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Felines are generally acknowledged to have natural athletic ability, especially in

jumping and landing. The adage “felines have nine lives” seems applicablewhen

we consider its ability to land safely from heights. Traditional post-processing

of finite element analysis (FEA) is usually based on stress distribution trend

and maximum stress values, which is often related to the smoothness and

morphological characteristics of the finite element model and cannot be

used to comprehensively and deeply explore the mechanical mechanism of

the bone. Machine learning methods that focus on feature pattern variable

analysis have been gradually applied in the field of biomechanics. Therefore,

this study investigated the cat forelimb biomechanical characteristics when

landing from di�erent heights using FEA and feature engineering techniques

for post-processing of FEA. The results suggested that the stress distribution

feature of the second, fourth metacarpal, the second, third proximal phalanx

are the features that contribute most to landing pattern recognition when

cats landed under di�erent constraints. With increments in landing altitude,

the variations in landing pattern di�erences may be a response of the cat’s

forelimb by adjusting the musculoskeletal structure to reduce the risk of injury

with a more optimal landing strategy. The combination of feature engineering

techniques can e�ectively identify the bone’s features that contribute most

to pattern recognition under di�erent constraints, which is conducive to the

grasp of the optimal feature that can reveal intrinsic properties in the field

of biomechanics.

KEYWORDS

animal biomechanics, cat paws, feline landing, post-processing of finite element

analysis, feature engineering techniques, metaheuristic optimization algorithms
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Introduction

Much of modern human motion technology was gathered

and developed from animals (1, 2). Naturalistic development of

the world would not be possible without the knowledge gained

from animal models (3, 4). Cats are generally acknowledged

to have natural athletic ability, especially during jumping and

landing (5). Cats can land safely from high positions without

any injury, because of the landing buffering mechanics that they

possess. The adage, “cats have nine lives”, seems applicable when

we consider the animal’s ability to land safely from heights (6).

Several studies have reported that there have been <10% of cat’s

fatalities recorded while falling from heights (6–8). Vnuk et al.

investigated that there was a 96.5% survival rate when a feline

fell from height (6). This interesting phenomenon has attracted

much research attention. Research has focused on the inner

mechanical principles of the cat for providing information to

reduce landing fall injuries in humans (9).

Paw pads of cats during landing are the only body parts

in contact with the ground. It is believed that paw pads

play an important role in the landing phase for buffering

of impact force (7). The Felida family such as cats, tigers,

leopards and so on are representative of the padded paw, which

is commonly located beneath the distal metacarpophalangeal

joints and interphalangeal joints (10). It is logical to discuss that

the paw pads of cats are one of the main parts for absorbing

impact force because they have relatively long tarsals and carpals.

The paw pads also help to optimize stress distribution in the

phalanx region (11). The paw pad is the main component

area that contacts the ground in activities such as standing,

jumping, walking, and running. This special morphological

structure allows felines to absorb two to three times their

body weight while resting on their small distal joints (7,

12). Conventional biomechanical experiments (such as animal

experiments, in vitro cadaveric specimens, etc.) often cannot

fully reflect the real biomechanical changes of internal bones, but

three-dimensional finite element analysis (FEA) can simulate

the complex mechanical environment in a mathematical form

and provide internal mechanical information (13–15). FEA

facilitates the measurement of external forces and the analysis

of internal stresses during the experimental investigation, which

also can provide a better understanding of the cat’s special

landing mechanism (1, 11).

However, the FEA also has certain drawbacks when

comparing the stress characteristics of different models after the

FEA (15, 16). In other words, such comparison after FEA is

usually based on stress distribution trends and maximum stress

values (13, 16, 17), which is a certain contingency (15, 18).

For example, the maximum stress value is often related to

the smoothness and morphological characteristics of the finite

element model, so the comparison method of maximum stress

value cannot be used to comprehensively and deeply explore

the mechanical mechanism of the bone. Previous studies have

explored the stress values at all nodes of a piece of bone using

the F-test method (17). This method can effectively avoid the

contingency of maximum stress value, but it ignores the effective

information of stress distribution characteristics. Therefore,

it has become a challenge in the field of biomechanics in

the post-processing of FEA to analyze the stress distribution

characteristics of bones effectively while avoiding the chance of

the existence of stress extremes (15, 19–21).

In recent years, machine learning methods that focus on

feature pattern variable analysis have been gradually applied in

the field of biomechanics (1, 22–24). Meanwhile, the progress

of motion capture technology, mechanical sensing technology,

and signal processing technology makes biomechanical

data acquisition diversified and refined, which provides the

prerequisite for the application of big data-driven machine

learning methods in the feature recognition and selection in the

field of biomechanics (1, 24, 25). Metaheuristic optimization

algorithms are a fascinating research hotspot in the field of

machine learning, and it has been significant in solving complex

and difficult feature optimization problems (26, 27). At present,

there have been a large number of studies using metaheuristic

optimization algorithms to select and classify characteristics

of biological data (28, 29). Particle swarm optimization (PSO)

is a classical and widely researched algorithm in the field of

metaheuristics, which aims to deal with optimization problems

in continuous or discrete spaces based on population search

(30, 31). The construction of a bone stress distribution pattern

recognition and feature selection model based on PSO can

provide some methodological reference for the problem of

stress feature exploration in the field of biomechanics and

provide unique new insights into the results.

Therefore, this work aimed to explore the cat forelimb

paw biomechanical characteristics when landing from different

heights by using FEA, and feature engineering techniques

for post-processing of FEA. Specifically, the ground reaction

force (GRF) data waveform during the cat landing was first

reconstructed using principal component analysis (PCA), and

the optimized data was substituted into a finite element model

simulation to calculate the bone stress distribution. After that,

by extracting the node stress values of each bone in the finite

element model as model input data, a feature selection model

was constructed based on PSO in themetaheuristic optimization

algorithm to select the optimal bone stress distribution features

that can identify landing patterns when landing from a different

height. Meanwhile, a feature classification and recognition

algorithm model was constructed to determine the accuracy

of recognizability of each bone stress distribution feature for

landing patterns when landing from a different height. Finally,

the aim of exploring the cat landing patterns characteristics

and law during landing from different heights was achieved

by combining the above results, and the advantages of FEA
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FIGURE 1

(A) Illustration of the position of 3-D coordinates and two high-speed cameras. (B) Illustration of cat landing experimental procedure from the
ready position of jumping platform to initial forelimbs contacting the force plate. (C) Illustration of the process of FEA. Step 1 is to obtain the
coronal CT images of the right forelimb paw. Step 2 is the 3D model obtained by processing CT images through Mimics software, and then
importing the 3D model into Geomagic software (Step 3) for post-processing such as noise reduction, spike removal and smoothing. After that,
Step 4 was performed by using SolidWorks software to get cartilage, ligaments, and soft tissue (from left to right). Finally, Step 5 was executed by
using ANSYS Workbench software to grid processing, then load and boundary conditions were applied to execute FEA.

post-processing based on feature engineering techniques have

also been demonstrated.

Materials and methods

Animals

Written agreement from the breeder in the local area

was obtained for the voluntary involvement of a healthy

male domesticated cat: aged 2.85 years, body mass of 4.32 kg

(Figure 1A shows the specific body length of the test cat).

There was a comprehensive clinical assessment prior to data

collection in order to guarantee that there were no health

conditions that would affect the study’s results. A computerized

tomography (CT) scan of the cat was taken. The CT scan

was conducted by a veterinarian at a pet hospital. In order to

ensure that there were no health issues or foot injuries, the

cat was inspected by a veterinarian. The Animal Care and Use

Ethics Committee of Ningbo University gave its approval to this

research (NBUAEC20200621).

Experiment protocol and procedures

All tests were performed in the biomechanics laboratory

at Ningbo University Research Academy of Grand Health.
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The landing task was performed on a force platform (Kistler,

Switzerland) using a 1,000Hz sampling frequency for GRF

data collecting. During each landing task, kinematic data were

collected using two high-speed cameras (Fastcam SA3, Photron,

Japan) set at 1,000Hz. At the same time, the other landing task

was performed on a pressure sensing mat EMED-AT system

(Novel, Germany) to collect the E-med data (EMED-AT system:

700 × 403 × 15.5mm with a sensor area of 475 × 320mm,

containing 6,080 sensors with a recording frequency of 100Hz).

The cat was completely acclimated to the setting (test room)

prior to data collection, with toys and food used to entice the cat’s

interest. To ensure a smooth experiment, the cat was brought to

the laboratory by its owner before the official start of the trial.

This procedure was repeated three times a week for 1 h each

time until the cat could be lured by food and toys and precisely

leap to the appropriate place (the force platform). Three heights

of 0.8, 1, and 1.2m were taken as the heights selected for this

experiment. Twenty groups of data were collected by a force

platform and E-med for each height, and a total of 120 groups

of data were collected.

The cat owner urged him to sit in a squat posture on the

leaping platform while the table height was changed to the exact

height necessary. To minimize erroneous data collection due to

fatigue, a 5-min break was implemented between each landing

task. The cat’s head and body were both facing forward when

it fell, so there was no obvious tilt to the body. When the cat’s

forelimb landed in the defined region and the cat proceeded to

travel ahead from the indicated area, the experiment has judged

a success. There were no injuries or negative responses following

the experiment. Two high-speed cameras were mounted at the

diagonal level of the force plate at a distance of 5m from the

landing target region, producing a 45-degree angle between the

major optical axes of the two cameras, as shown in Figure 1A.

Three-dimensional (3-D) coordinates were put in the center

of the force platform to create the space coordinate. Figure 1B

shows the landing test procedure of the cat from a preparation

stage to an initial contact phase.

Data processing and statistical analysis

The first point of contact with the force plate was determined

using a vertical GRF > 10N (1, 32). The landing phase was

defined as the first point of contact (0% landing phase) to

maximum elbow flexion from the first peak vertical GRF time

point to the second (100% landing phase). The GRF data was

filtered using Butterworth lowpass filters (filter order: fourth-

order zero-phase lag, cut-off frequency: 50Hz) (33). SIMI-

Motion 7.50 is a motion simulator developed by SIMI-Motion

(Simi Reality Motion Systems GmbH, Munich, Germany),

which was used to analyze the cat landing phase. After that,

the elbow sagittal plane joint angles were taken as an output

from SIMI -Motion, and the time point corresponding to the

maximum elbow flexion angle was derived to intercept the data

waveform of the GRF. Then, each landing height (0.8, 1.0,

and 1.2m) of each direction (X-axis: lateral and medial GRF;

Y-axis: anterior and posterior GRF; Z-axis: vertical GRF) of the

determined GRF data were expanded into 101 data points using

a self-written MATLAB script, which represents the 0–100%

landing phase (1). Finally, the data waveform of the GRFwas run

in MATLAB by a customMATLAB script to execute the PCA to

reconstruct the waveforms of the principal GRF.

At the same time, the time point corresponding to the

maximum elbow flexion angle was also used to determine

the E-med data. The SPSS 24.0 for WindowsTM software was

used for statistical analysis (SPSSs Inc., Chicago, IL, USA).

Prior to statistical analysis, the Shapiro Wilk normality test was

applied to all E-med data. If non-conformity was observed then

the Wilcoxon matched-pairs signed-rank test was conducted

for non-parametric data. Independent t-tests were performed

to determine if there were any significant differences in

different biomechanics values between left and right forelimbs.

A one-factor repeated ANOVA was performed to determine the

effect of landing heights during the landing phase on the right

forelimb. The Least Significant Difference (LSD) was used in

the post-test of analysis of variance, and the P-value was also

corrected based on the result of the post-test.

Principal component analysis
reconstructed data waveform of ground
reaction force

PCA is a multivariate statistical analysis technique that uses

orthogonal rotation transformation to convert multiple indexes

into several comprehensive indexes to reduce dimensionality

and sacrifice as little information as possible (34). The

principle component is the name given to the comprehensive

index produced by transformation, in which each principal

component is a linear combination of the original variable

and is unrelated to the others (1, 34, 35). When investigating

complex problems, it is possible to consider only a few principal

components without missing too much information. As a result,

it is simpler to identify the major contradiction, disclose the

regularity between the internal variables of objects, and reduce

the problem in order to increase analytical efficiency. See

Supplementary Text 2 for more details on the application of

PCA in current research.

Finite element analysis technology
simulated the bone stress distribution of
cat claw

The specific FE model feline paw model was created using

Computer Tomography (CT) images. CT scans were obtained
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and conducted at a pet hospital by a qualified veterinarian.

Before obtaining the CT data, the cat was examined by a

veterinarian to confirm that there were no health problems or

foot injuries.

The whole process of FEA is shown in Figure 1C. Coronal

CT images of the whole body were collected with a space

interval of 0.5mm in the unloaded position, while only the

right forelimb paw was analyzed in this experiment (1, 15).

The body of the cat was oriented in the scanner in a specific

way to mimic the posture of the cat landing. The structures

of 23 bones, which included 1 radius, 1 ulna, 7 carpus, 5

metatarsals, and 9 components of the phalanges together with

the encapsulated volume were segmented using MIMICS 20.0

(Materialise, Leuven, Belgium). To obtain the boundaries of the

skeleton, the bones were saved in STL format. Secondly, they

were imported into specific software (Geomagic, Inc., Research

Triangle Park, NC, United States) for post-processing. This

included noise reduction, spike removal, and smoothing. The

file was then imported to SolidWorks (SolidWorks Corporation,

Massachusetts, 2017) in Iges format SolidWorks. SolidWorks

was utilized for the conversion of all volumes to solid parts

individually. To simulate the real situation of the cat’s paw,

the solid volume of the articular cartilaginous structure was

shaped. Eventually, 23 cartilages were created according to the

feline paw anatomical structure. Additionally, the encapsulated

soft tissue was built by subtracting all bones and cartilages and

converting them into a solid format. The ligaments were then

generated based on anatomical characteristics (36). All 76 parts

of the paw, which included 23 bones, 23 cartilages, 30 ligaments,

and an encapsulated soft tissue. Using ANSYS Workbench 17.0

(ANSYS, Inc., Canonsburg, United States) for meshing each

part. The solid model of each bone was divided into a high-

quality mesh using the self-adapting dynamic biomechanical FE

grid of the Modeler. The length of the mesh was designated as

1–2mm. Finally, load and boundary conditions are applied, and

FEA is performed on the model. More details about the material

properties, loading, boundary conditions and connections for FE

models are shown in Supplementary Text 2.

Optimal feature selection of landing
patterns based on bone stress
distribution

Based on the three landing heights, the optimal features

can be selected in two cases: landing from 0.8m vs. landing

from 1.0m, landing from 1.0m vs. landing from 1.2m. Data

was entered 5 times in each of the two comparisons, a total of

10 data sets: Mdata1, Mdata2, Mdata3, Mdata4, Mdata5, Mdata6,

Mdata7,Mdata8,Mdata9,Mdata10. Refer to Supplementary Text 2

for details of what each dataset represents.

When the metaheuristic swarm intelligence algorithm

performs optimization calculations, the population of

individuals represents different meanings for different

optimization problems (26, 37). The essence of feature

selection in this study is binary optimization. Specifically, the

present work uses the construction of a binary particle swarm

optimization feature selection algorithm model to select the

stress characteristics of the cat’s metacarpal and the phalanx of

claws that can identify the landing patterns of cats at different

altitudes. At each time step, the PSO idea involves accelerating

each particle toward its Pbest and Gbest positions by modifying

its velocity (global version of PSO). Random numbers are

created for Pbest and Gbest acceleration sites, which are

weighted by a random term. For the binary particle swarm

optimization (BPSO), the cognitive factor was set to 2, the social

factor was set to 2, and the inertia weight was set to 0.9. The

population in BPSO is referred to as a swarm, which consists

of N particles that move around the search space in multiple

dimensions. Potential solutions are represented by particles that

travel across the search area to find the best option. According

to its own experience and knowledge, each particle looks for the

global maximum or minimum. More detailed descriptions of

BPSO are shown in Supplementary Text 2.

After optimization, the representation of the feature

selection result is limited to 0 and 1. The value 0 means that

the feature is not selected, and the value 1 means that the

feature is selected (37, 38). When optimizing the selection of

features, the individual solution of the swarm can be regarded

as a one-dimensional vector, and the original data value of each

dimension is compared to 0.5. If the value is ≥0.5, the value

is defined as 1, and the feature is selected; otherwise, the value

is defined as 0, and the feature is unselected. For example, if

the solution X = a{0.82, 0.63, 0.35, 0, 0, 1, 0.98, 0.87, 0.14}, it

represents six features (1st, 2nd, 6th, 7th, 8th) are selected. The

number of iterations for all optimization algorithms was set as

100, and the fitness function can be defined as:

Fitness value = αER + (1− α)
|R|

|S|
(1)

ER =
Number of wrongly predicted instances

Total number of instance
(2)

where the ER is the error rate calculated by the learning

algorithm, |R| is the feature subset’s length, |S| denotes the

total number of features, α is the parameter of control of

the weight (between the ratio of selected features and error

rate). In this study, the α was set to 0.9 since the classification

performance was themost essential measurement. The k-nearest

neighbor (KNN) algorithm was selected as the learning

algorithm for fitness evaluation (Supplementary Text 2). For

performance evaluation, the hold-out validation method

was applied, and the value ratio of validation data was

set as 0.2.
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FIGURE 2

(A–D) The violin plot of E-Med data distribution. (E–H) Comparison of forelimb paw right in maximum force, peak and mean pressure and
contact areas during landing from di�erent heights. FL, Forelimb paw left; FR, Forelimb paw right; “*” represents significant di�erence between
heights. 1 MPa = 1,000 N/cm2.

After that, the top three features that have been selected

the most times based on 20 random seeds were selected as the

final extracted features. The realization of the whole algorithm

is through MATLAB self-written scripts based on previous

research and MATLAB built-in toolbox.

Feature classification and recognition
based on bone stress distribution

For the classification and recognition algorithm model of

landing features, the current research is also divided into
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two cases to test the classification and recognition accuracy

of features. A total of 10 data sets (Mdata1 to Mdata10)

were substituted into the constructed model. In this study,

the KNN (39), support vector machine (SVM), and artificial

neural network (ANN) (40) were selected to classify in

this study because they have been widely used in pattern

recognition and classification. More detailed descriptions of

recognition and classification model building are shown in

Supplementary Text 2. The 10-fold cross-validation was used in

all classification models.

Results

Pressure and force distribution on cat
from E-Med

There were no significant differences found in maximum

force (Figure 2A), peak pressure (Figure 2B), mean pressure

(Figure 2C), and contact areas (Figure 2D) during the landing

task from three different heights between left and right

forelimb paw. The detailed data analysis results are shown

in Supplementary Table S3. Significant differences were found

in right forelimb paw at maximum force (Figure 2E), peak

pressure (Figure 2F), mean pressure (Figure 2G), and contact

areas (Figure 2H) during the landing task between 0.8, 1.0, and

1.2m, respectively. The detailed data analysis results are shown

in Supplementary Table S4.

Reconstructed waveforms of principal
component analysis

The data waveform of GRFs in three directions when the cat

landed from three heights are shown in Figure 3A, with a total

of 20 waveforms for each case. Results of PCA based on these

data are reported. The first four PC scores PCi of each landing

height and each direction GRF are shown in Figure 3B. For the

first PC scores PC1 of GRF, the PC1 covers the most important

characteristic information of the waveform. This highlighted

that PC1 can reconstruct the principal GRF
−→
PF (1, 35).

Therefore, the first PC scores PC1 was selected to reconstruct

the principal GRF PF in each direction. The waveform difference

between different landing height of reconstructed principal GRF

PF is shown in Figure 3C. According to the reconstructed

waveform of principal GRF, the GRF value for each landing

height of the maximum elbow flexion was extracted (the detailed

values are shown in Figure 3D). Finally, the GRF data values

of each landing height at the time point of the end of the

landing phase (maximum elbow flexion) are extracted from the

reconstructed waveform and substituted into the finite element

model to investigate the stress distribution of the cat right

forelimb paw bone (metacarpal and phalanx).

Finite element model validation

During the process, 4-note linear tetrahedral elements were

used on the irregular geometries such as bones, cartilage,

and encapsulated tissue. The established three-dimensional FE

models include 215,885 elements, 359,299 nodes. The structures

of 23 bones included 1 radius, 1 ulna, 7 carpus, 5 metacarpals,

and 9 components of the phalanges. Referring to the numerical

model of the human foot, the FE model foot models

were validated by plantar pressure distribution (1). Detailed

procedures and results are provided in Supplementary Text 1.

The results showed that the numerically determined pressure

distribution in the left forelimb paw was in good agreement with

experimental data (Supplementary Figure S1).

Right forelimb paw stress distribution

Twelve bones surrounding the cat’s paw pad were

selected as features. The number of finite element

model nodes corresponding to each bone is shown in

Supplementary Table S5. The overall stress distribution of the

right forelimb paw is shown in Figure 4A. The stress is mainly

concentrated at the metacarpal and proximal phalanx. The

MP2 had the highest stress level. Specifically, the stress was

mainly concentrated in the middle and rear of the MP2 and

the MP5, and the distal end of the MP3. The pressure between

the MP4 and the MP5 was similar, but the stress distribution of

the MP4 was more uniform. The maximum stress value of the

MP5 was always greater than that of the MP4 during landing

from each height. The proximal and distal phalanges were less

stressed. The detailed stress distribution heatmap and Pareto

distribution results of stress values at all nodes of MP2 are

shown in Figures 4B–D. The detailed stress distribution of other

11 bones are shown in Supplementary Figures S2–S12.

The left side of the figure is the detail heatmap diagram

of stress distribution, and the right side is the distribution

diagram of stress values of all nodes [Pareto distribution (41):

the stress values of all nodes are arranged in descending order,

and then divided into 30 distribution ranges in order]. The

number of nodes were arranged according to the stress value

from top to bottom, each bones stress distribution ranges of

all nodes and of the last 50, 80, 90, and 95% nodes, as well as

the first 5% nodes are shown in Supplementary Table S6. For

the MP2, the stress was mainly concentrated in the middle

and rear. The stress distribution ranges of all nodes were

0.0135–1.2166, 0.0179–1.6274, and 0.0211–1.8862, respectively,

the stress distribution ranges of the last 50% nodes were

0.0135–0.2550, 0.0179–0.3418, and 0.0211–0.3936, respectively,

the stress distribution ranges of the first 5% nodes were

0.8772–1.2166, 1.1748–1.6274, and 1.3588–1.8862, respectively

(Supplementary Table S6; Figures 4B–D).
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FIGURE 3

(A) The raw data waveform of GRF for each direction (X-axis: anterior and posterior GRF; Y-axis: lateral and medial GRF; Z-axis: vertical GRF) in
each height (0.8, 1.0, and 1.2m). (B) The first four PC scores PCi of each landing height and each direction GRF. (C) The reconstructed
waveforms of each landing height and each direction GRF. (D) The extracted principal GRF value of the maximum elbow flexion data point
based on the reconstructed waveform in each direction during landing from di�erent heights.

Feature selection results based on the
bone stress distribution

For each random seed (20 random seeds) in each contrasting

situations (10 kinds of input data), the results of fitness value are

shown in Supplementary Figure S13. The detailed results of the

feature selected in each contrasting situations in each random

seed based on the constructed feature selection algorithm

model are shown in Figure 5A. See Supplementary Text 1

for the detailed description of Figure 5A. Finally, the stress

distribution features that contribute most to the landing

pattern recognition at different heights mainly focused on MP3,

MP4, PP2, PP3, PP5 (Figure 5B). In terms of MP4 and PP2,

PP2 basically exists in most node control cases, and MP4

mainly exists in the results based on the stress value data

corresponding to the first 200 and 500 nodes with the highest

stress values.

Feature classification and recognition
results based on the bone stress
distribution

The detailed results of features classification and recognition

accuracy rate in each contrasting situation of the three different

classification algorithm models are shown in Figure 6. In each

contrasting situation, the total exact classification recognition

accuracy obtained by the three classification models is shown

in Supplementary Table S7. The classification of each bone

stress distribution when landing from different heights can

be objectively and accurately detected by combining the three

classification models. The bone stress feature recognizability

between landing from 0.8m and landing from 1.0m is

significantly higher than that of landing from 1.0m and

landing from 1.2m (Figures 6B,C). For the results based on

the data of stress value corresponding to all nodes, they both
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FIGURE 4

(A) Illustration of the right forelimb paw stress distribution of the cat landing from di�erent heights. From left to right are front, side and back
views of the overall stress distribution. (B–D) Display the detailed stress distribution heatmap (left side) and Pareto distribution (right side) results
of stress values at all nodes of MP2. From left to right are front view, side view and back view of the MP2. The stress distribution from top to
bottom corresponds to the landing heights of 0.8, 1.0, and 1.2m.

show a poor classification in the landing height between the

0.8 and 1.0m, 1.0 and 1.2m. As the stress value of the

selected nodes gradually increases (from the data of stress

value corresponding to all nodes to the data of the first 200

nodes with the highest stress values), the classification and

recognition accuracy of the stress distribution features of each

bone gradually increases (Figure 6D; Supplementary Table S7).

In each contrasting situation, features with higher classification

recognition accuracy compared with other features are shown in

the red mark in Figure 6A, and these features contribute more

to the recognition of different landing patterns. More details on

this are shown in Supplementary Text 1.

Discussion

The current work investigated the biomechanical

characteristics of the cat forelimb paw during landing from

different heights using FEA and feature engineering techniques

for post-processing of FEA results. The main contribution of

the current study is to fill the field gap of cat’s paw biomechanics

during landing, and the proposed combination of feature

engineering technology to solve the problems that include

incomplete analysis, and difficulty in feature mining in the

post-processing of FEA.

This study explored the differences between the left and

right forelimbs for maximum force, peak and mean pressure

and contact areas during a landing task from different heights,

and the results show that there were no significant differences

between left and right forelimbs. A previous study also

demonstrated that when a cat jumps from a height of 1m, the

force on its forelimbs is equal (42). It was consistent with our

results. Wang et al. proved that when a cat jumps from a height

of 30 and 50 cm, the force on its forelimbs is equal (43). This

work further demonstrated that the contact area of paw pads

is equal. Slingerland et al. concluded that cats are forelimb-

dominant, and it might explain the findings of this study (44).

The forelimbs are the dominant part of the cat, so in the landing

process, the forelimbs also play the role of direction and posture

control. When falling from a high place, due to this excellent

symmetry, the impact force generated by the landing can be fully

and evenly distributed to the two forelimbs, so that forces can

be transmitted to other joints in a positive and even manner.

This explains in part and is one of the reasons why cats can fall
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FIGURE 5

Detailed results of features selected in each contrasting situations in each random seed. (A) The left side is the feature selection results based on
the data of landing from 0.8 to 1.0m, and the right side is the feature selection results based on the data of landing from 1.0 to 1.2m. From top
to bottom are the results based on the data of stress value corresponding to all nodes, the data of the first 2,000 nodes with the highest stress

(Continued)
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FIGURE 5 (Continued)

values, the data of the first 1,000 nodes with the highest stress values, the data of the first 500 nodes with the highest stress values, the data of
the first 200 nodes with the highest stress values, respectively. The shaded square indicates that this feature was selected under the random
seed, the claw bones marked red are the top three stress distribution features selected the most times. (B) The number of times of each selected
feature based on the three stress distribution features selected the most times for each contrasting situations.

from great heights without injury. However, Wang et al. also

mentioned that the symmetry of the forelimbs would increase

with increases in jumping heights (11). This was inconsistent

with our results, we did not find any asymmetry values at 0.8,

1.0, and 1.2m, which is probably because these heights are still

within the acceptable range for a cat to land normally.

In a previous study, the findings indicated that the muscle or

soft tissue of cats absorbed impact force when landing or walking

(40). We partly agree with the findings of the T. Kohonen et al.

According to our study, the skeleton of the cat also plays an

important role when cats perform landing or walking tasks.

It is difficult to confirm which parts are more important and

contribute the most. Xu et al. believe that the MP pad has a

larger surface area than the digital pad, and its special columnar

structure provides better support for the body while playing a

dominant role in distributing and absorption of impact (1, 45).

From the view of the overall stress distribution of the right

forelimb paw, the stress is mainly concentrated on the rear of

MP2, MP5 and the front of MP3, MP4, and the average stress

of MP except MP2 tends to be consistent. The uniform stress

distribution during the landing of the cat reduces the risk of

fracture, whichmay be related to the small range ofmotion of the

distal joint. Previous studies have shown that there was a limit on

the wrists during cat movements (12). The carpal bone, which is

part of the wrist joint, shows more degrees of freedom than the

hinged joint (36). In order to counteract the multi-dimensional

motion of the wrist, the movement of the MP joint may also be

limited to maintain the stability of the upright posture of the

lower extremities. The cat’s forelimb is subjected to a greater

impact during landing, and the forelimbs of the cat would move

toward the palm (46). Under these conditions, the wrist provides

full engagement in its supporting function, while increasing the

contact area between the ground and the sole of the paw, thereby

reducing the landing impact load (1).

By extracting the stress values of all nodes in the

finite element model, the current research results found

that the number of nodes with large stress values only

accounts for 5–10% of the total number of nodes (Figure 4;

Supplementary Table S6; Supplementary Figures S2–S12). In

this case, it is often “fatal” to simply discuss the distribution

of maximum stress values under different constraints just like

in previous studies, because a large number of nodes without

obvious changes may cover up the true nature of data change

rules. As a result, the internal law of stress distribution feature

cannot be truly excavated and cannot be effectively explored in

terms the biomechanical characteristics of cat landing. Based on

this, this study proposes for the first time to explore the inherent

regularity of stress distribution characteristics by combining

characteristic engineering techniques, to solve problems such as

insufficient mining in the post-processing of FEA. By controlling

the stress values corresponding to 5 different selected nodes

as input data, the current study constructed the classification

and recognition model to detect the recognition accuracy of

the selected 12 stress distribution feature in different landing

patterns at different heights. The results demonstrated that

the classification and recognition are very low, only reaching

about 50–60% (Figure 6; Supplementary Table S7), when the

corresponding stress values of all nodes are taken as input data.

As the input data of the model changes continuously (from all

the stress values corresponding to the 3,300 nodes to the stress

values corresponding to the first 2,000 nodes with the highest

stress values, and finally to the stress values corresponding to the

first 200 nodes with the highest stress values), the classification

and recognition accuracy of each feature in landing patterns at

different altitudes also continue to improve. In particular, for the

metacarpal and proximal phalanges when the landing height is

0.8 and 1.0m, the classification and recognition accuracies were

almost 100% when the input data to the model was the stress

values corresponding to the first 200 nodes with the highest

stress values (Figure 6; Supplementary Table S7).

Regarding MP4 and PP2, the classification recognition

accuracy rate of MP4 and PP2 was significantly higher in 5

different node selection cases than in other features. Meanwhile,

both for the results based on the input data of landing from

0.8 to 1.0m, and for the results based on the input data of

landing from 1.0 to 1.2m, among the features selected based

on the feature selection model, there are many cases in which

the stress distribution feature of the MP4 and PP2 were selected

as the optimal feature to identify different landing patterns

(Figure 5; Supplementary Table S6). This also suggests that MP4

and PP2 play an important role in cat landing. The results

are different from those obtained by the traditional analysis

method based on the comparison of stress distribution trend

and maximum stress value. Traditional analysis results show

that the stress distribution of cat landing is mainly concentrated

in MP, especially in MP2, and its overall stress distribution is

larger than that of other bones. In the feature selection model,

the MP2 feature was selected as the optimal landing pattern

recognition feature only when the data set Mdata1 was used as

the model input data (Mdata1: based on the data of stress value

corresponding to all nodes, when landing from 0.8 to 1.0m).

This suggests that a large number of nodes with no obvious
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FIGURE 6

(A) Detailed results of features classification and recognition accuracy rate in each contrasting situation of the three di�erent classification
algorithm models. The left side is the feature classification and recognition results based on the data of landing from 0.8 to 1.0m, and the right
side is the feature classification and recognition results based on the data of landing from 1.0 to 1.2m. From top to bottom are the results based
on the stress value data corresponding to all nodes, the data of the first 2,000 nodes with the highest stress values, the data of the first 1,000
nodes with the highest stress values, the data of the first 500 nodes with the highest stress values, and the data of the first 200 nodes with the
highest stress values, respectively. In the red box are the features with higher classification and recognition accuracy than other features,
corresponding to the claw bones marked in red. (B) Total classification and recognition accuracy data distribution of all features in each node
control case. (C) Total classification and recognition accuracy of all features under two contrasting situations. (D) The final classification
recognition accuracy trend of all features in each node control case.

change do indeed cover up the true nature of the data change

law, so that the inherent law of stress distribution characteristics

cannot be truly excavated. Therefore, considering only the

maximum stress distribution does not effectively identify the

features that contribute most to pattern recognition under

different constraints, which is often not conducive to the grasp

of the optimal feature that can reveal intrinsic properties in the

field of biomechanics.
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Another interesting result of the current work is that

the stress distribution characteristics of the DP show low

identifiability under almost all node selection conditions

(Figure 6; Supplementary Table S7). At the same time, among

the features selected based on the feature selection model, there

are few cases in which the stress distribution feature of the DP

is selected as the optimal feature to identify different landing

patterns (Figure 5). This is also consistent with the results of

the detailed stress distribution trend (Figure 4), that is, the stress

distribution of the DP is much smaller than that of the MP and

PP. This suggests that the DP may have played little role in

cushioning the impact load when the cat landed. This may be

due to the special physiological anatomical structure of the cat’s

paw pads fitting closely to the DP (36), which results in the cat’s

paw pads bearing most of the impact during the landing process,

thereby reducing the force on the DP to avoid musculoskeletal

injury. The recognition and classification accuracy of stress

distribution features based on the input data of landing from

0.8m and landing from 1.0m is significantly higher than the

results based on the input data of landing from 1.0m and

landing from 1.2m (Figure 6; Supplementary Table S7). The

results indicate that the difference in landing characteristics

between cats landing from 1.0 to 0.8m is higher than that

between cats landing from 1.0 to 1.2m. Previous studies have

shown that landing height can alter the contribution ratio

of skeletal energy dissipation in the forelimbs and hindlimbs,

thereby reducing the risk of injury in cats landing from greater

heights (9, 47). From the point of view of muscle activation,

limb muscles become tense before initial ground contact, and

the amount and timing of muscle activity are adjusted to avoid

landing injuries (48–50). Therefore, when the landing height is

increased from 0.8 to 1.0m, the variations in landing pattern

differences may be a response of the cat’s forelimb by adjusting

the musculoskeletal structure to reduce the risk of injury with a

more optimal landing strategy.

There are some limitations inherent in the present study

that need to be considered. The results of the current work

are constrained by the breed, weight, sex, and age of the cats

tested. Based on this, in our follow-up study, we intend to

expand the diversity of the test sample to verify the reliability and

applicability of the current findings. Another factor to consider

is that the current study takes into account the economics and

operability of modeling and simulation in the FEA, so it does

not take into account the change of the specific position of the

ligament during the landing. While this may have some minor

impact on the results, it is acceptable when combined with the

performability of the entire simulation.

Conclusion

The current work investigated the cat forelimb paw

biomechanical characteristics when landing from different

heights by using the FEA, as well as first proposed to combine the

feature engineering techniques for post-processing of FEA. The

stress distribution feature of the MP2, MP4, PP2, and PP3 are

the features that contribute most to landing pattern recognition

when a cat landed under different constraints. The DP may

have played little role in cushioning the impact load when the

cat landed. With the landing altitude increases, the variations

in landing pattern differences may be a response of the cat’s

forelimb by adjusting the musculoskeletal structure to reduce

the risk of injury with a more optimal landing strategy. The

combination of feature engineering techniques can effectively

identify the features that contribute most to pattern recognition

under different constraints, which is conducive to the grasp of

the optimal feature that can reveal intrinsic properties in the field

of biomechanics.
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