

conclusion of the trial, during which time the feed and water

supply was enough to fulfill the lambs’ needs for free feeding

and drinking. The particles used in the experiment were all from

Gansu Sanyang Jinyuan Animal Husbandry Co., Ltd (Gansu,

China). The weight of lambs was recorded at 80 days of age as the

starting weight, and then every 20 days until the lambs were 140

days of age as the ending weight, while feed consumption was

collected for the calculation of average day feed intake (ADFI),

average daily gain (ADG), and FCR.

ADG =
(BWf −BWi)

N

ADFI =
total feed consumption

N

FCR =
ADFI

ADG

where BWf represents 140 days weight; BWi represents 80 days

weight; N represents number of experimental days. After the

experiment was completed, a blood sample (5ml) was taken

from each lamb’s jugular vein for further DNA extraction.

Genomic DNA was extracted from 1,382 blood samples using

the EasyPure Blood Genomic DNA Kit (TransGen Biotech,

Beijing, China), dissolved in TE buffer, and kept at −20◦C

according to the manufacturer’s recommendations.

2.3. SNPs identification and genotyping

Using the Oligo 7.0 software (Olgi.net, Colorado Springs,

CO, USA), specific PCR primers (GenBank Accession Nos.

NC_040257.1 and NC_040261.1) were based primarily

on the genomic DNA sequences of SHISA3 and RFC3

(Supplementary Table S1). To find single nucleotide

polymorphisms (SNPs) in SHISA3 and RFC3, 10 individual

DNA samples from 1,382 sheep DNA samples were randomly

chosen and blended as PCR templates for PCR fragment

amplification and DNA sequencing. The PCR reaction that

was done in order to sequence the DNA was carried out in a

volume of reaction that was 25 ul, and it included 10 ul of PCR

buffer, 0.35 uM of primers, 87.5 uM of dNTPs, 50 ng of genomic

DNA, and 1.25 ul of UTaq DNA Polymerase (TransGen Biotech,

Beijing, China). Using the following thermocycling conditions:

5 mins at 94◦C, followed by 30 s at 94◦C, followed by 30 s at

50–60◦C, and finally 30 s at 72◦C (35 cycles), followed by a

final extension incubation for 5 mins at 72◦C. The technique of

competitive allele-specific FRET-based PCR analysis (KASPar)

was then performed to genotype SNPs within SHISA3 and RFC3

(47). Information on primer pairs used for genotyping is listed

in Supplementary Table S2. The 1,382 lambs were genotyped

for SHISA3 and RFC3, and finally 1,355 were successfully

genotyped for SHISA3, while 1340 for RFC3.

2.4. Statistical analysis

In this study, all variables were subjected to the Shapiro-

Wilk normality test (48), and those that failed the test were

transformed using the logarithm (49). The general linear

model was used to perform association analysis for various

genotypes and FCR-related traits. The stats package of R

(version 4.0.5) was used to model building which based on

ordinary least square and execute significance tests. Genotype

frequency and allele frequency, effective allele number (Ne),

expected heterozygosity (He), expected homozygosity (Ho),

and polymorphism information content (PIC) were calculated

by referring to previous studies (50). The specific model and

parameters are shown below:

Yijkl = µ + Genotypei + Batchj + Seasonk + Sirel + εijkl;

Yimjkln = µ + Genotypei + Genotypem + Batchj + Seasonk

+ Sirel + Combinationn + εimjkln,

where Yijkl and Yimjkln was the phenotypic observation value of

FCR-related traits, µ is the mean, Genotypei and Genotypem is

the effect of the ith and mth genotypes; Batchj is the fixed effects

(j= 1, 2,. . . , 6); Seasonk is the fixed effects (k= 1, 2); Sirel is the

fixed effects; Combinationn refers to the effect of combination,

εijkl and εimjkln are the random error. All of our samples are

collected around August (summer), and January (winter) of each

year. To test the significance of the genotype means, the least

significant difference (LSD) test was utilized. When P < 0.05

indicates statistical significance.

2.5. Total RNA preparation, and cDNA
synthesis

Six sheep were selected at random from all of the samples

(n = 1,382) to act as experimental subjects. Following that,

these individuals’ heart, liver, spleen, lung, kidney, muscle, tail

fat, lymph, rumen, and duodenum were all collected. TRIzol

reagent (Invitrogen, Waltham, MA, USA) was used to extract

total RNA from the samples, which was then reverse transcribed

into cDNA using a reverse transcriptase kit (TransGen Biotech,

Beijing, China).

2.6. Analysis of SHISA3 and RFC3

expression levels

The mRNA levels of SHISA3 and RFC3 genes were detected

in 10 tissues of the 6 sheep collected above. The Oligo 7.0

tool was used to design the particular primers utilized to

evaluate gene expression (Supplementary Table S3). The qRT-

PCR system that was used had a volume of 20 µl and included

10 µl of Takara Biotechnology’s 2 X SYBR Green PCR Master
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Mixture, 0.8 µl of each primer, 2 µl of template cDNA, and

6.4 µl of RNase-free water (TransGen Biotech, Beijing, China).

The conditions were as follows: 95◦C for 3 mins, 95◦C for

15 s, the optimal annealing temperature for 15 s, 72◦C for

20 s, 40 cycles, and then 72◦C for 5 mins. The qRT-PCR

reactions were carried out using a Roche LightCycler 480

(Roche Applied Science, Basel, Switzerland): reaction protocols

are based on earlier research (46). The data obtained were

normalized using β-actin as an internal reference gene and

analyzed using the 2−11Ct method (51). The Games-Howell

test is a statistical model for measuring the degree of gene

expression (52).

TABLE 1 Descriptive statistics on traits correlated with FCR for SHISA3 and RFC3 genes.

Item Batch BW80 BW100 BW120 BW140 FI80-140 ADFI80-140 ADG80-140 FCR80-140

No. 1 97 97 97 97 97 97 97 97

2 205 205 205 205 205 205 205 205

3 165 165 165 165 165 165 165 165

4 314 314 314 314 314 314 314 314

5 180 180 180 180 180 180 180 180

6 421 421 421 421 421 421 421 421

Mean 1 19.59 24.56 30.34 35.74 82.72 1.38 0.27 5.16

2 22.28 27.59 33.10 38.53 87.02 1.45 0.27 5.46

3 18.80 23.78 29.19 34.51 76.17 1.27 0.26 4.91

4 21.49 27.30 32.93 37.86 90.92 1.52 0.27 5.66

5 19.39 24.86 30.76 37.11 90.46 1.51 0.30 5.15

6 17.46 22.27 28.20 34.19 83.67 1.39 0.28 5.04

SD 1 3.42 4.07 4.52 4.89 12.75 0.21 0.04 0.59

2 3.57 4.03 4.51 4.99 12.57 0.21 0.05 0.84

3 2.99 3.47 3.65 3.96 10.01 0.17 0.04 0.66

4 3.94 4.65 5.34 5.86 15.66 0.26 0.06 0.85

5 3.53 4.12 4.58 5.23 13.94 0.23 0.05 0.65

6 3.71 4.70 5.36 5.88 16.68 0.28 0.05 0.65

Max 1 27.50 33.70 40.80 48.30 111.60 1.86 0.36 7.19

2 32.50 38.80 45.60 54.10 121.70 2.03 0.42 10.24

3 30.10 35.50 40.10 45.50 102.70 1.71 0.46 7.76

4 33.90 42.40 49.40 57.10 134.75 2.25 0.43 10.66

5 30.35 37.15 42.15 50.25 125.80 2.10 0.42 8.12

6 28.40 35.60 44.00 52.50 133.30 2.22 0.45 11.22

Min 1 11.30 13.40 18.20 21.00 45.50 0.76 0.15 3.27

2 14.40 16.40 20.60 24.00 52.00 0.87 0.12 3.26

3 12.50 15.80 20.00 25.60 54.00 0.90 0.15 3.19

4 11.80 15.20 20.60 23.25 50.95 0.85 0.10 4.12

5 11.85 14.45 18.00 23.70 56.90 0.95 0.17 3.74

6 9.50 9.78 13.80 19.55 38.00 0.63 0.08 3.74

BW80, 80 days body weight; BW100, 100 days body weight; BW120, 120 days body weight; BW140, 140 days body weight; FI80-140, feeding intake at 80–140 days; ADG80-140, average

daily weight gain from 80 to 140 days; FCR80-140, feed conversion ratio at 80–140 days.

The unit of BW is KG.

The unit of FI is KG.

The unit of ADG is KG/d.
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FIGURE 1

PCR amplification of ovine SHISA3 (A) and RFC3 (B) genes target fragment. M, DNA marker; 1–10, PCR products.

3. Results

3.1. Descriptive statistics on traits
correlated with FCR

The results of the Shapiro-Wilk normality test showed that

all traits conformed to the normal distribution, except for

FCR80-140, which did not conform to the normal distribution.

FCR80-140 was then log-transformed. Descriptive statistics are

reported in Table 1. The genotyping sample size for Hu sheep

was 1,382. The table shows the mean, standard deviation,

maximum and minimum values for sheep BW80, BW100,

BW120 and BW140. The average weight increase from BW80

to BW100, BW100 to BW120, and BW120 to BW140 for the

bearded sheep population was 5.51 kg. The disparity between the

maximum and minimum body weight readings increased with

time, with a difference of 37.55 kg at BW140, with the greatest

value being about three times the minimum.
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FIGURE 2

Sequencing results of mixed DNA from Hu sheep SHISA3 (A) and RFC3 (B). Overlapping peaks reflect mutation sites.

3.2. SNP scanning of SHISA3 and RFC3 in
Hu sheep

499 bp and 326 bp PCR fragment sequence were amplified

from the DNA pool of the experimental population using the

primer pairs shown in Supplementary Table S1, Figure 1 and

each detected a mutant site (Figure 2). Both mutations were

genotyped using the KASPar method and all three genotypes,

CC, CT and TT, were detected (Figure 3). The genotype

frequencies, allele frequencies, and genetic diversity of the

two genes are displayed in Table 2. The frequencies of the

three genotypes CC, CT and TT for NC_040257.1:c.625 T >

C and NC_040261.1:g.9905 T > C were 0.46, 0.46, 0.08 and

0.30, 0.49, 0.21, respectively. The gene frequency of C in
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FIGURE 3

The KASPar method was used to genotype Hu sheep NC_040257.1:c.625T > C (A) and NC_040261.1:g.9905T > C (B) SNPs in the experimental
population. The color of the dots indicates the result of genotyping; green, red, and blue in the figure indicate three di�erent genotypes.
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NC_040257.1:c.625 T > C was 0.69, whereas it was 0.54 in

NC_040261.1:g.9905 T > C. The Ne, Ho, He, and PIC values for

the SHISA3 gene were 1.75, 0.57, 0.43, and 1.75, respectively, and

for the RFC3 gene were 2, 0.5, 0.5, and 0.38 (Table 2), indicating

that the two genes showed intermediate polymorphism.

3.3. Association analysis of Hu sheep
SHISA3 and RFC3 with traits related to
feed conversion ratio

To study the effects of the SNPs of Hu sheep

NC_040257.1:c.625 T > C and NC_040261.1:g.9905 T > C

on FCR, association analysis was performed using the linear

model in R 4.0.5 version. The results indicated that the SNP

at NC_040257.1:c.625 T > C was significantly associated with

BW80, 100, 120 (P < 0.05) (Table 3). BW80 and BW100 were

significantly higher in animals carrying the CC genotype than in

those carrying the CT or TT genotypes (P < 0.05). However, at

BW120, the CC genotype outperformed the TT genotype, while

the CT genotype did not differ from the other two genotypes

(P > 0.05). The FCR80-140 association results revealed that CT

and TT genotypes performs better CC genotypes. The findings

of the association analysis for SNP NC_040261.1:g.9905 T

> C revealed no significant effects with body weight and

feed intake (P > 0.05). The results of the ADG80-140 and

FCR80-140 association analysis revealed that the CC genotype

with NC_040261.1:g.9905 T > C was markedly better than the

TT genotype (P < 0.05).

3.4. Association analysis of combined
genotypes of SHISA3 and RFC3 genes
with traits related to feed conversion
ratio

The combined impacts of various genotypes of the

NC_040257.1:c.625 T > C and NC_040261.1:g.9905 T >

C polymorphisms with attributes associated to FCR were

evaluated using linear regression analysis (Table 4). As both

NC_040257.1:c.625 T > C and NC_040261.1:g.9905 T > C

have three genotypes, a three-by-three combinatorial pattern

TABLE 2 The genotype frequency, allele frequency and genetic diversity of SHISA3 and RFC3 sites.

Loci Genotype Genotype frequency Allele Allele frequency Ne Ho He PIC

NC_040257.1:c.625 T > C CC (627) 0.46 C 0.69 1.75 0.57 0.43 0.34

CT (620) 0.46

TT (108) 0.08 T 0.31

NC_040261.1:g.9905 T > C CC (395) 0.30 C 0.54 2 0.5 0.5 0.38

CT (660) 0.49

TT (285) 0.21 T 0.46

Ne, effective allele number; Ho, expected homozygosity; He, expected heterozygosity; PIC, polymorphism information content.

TABLE 3 The association between SHISA3 and RFC3 polymorphism and traits related to feed conversion ratio.

NC_040257.1:c.625T > C P NC_040261.1:g.9905T > C P

Item CC CT TT CC CT TT

No. 627 620 108 395 660 285

BW80 19.941± 1.762a 19.433± 1.731ab 19.256± 1.662b 0.010 19.629± 1.798 19.646± 1.759 19.656± 1.747 0.883

BW100 25.172± 2.045a 24.656± 2.000b 24.507± 1.932b 0.031 24.851± 2.062 24.872± 2.024 24.878± 2.007 0.924

BW120 30.913± 1.909a 30.371± 1.864b 30.165± 1.808b 0.036 30.627± 1.923 30.584± 1.892 30.525± 1.874 0.782

BW140 36.469± 1.522 35.998± 1.483 35.788± 1.446 0.083 36.386± 1.536 36.169± 1.514 35.936± 1.500 0.259

FI80-140 86.538± 3.268a 85.251± 3.246ab 84.062± 3.669b 0.043 86.072± 3.283 85.718± 3.359 85.225± 3.499 0.446

ADFI80-140 1.443± 0.054a 1.421± 0.054ab 1.402± 0.061b 0.049 1.435± 0.055 1.429± 0.056 1.421± 0.058 0.480

ADG80-140 0.276± 0.005 0.277± 0.005 0.276± 0.005 0.978 0.280± 0.006a 0.276± 0.005ab 0.272± 0.006b 0.029

FCR80-140 5.307± 0.256a 5.211± 0.248b 5.147± 0.255b 0.009 5.190± 0.257b 5.255± 0.258b 5.314± 0.257a 0.022

The unit of BW is KG. The unit of FI is KG. The unit of ADG is KG/d. Significant differences in the same row are denoted by distinct lowercase letters (P < 0.05).
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was generated. BW80, 100, 120, 140, FI80-140, and ADG80-

140 did not present significance in association analysis of

various combinations (P > 0.05). However, in FCR80-140,

TTSHISA3-CCRFC3, TTSHISA3-TTRFC3, TTSHISA3-CTRFC3,

CTSHISA3-CCRFC3 and CTSHISA3-CTRFC3 showed better

results than CCSHISA3-TTRFC3 (P < 0.05) (Table 4).

3.5. Analysis of SHISA3 and RFC3

expression levels in the di�erent tissues

The expression levels of SHISA3 (Figure 4A) and RFC3

(Figure 4B) genes in heart, liver, spleen, lung, kidney, rumen,

duodenum, muscle, lymph and tail fat were analyzed by qRT-

PCR, and the results showed significant differences in expression

levels in different tissues (P < 0.05) (Figure 4). Figure 4A

shows the expression levels of the SHISA3 gene, which were

significantly lower in the lung than in spleen, kidney, muscle

and lymph (P < 0.05). However, the expression pattern of

RFC3 differed from that of the SHISA3 gene (Figure 4B).

Notably, the lung was extremely significant more expressed

than the heart, liver, spleen and muscle (P < 0.01), while

spleen was also extremely significantly higher than muscle (P

< 0.01). It is also widely distributed in the lymph, rumen

and duodenum.

4. Discussion

The FCR has a considerable impact on agricultural

efficiency, economic viability, and environmental sustainability

(53). FCR is impacted by a variety of variables, making it

difficult for breeding programs to test it directly on candidate

populations (54). Broiler dietary protein and energy sources have

a major influence on FCR (55), and beef cattle live weight affects

FCR through influencing maintenance and production needs,

according to studies (56). In this study, we compared different

stages of ADG to observe changes in weight and FCR-related

characteristics over time. The findings revealed that body weight

did not correlate with ADG but did associate with FCR. FCR

features are economically significant qualities that have been

the focus of the growing livestock sector, and advances in FCR

directly lead to feed consumption reductions (57). These results

show that FCR is a measurable trait that may be used to direct

breeding and selection.

SNPs are single alterations in a single base in the genome

that most typically describe inter-individual genetic variation

(58). Because SNPs are associated with numerous economically

relevant features in livestock, they have grown in importance as

a molecular marker (59). It may be separated into synonymous

mutations, missense mutations, and silent mutations based on

the various kinds of mutation (60). Missense mutations were

more likely to occur than silent mutations (61). Numerous
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FIGURE 4

The expression of SHISA3 mRNA in di�erent tissues (A). The expression of RFC3 mRNA in di�erent tissues (B).
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studies have shown that missense mutations may play a crucial

role in the development of many illnesses (62). In this work, we

identified a missense mutation in SHSA3. The results show that

it is associated with body weight and feed efficiency in sheep.

Silent mutations are often ignored because they do not result in

changes to the proteins (63). However, synonymous mutations

have their own benefits in terms of modifying mRNA stability,

splicing regulatory regions, miRNA binding sites, or translation

efficiency, all of which result in changes in protein level or

shape (64). Recent research has shown that synonymous or silent

mutations contribute to the breeding of economic features in

sheep (65–67).

In this study, two SNPs were discovered in

NC_040257.1:c.625 T > C and NC_040261.1:g.9905 T >

C. The potential of an association between these two mutant

loci and BW, FI, ADG, and FCR was studied. The results

showed that NC_040257.1:c.625 T > C was significantly

associated with BW80, BW100, BW120 and FCR (P < 0.05).

NC_040261.1:g.9905 T > C was significantly associated with

ADG and FCR (P < 0.05). SHISA3 has been demonstrated

in studies to contribute to the suppression of carcinogenesis,

invasion, and metastasis by increasing β-catenin degradation

(29). The RFC3 gene is implicated in the enrichment of the

Wnt/-catenin signaling pathway (34). The Wnt pathway has

been found to play a key part in its formation as well as its

anti-inflammatory properties (68, 69). Animal FE is related

to immunoinflammatory effects (21), hence we predicted that

NC_040257.1:c.625 T > C and NC_040261.1:g.9905 T > C is

associated to animal feed efficiency.

Association analysis revealed a strong correlation between

the combined genotypes of these two loci (NC_040257.1:c.625 T

> C and NC_040261.1:g.9905 T > C) and the FCR of Hu sheep

(P < 0.05). In addition, FCR increases with increasing T allele

frequency and peaks when both genes are for T. The mRNA

level of SHISA3 was substantially greater in the duodenum

than in other organs, according to the findings of qRT-PCR

analysis. The intestine is a vital digestive organ and the greatest

immunological organ in animals, and the duodenum, as a

component of the intestine, likewise performs digestive and

immune activities. In addition, duodenal bypass is essential for

improving glycemic control (70). As a result, our hypothesis that

the immune response is linked to animal feed efficiency has been

confirmed. Additionally, lymph, rumen, and duodenum had

significantly higher RFC3 expression levels than other tissues.

When this study’s expression profile was compared to the bovine

gene expression profile, the findings were very similar (71).

Animal rumen efficiency is related to feed efficiency, according

to studies, and rumen passage rate is affected by both feed intake

and rumen size (72–74). Furthermore, both the lymph and the

duodenum are immunological tissues that execute immune tasks

in the animal (75, 76). As a consequence, we speculated that

mutations in the SHISA3 and RFC3 genes may influence animal

FE by affecting the immunological response. The SHISA3 and

RFC3 genes in sheep may be chosen as candidate genes for

improved FCR. However, further research is required to confirm

the association between SHISA3 and RFC3 and FE features.

5. Conclusion

In short, NC_040257.1:c.625 T > C and

NC_040261.1:g.9905 T > C were shown to be substantially

associated with feed efficiency features in this research

(BW, ADG, FCR). In the sheep population, these two genes

had a similar influence on FCR. SHISA3 expression was

significantly higher in the duodenum, while RFC3 expression

was significantly higher in the rumen, lymph, and duodenum

than in the other tissues. As a conclusion, using the SHISA3

and RFC3 genes as genetic markers might help to enhance FCR

while also increasing economic efficiency.
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