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Ascariasis is the most prevalent helminthic disease a�ecting both humans

and pigs and is caused by the roundworms Ascaris lumbricoides and Ascaris

suum. While preventive chemotherapy continues to be the most common

control method, recent reports of anthelminthic resistance highlight the

need for development of a vaccine against ascariasis. The aim of this study

was to use a reverse vaccinology approach to identify potential vaccine

candidates for Ascaris. Three Ascaris proteomes predicted from whole-

genome sequences were analyzed. Candidate proteins were identified using

open-access bioinformatic tools (e.g., Vacceed, VaxiJen, Bepipred 2.0) which

test for di�erent characteristics such as sub-cellular location, T-cell and B-

cell molecular binding, antigenicity, allergenicity and phylogenetic relationship

with other nematode proteins. Fromover 100,000 protein sequences analyzed,

four transmembrane proteins were predicted to be non-allergen antigens

and potential vaccine candidates. The four proteins are a Piezo protein, two

voltage-dependent calcium channels and a protocadherin-like protein, are

all expressed in either the muscle or ovaries of both Ascaris species, and all

contained high a�nity epitopes for T-cells and B-cells. The use of a reverse

vaccinology approach allowed the prediction of four new potential vaccination

targets against ascariasis in humans and pigs. These targets can now be further

tested in in vitro and in vivo assays to prove e�cacy in both pigs and humans.

KEYWORDS

Ascaris lumbricoides, Ascaris suum, Neglected Tropical Diseases (NTDs), nematodes,

zoonoses, vaccine

Introduction

The giant roundworm Ascaris is the most prevalent soil-transmitted helminth (STH)

infection in humans, being responsible for 0.861 million disability-adjusted life years

(DALYs) worldwide (1). In parallel,Ascaris infections remain an issue onmany pig farms

worldwide. This parasite is especially important in farms with lower levels of biosecurity,

such as organic farms, and/or in lower to medium income countries, where backyard
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farming is common (2, 3). Being a zoonotic disease, the close

contact between humans and pigs in many highly endemic areas

increases the risk Ascaris transmission among both hosts (3, 4).

Preventive chemotherapy, bolstered by implementation of

water, sanitation and hygiene (WASH) protocols, continues to

be the mainstay of ascariasis control in humans, as advocated

in the World Health Organization (WHO) roadmap for the

control of Neglected Tropical Diseases (NTDs) (5). Reduced

efficacy and resistance to benzimidazole drugs have already been

reported in human Ascaris infections (6, 7), and this directly

affects the implementation of control protocols in endemic

areas, necessitating the development of effective vaccines and

vaccination protocols. Vaccination against Ascaris has had some

degree of efficacy in mouse and pig animal models, but no

candidate vaccine has undergone human clinical trials yet (8).

The proteins used in the past vaccination assays were either

secreted proteins or those retrieved from crude extracts of adult

worms. Recently, vaccination with a chimeric protein led to

up to 73% larval burden reduction in mice, in contrast to

a 99.8% reduction when mice were repeatedly infected with

Ascaris sterile eggs (9–12). These results highlight that there are

other antigens that could be tested. These antigens could then

be incorporated in a multi-component vaccine along with the

already known vaccination targets to stimulate a more complete

immune response.

Several annotated genomes are now available for Ascaris

lumbricoides and Ascaris suum, which enable the search for

putative vaccine candidates using a reverse vaccinology analysis.

A reverse vaccinology approach combines genome information

and bioinformatic tools for identification of vaccine candidates,

and has been successfully applied to other nematodes before,

such as Toxocara canis and Trichuris muris (13, 14). Such

methodology allows researchers to uncover vaccine targets

from predicted proteomes by assessing if proteins have useful

characteristics. Different analyses, such as protein sub-cellular

location and the prediction of B-cell and T-cell epitopes, are

examples of steps used in these approaches that help select

proteins for further testing. This is especially important when

funding is limited, and vaccination trials need to be focused.

The aim of this study was to apply an in silico methodology

to analyse protein sequences predicted from three Ascaris

annotated proteomes to identify potential new vaccination

targets that could be used in vaccination assays against Ascaris.

Materials and methods

Data retrieval

The annotated proteomes for three assembled genomes

of Ascaris spp. were retrieved from the WormBase ParaSite

database (15). The A. lumbricoides proteome from BioProject

PRJEB4950 (16) has 23,604 protein sequences. The A.

suum proteomes from BioProject PRJNA80881 (17) and

BioProject PRJNA62057 (18, 19) have 18,542 and 57,968 protein

sequences, respectively.

Protein subcellular location analysis

The retrieved proteomes were first visualized and analyzed

with BioEdit v7.2.5 (20). A total of 2,604 protein sequences that

included unknown amino acids (aa) (indicated with the symbol

“X”) were excluded from further analysis as they tend to be a

consequence of poor annotations andmost of the bioinformatics

tools used do not analyse protein sequences with unknown

amino acids.

The framework Vacceed v2.1 (21) was used to identify

potential vaccine candidates. The tools employed in Vacceed

analysis were: WoLF PSORT v0.2 (22), DeepLoc v1.0 (23),

SignalP v5.0 (24), TargetP v2.0 (25), TMHMM v2.0 (26) and

Phobius v1.01 (27). Proteins were ranked with scores between

0 and 1, from low immunogenicity (final score = 0) to high

immunogenicity potential (final score = 1). Higher scores were

given to proteins which were predicted to be secreted, signal or

transmembrane peptides. The proteins sequences with a Vacceed

score of ≥0.750 were retrieved (28) and later tested for epitope

binding to CD4+ T helper (Th) cells.

As Vacceed makes use of different bioinformatic tools,

there was the need to check how much each tool influences

the final protein scores. After retrieving the Vacceed scores

from runs including all programs, the process was repeated

six times excluding one program per run (i.e., first run with

all the bioinformatic tools except TMHMM, second with all

the bioinformatic tools except DeepLoc, and so on) (28). The

proteins scores were then compared between the different

assessments through a Pearson correlation test using R v3.6.3

(29), RStudio v1.2.5033 (30) [with the package corrplot (31)] and

IBM SPSS Statistics v26.

CD4+ Th cell binding predictions

The protein sequences retrieved with Vacceed were

submitted to the standalone version of the Immune Epitope

Database (IEDB) Major Histocompatibility Complex class II

(MHC-II) binding predictor v2.22.3 (MHCII-IEDB, available

at: http://tools.iedb.org/mhcii/). This tool employs neural

networks trained on IEDB experimentally validated epitopes

to predict and quantify the binding affinity between a given

peptide/antigen epitope and a selected MHC-II molecule

recognized by CD4+ Th cells. The IEDB-recommended

2.22 prediction method was used, comprising the Consensus

approach, NN-align, SMM-align, CombLib and Sturniolo

methods, or NetMHCIIpan, if any of the previous methods was

not available for the selected MHC-II allele (32). This method
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was used against the 27 human leukocyte antigen (HLA)

allele reference set, covering around 99% of the worlds human

population (33). The default peptide epitope length of 15 aa with

a core of 9 aa was selected. The protein sequences which had

epitopes ranked from zero to one (from the maximum of 100)

and were simultaneously predicted to bind to all the 27 alleles

in the used reference set were selected for further testing. These

MHC-II binding predictions were only made for human alleles

due to the lack of in silico tools that make binding predictions

for swine MHC-II alleles.

Allergenicity, antigenicity, and function
predictions

The protein sequences retrieved with MHCII-IEDB were

tested for antigenicity and allergenicity. Protein antigenicity was

analyzed using IEDB Kolaskar and Tongaonkar antigenicity

scale and VaxiJen 2.0 (34, 35). The IEDB Kolaskar and

Tongaonkar antigenicity scale method, available at http://tools.

iedb.org/bcell/, was used with default setting and threshold of

1.000 and the VaxiJen 2.0 tool, server accessible at http://www.

ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html, was used with

the default threshold of 0.5. Allergenicity was evaluated using

AllerTop 2.0 and AllergenFP (36, 37). The AllerTop 2.0 server,

https://www.ddg-pharmfac.net/AllerTOP/index.html, and the

AllergenFP tool, http://www.ddg-pharmfac.net/AllergenFP/

index.html, analyse protein sequences and compare them to a

training set of 2,427 known allergens and 2,427 non-allergens

using two different algorithms for the better recognition of

allergens and non-allergens, respectively, for each tool. Proteins

that were classified as both potential antigens and non-allergens

were considered as good vaccination targets.

The function of the selected proteins, their protein family

and tissue location in both A. lumbricoides and A. suum were

analyzed based on the most recent genomic and transcriptomic

studies (4, 19). These assays were able to map the location where

all the genes and, therefore, proteins were transcribed in both

Ascaris species as well as in what stages of the parasite lifecycle.

This information is important as it allows us to infer what roles

these proteins could play in the Ascaris lifecycle and how useful

they would be as components in a vaccine.

CD4+ Th cell binding epitope selection

To further streamline the epitope selection process, we

integrated the information gathered using the Phobius and

MHCII-IEDB tools to select extracellular CD4+ Th binding

epitopes. We used Phobius to assess the extracellular domains

of the predicted proteins and identify if the previously predicted

epitopes were present in those areas. Proteins that lacked the

full 15 aa epitopes in these areas were disregarded. For each

protein, the two non-redundant epitopes (without overlapping

aa) predicted to bind to the largest combined number of unique

alleles in MHCII-IEDB tool analysis were retrieved. These

epitopes were submitted to a BLASTp (Basic Local Alignment

Search Tool protein) search (available at: https://blast.ncbi.nlm.

nih.gov/Blast.cgi) to check for identity in humans and pigs.

Epitopes with 100% identity to human or pig epitopes were

discarded. The BLASTp analysis was conducted with a threshold

of e-value=0.05. Each epitope was also submitted to Allertop

2.0 (36) to confirm they were not potential allergens. The best

expressed protein transcript for each vaccine target, as found in

the most recent genomic studies (4, 19), was used to predict the

presence of glycosylation sites using NetNGlyc 1.0 (38). Only

epitopes that were not in direct contact with glycosylation sites

were selected. These transcripts were also submitted to Protter

to draw the two-dimensional (2D) protein structure using the

information retrieved with Phobius (27, 39).

B-cell linear epitope prediction and
selection

The presence of B-cell linear epitopes was assessed using

Bepipred 2.0 webserver (available at: http://www.cbs.dtu.dk/

services/BepiPred/) (40). Using the same methodology as in the

previous step, proteins that had epitopes found in extracellular

domains, exposed to the host immunological system by not

being in predicted glycosylation sites, predicted to be non-

allergens, and present in most of the protein transcripts of the

different genes were considered good vaccination targets. The

two highest scored non-allergen epitopes, with a size between 8

and 40 aa, were retrieved for each protein.

Protein phylogenetic analysis

To assess the relationship between the predicted vaccine

targets and their orthologs in other nematodes, a phylogenetic

analysis of the predicted vaccine targets was performed

including predicted orthologs/similar proteins present

in annotated genomes of other parasitic nematodes and

Caenorhabditis elegans available in WormBase ParaSite database

(15). Proteins were selected according to the list of orthologs

provided by WormBase and, if no ortholog was present for a

given nematode, a BlastP analysis was carried out and proteins

were retrieved according to the combination of query coverage,

identity percentage and e-value. The protein sequences were

aligned using MUSCLE (http://www.ebi.ac.uk/Tools/muscle/

index.html), the phylogenetic analysis was performed with

Maximum-likelihood method using the JTT + G substitution

model in MEGA-X (41) and the predicted trees were visualized

in iTOL (42). Nodal support was tested using bootstrap values,

which were calculated with 500 replicates.
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FIGURE 1

Vacceed assessment. (A) Vacceed final scores and respective number of proteins for all analyzed protein sequences. (B) Pearson correlation plot

of the di�erent Vacceed assessments. Each value corresponds to the Pearson correlation coe�cient between all the protein sequence scores in

two di�erent runs (All tools, Vacceed with all the used tools; No DeepLoc, Vacceed without the tool DeepLoc; the other labels follow the same

principle).

Results

Initial protein selection

From the 100,114 protein sequences extracted from the

combined A. suum and A. lumbricoides proteomes, 97,510 were

analyzed with the Vacceed framework for protein subcellular

location. A total of 28.085 proteins were selected for further

analysis (Figure 1), from which 5,984 protein sequences were

from A. lumbricoides, and 5,004 and 17,097 were A. suum

protein sequences from the two A. suum proteomes, BioProject

PRJNA80881 and BioProject PRJNA62057, respectively. The

BioProject PRJNA62057 has a higher number of proteins in

its proteome due to the way it was assembled, where all

the expressed transcripts were kept instead of being merged

into a single protein sequence. The Vacceed final scores

for each protein in the three proteomes are provided in

Supplementary Table 1.

The correlation assessment of the Vacceed framework

demonstrated a high correlation between the results of the

different Vacceed runs (Figure 1). The removal of TMHMM

from the framework resulted in a slightly lowered correlation

score when compared with the original Vacceed run (r = 0.97).

Selection of vaccine targets and
identification of epitopes

Before the CD4+ Th cell binding prediction was carried

out, a further 2,906 duplicate sequences were identified and

removed from the A. suum PRJNA62057 dataset. A total

of 25,179 protein sequences were then analyzed for epitope

binding to MHC-II alleles. When analyzing the final output,

32 protein sequences had epitopes predicted to bind to all the

27 MHC-II alleles in the reference set with a rank between

0.01 and 1. From this set of 32 protein sequences, 9 proteins

belonged to the A. lumbricoides proteome, while the other

23 proteins were from the two A. suum proteomes, 3 from

BioProject PRJNA80881 and 20 BioProject PRJNA62057. Only

three of these protein sequences were predicted to be secreted

proteins. A table detailing theWormBase protein identifiers and

protein aa length for these 32 candidate proteins is provided in

Supplementary Table 2.

The analysis with AllerTop 2.0 and AllergenFP did not

predict any allergens in the 32 protein sequences. However,

antigen prediction tools classified four proteins sequences

as non-antigenic, and these proteins were disregarded. The

remaining protein sequences that had similar results between

their respective orthologs in A. lumbricoides and A. suum were

grouped into five clusters, represented by distinct genes in

all three Ascaris genomes. The five genes and their respective

transcripts are predicted to be responsible for the transcription

of four membrane transporters and one cell adhesion protein.

Four genes and respective proteins were selected as

promising vaccination targets based on epitope exposure to

the host immunological system: “Voltage-dependent T-type

calcium channel subunit alpha” [ATtype (WormBase gene

identifiers: GS_24322, ALUE_0000418301 and AgB13X_g094)],

“Piezo-type mechanosensitive ion channel component” [APiezo

(WormBase gene identifiers: GS_03113, ALUE_0000666901
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FIGURE 2

2D representation of the topology of predicted vaccination targets using Phobius predictions. The horizontal bar in the middle represents the

membrane, above it is the extracellular domain, and below is the intracellular domain. Highlighted are the Cd4+ Th epitopes chosen to be

incorporated in future vaccination assays. (A) “AgB13X_g094_t05” as the best expressed protein transcript for ATtype. (B) “AgR007_g063_t01” as

the best expressed transcript for APiezo. (C) “AgR007_g282_t05” as the best expressed protein transcript for ALtype. (D) “AgB13X_g096_t06” as

the best expressed protein transcript for AProto.

and AgR007_g063)], “Voltage-dependent L-type calcium

channel subunit alpha” [ALtype (WormBase gene identifiers:

GS_04697, ALUE_0001482301 and AgR007_g282)], and

“Protocadherin-like” [AProto (WormBase gene identifiers:

GS_06422, ALUE_0000418601 and AgB13X_g096)]. According

to the most recent transcriptomic data, both ATtype and

AProto are highly expressed in the ovaries while APiezo and

ALtype are highly expressed in the muscle of adults (4, 19).

These proteins were predicted to have both CD4+ Th cell

and B cell binding epitopes in extracellular areas (Figure 2).

For each protein, two non-allergen CD4+ Th cell binding

epitopes were selected based on the results of the Allertop 2.0,

MHCII-IEDB tool and their presence in the extracellular areas

of the protein (Table 1). Two B cell epitopes were also selected

for each target. Supplementary Table 3 lists the epitopes found

for each predicted vaccine target usingMHCII-IEDB that scored

between 0 and 1 and the MHC-II alleles they were predicted

to bind to (only epitopes that were predicted to bind to two

or more MHC-II alleles were retrieved). None of the selected

epitopes were in the direct vicinity of predicted glycosylation

sites (Supplementary material 4). A workflow diagram of the

analysis can be seen in Figure 3.
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TABLE 1 Proteins and respective epitopes identified as potential vaccination targets against Ascaris spp.

Protein

function

Protein Family Species WormBase

Protein

transcript

Selected CD4+ Th

cell binding

epitopes (aa)

Selected B-cell epitopes (aa)

Membrane

transporter

Piezo Family A. suum GS_03113 NCLKYFANFFFYRFG

SLFLRPMRVALALLN

LLSVHLKNDDDSIEST

VDPSFDPVIPKEEVIAgR007_g063_t01

AgR007_g063_t02

AgR007_g063_t03

AgR007_g063_t04

AgR007_g063_t06

A. lumbricoides ALUE_0000666901

Voltage-dependent

calcium channel,

T-type, alpha-1 subunit

A. suum GS_24322 LRLLRALRPLRVINR

FKNFGMAFLTLFRIA

DATGVDMQPVENYN

SIPPKSVERAgB13X_g094_t03

AgB13X_g094_t04

AgB13X_g094_t05

A. lumbricoides ALUE_0000418301

Voltage-dependent

calcium channel,

L-type, alpha-1 subunit

A. suum GS_04697 NNNFHTFPAAILVLF

ERSLLCLTLSNPLRK

ALNDETHIHRNNN

SNEEDRGPVYNAAgR007_g282_t01

AgR007_g282_t02

AgR007_g282_t14

A. lumbricoides ALUE_0001482301

Cell

adhesion

No predicted Family.

Protocadherin-like

proteins

A. suum GS_06422 HTFRRFITAISLLDR

NQEGVVHILSRKIFD

LSQSDHHILPRFANFVDDRTESLRSVTIQLLCSLR

RQQFTLTFPYFSDGKFKAgB13X_g096_t02

A. lumbricoides ALUE_0000418601

aa, Amino acid; A. suum, Ascaris suum; A lumbricoides, Ascaris lumbricoides.

Phylogenetic relationships of vaccine
targets identified across nematode
species

To analyse the potential relationship between the predicted

vaccine targets and proteins in other nematodes, orthologs of

the selected vaccine targets were retrieved from other nematode

proteomes present in WormBase Parasite (Supplementary Table

5), aligned and used for the generation of a phylogenetic

tree. There is a general clustering of the proteins within each

nematode clade. The exception occurred in the APiezo orthologs

where clade III nematodes were separated in two different

groups, with the Ascaridomorpha nematodes (e.g., Ascaris,

Toxocara and Parascaris) being more closely related to the

nematodes in Clade IV and the Spiruromorpha nematodes

(e.g.,Onchocerca,Dirofilaria, Loa, Brugia andWuchereria) being

closer to the Clade V nematodes. These relationships can be seen

in Figure 4.

Discussion

In this study we have used bioinformatic approaches to

identify four different Ascaris proteins that could be included

in multi-epitope vaccines against human and pig Ascaris

infections. These genes are highly expressed in two distinct

regions of the parasite: the ovaries and early egg stages, in the

case of ATtype and Aproto, and in the muscle, the case for

APiezo and ALtype (4, 19). While both ATtype and ALtype

are predicted to be calcium channels that promote calcium

import with muscle and smooth muscle contraction through

a voltage mechanism, APiezo is a mechanosensitive calcium

channel that in C. elegans was shown to affect reproductive

tissue development and malfunction (43). One interesting

relationship shown in Figure 4B is how APiezo appears to

be more closely related between blood feeding parasites, such

as Necator americanus and filarial parasites such as Loa loa,

suggesting a role in adaptation to contact with blood. The

AProto protein is the most unique as to our knowledge, as

protocadherins have not been reported before in nematodes.

The structural domains appear to be more closely related to

that of Flamingo/Stan cadherins due to the presence of both

laminin-G and EGF-like receptors with seven transmembrane

domains (with these last highlighted in Figure 2D) (4, 44).

Being highly transcribed in the ovaries and early egg stages,

while predicted to be responsible for homophilic cell adhesion,

AProto could have a role in early oocyte development. Although

present in regions usually considered difficult recognize by
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FIGURE 3

Workflow and summary diagram of the reverse vaccinology

approach used in this study to identify and select potential

vaccine targets in Ascaris lumbricoides and A. suum.

the host immune system, such as the parasite’s muscle and

ovaries, an IgG immunoblot assay showed that this is possible,

as proteins highly transcribed in the muscle, ovaries and

intestines of the parasite were recognized by serum from

pigs infected with Ascaris (45). It is also interesting to

highlight the close relationship between the predicted vaccine

targets and the orthologs in other nematodes, suggesting that

these orthologs might also be useful in the control of the

respective species.

Previous attempts to generate a vaccine against ascariasis

used crude extracts, recombinant proteins and, more recently,

chimeric proteins (9–12). The highest lung larvae burden

reduction achieved using a multi-epitope or recombinant

protein vaccine was 73.5%, when using a chimeric protein

containing B-cell epitopes of the As14, As16 and As37 Ascaris

proteins (12). In comparison, vaccination against trichuriasis

in mice resulted in up to 97% reduction of adult nematodes

(46). The vaccine against Trichuris is based on recombinant

proteins and showed efficacies vastly superior to similar vaccines

against ascariasis. With vaccine development against ascariasis

lagging behind other parasitic diseases, there is a need to

discover other antigens to be tested as vaccine candidates.

The reverse vaccinology approach used in our study is based

on genomic and proteomic data to predict which proteins

may be usable as vaccine candidates prior to new in vivo

studies. This methodology allows researchers to focus down

vaccination assays to a smaller set of proteins, effectively

reducing costs and time. This reverse vaccinology approach

has been successfully applied to identify vaccination targets

for other helminths, for example T. canis (14), T. muris

(13), Echinococcus granulosus (47), and Schistosoma mansoni

(48, 49).

Our reverse vaccinology analysis used all the proteins

predicted in the three Ascaris proteomes. Previous in

silico studies on vaccine candidate prediction in Ascaris

focused exclusively on secreted proteins (50). The workflow

applied in this study allows the testing of all the proteins

predicted from a genome analysis, without automatically

excluding non-secreted proteins. In a recent study, an A.

lumbricoides multi-epitope vaccine candidate was developed

using in silico methodology and proteins were selected

based on their binding to the HLA-DRB1∗07:01 and

HLA-DRB1∗15:01 MHC-II alleles (51). Although these

MHC-II alleles are known to recognize Ascaris antigens

in humans, they only cover up to 15% of the human

population in areas where human ascariasis is endemic

(50). This might prove detrimental in in vivo studies that cover

population that do not have these MHC-II alleles, limiting

its usefulness.

Each of the three genomes included in the analysis were

predicted to have over 5,000 proteins that could be further

investigated as good vaccine targets according to Vacceed,

which corresponds to 25–29% of all the proteins present.

As the number of secreted proteins in Ascaris is predicted

to be 254 proteins (50), this suggests that the number of

potential vaccination targets might be vastly superior to the

ones that are usually investigated in these species and other

helminths. The final candidates are all predicted to be non-

secreted proteins. This contrasts with most of the previously

studied vaccine candidates, except for the muscle membrane-

bound As37 protein (52). As37 was not predicted to be a

good target in Vacceed (with scores of 0.001 in all three

genomes), showing some limitations to the method we used.

However, our predictions and the protection achieved with the

As37 recombinant protein support the idea that only targeting

secreted proteins can be detrimental to the selection of good

vaccination targets in Ascaris. Recent work in Toxocara canis, a

parasite of the same family as Ascaris, showed that membrane

proteins are capable to induce protection in a mouse model,
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FIGURE 4

Maximum likelihood phylogenies using the predicted vaccine targets and orthologs found in other nematodes. The trees were inferred using

bootstrap values with 500 replicates. Values on the nodes represent the percentage of bootstrap support values and nodes without bootstrap

values were supported by 100% of the 500 replicates. Each sequence is identified by the nematode species followed by the respective BioProject

(proteins transcripts used in these analyses are individualized in Supplementary Table 4). (A) Phylogenetic tree of ATtype orthologs. (B)

Phylogenetic tree of APiezo orthologs. (C) Phylogenetic tree of ALtype orthologs. (D) Phylogenetic tree of AProto orthologs.
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reinforcing the idea that it is an error to disregard these proteins

when looking for vaccination targets in nematodes (14).

The underlying host’s immune responses against Ascaris

are still only partially understood (53). This is a disadvantage

when selecting the right tools to predict which proteins could

be useful as vaccination targets. MHC-II molecules appear to

have a prominent role in the control of nematode infections in

mammals, including A. lumbricoides infections in humans (53,

54). This role makes the discovery of epitopes that bind to these

molecules a priority for the design of multi-epitope/subunit-

based vaccines. The MHCII-IEDB tool was chosen for this

purpose as it was used in selecting epitopes for vaccination

assays against other nematodes and is one of the most accurate

tools available (13, 50). A reference set of 27 different alleles

was chosen due to the fact that heterogenicity throughout

the human population leads to different immune responses

(50). Thus, we wanted to selected proteins that would be

able to induce a helpful immune reaction in a large portion

of the population, and not just focus on one specific allele.

Unfortunately, this biases toward selecting larger proteins as

they contain a larger number of epitopes. These predictions were

made only for human alleles due to unavailability of similar

open-access bioinformatic tools for swineMHC-II alleles. This is

a limitation of the reverse vaccinology approach to discovering

vaccine targets in pigs. Bepipred 2.0 predicted the presence of

B cell binding epitopes in same proteins which would enhance

the host immune response against these proteins in their native

form in the parasite. Another feature that needs to be considered

when selecting vaccination targets and respective epitopes for a

multi-epitope vaccine is the presence of glycosylation sites in

the native antigen. In general, glycosylation is known to play

a key role in regulating T-cell activity and highly glycosylated

areas in proteins will downregulate the activity of these cells

(55, 56). Selecting epitopes that are not predicted to be in these

glycosylation sites would then improve the chance of the host

reacting to the native antigen after receiving the multi-epitope

vaccine (56). However, in Haemonchus contortus vaccination

assays, glycosylation was fundamental for the recognition and

protection induced by some antigens (57). Glycosylation in

Ascaris proteins and how it affects the host is still not entirely

understood and requires more work, but it is known to be a

strategy that the parasite has developed to modulate the host

immune response and make it less responsive (58, 59). Another

consideration is how difficult or impossible it is to mimic the

protein glycosylation that happens in nematodes using the most

common recombinant protein production systems, such as the

ones using Escherichia coli (60). To replicate glycosylation the

use of other systems (e.g., mammalian cell lines) is required that

tend to be less productive and harder to maintain than bacterial

systems (61).

Whilst the proteins we selected have been predicted to

be useful and have similarities to other proteins tested in

vaccination assays against other nematodes, there is still the

need to test them in vitro and in vivo. The next step should

be to confirm in vitro that both humans and pigs are able to

recognize these proteins targets and their respective epitopes.

Should these proteins prove useful in stimulating an immune

reaction in the host, we propose that the proteins and respective

epitopes identified in this work should be incorporated into a

multi-epitope vaccine which, ideally, would include CD4+ Th

cell and B-cell binding epitopes from other proteins, such as

As14, As16 and As37. Ideally, such a vaccine should be tested

using a pig model to assess its potential effect on both larvae and

adult Ascaris, impossible to assess using a mouse model. This

is more relevant when testing for the utility of incorporating

ATtype and AProto epitopes due to protein higher expression in

the ovaries of adult female Ascaris and the released eggs (4, 19).

Should these proteins not prove useful, a protocol optimization

should be done to identify new targets so that, in the future,

it might also be applied to other species that are in need of

further studies.

In conclusion, this study highlights the role that reverse

vaccinology and in silicomethodology can play in identification

of vaccine candidates for parasitic diseases. The genome-wide

approach, without bias toward secreted proteins, led to the

prediction of four novel candidates that were not identified in

previous studies but show the promise of promoting a useful

immune response in vaccination assays against A. lumbricoides

and A. suum. These proteins should now be tested in vitro and

in combination with already known vaccine targets. Ultimately,

the findings of this study will support the future development

of a vaccine against both ascariasis in humans and pigs, thus

promoting the health of both populations by reducing the need

to use mass-drug administration and decreasing the risk of

anthelmintic resistance appearing.
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