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There are studies on the hypoxia adaptation in yak, but there are few

studies on the regulation of ferroptosis by hypoxia. This study was the

first time to explore ferroptosis-related genes about hypoxia in yak.

In this study, the oviduct epithelial cells between yak and bovine are

performed by integrative analysis for functions, regulating network and

hub genes. The results showed 29 up-regulated ferroptosis genes and

67 down-regulated ferroptosis genes, and GO-KEGG analysis showed that

up-regulated di�erentially expressed genes (DEGs) were significantly enriched

in ribosome pathway and oxidative phosphorylation pathway. Down-regulated

DEGs were significantly enriched in longevity regulating pathway-mammal

pathway. Mitophagy-Animal Pathwaywas a significant enrichment pathway for

the up-regulated di�erentially expressed ferroptosis genes (DE-FRGs). HIF-1

signaling pathway is a significant pathway for the down-regulated DE-FRGs.

By constructing DE-FRGs protein-protein interaction (PPI) network, 10 hub

DE-FRGs (Jun, STAT3, SP1, HIF1A, Mapk1, Mapk3, Rela, Ulk1, CDKN1A, EPAS1)

were obtained. The bta-mir-21-5p, bta-mir-10a and bta-mir-17-5p related to

STAT3 were predicted. The results of this study indicated the important genes

and pathways of the hypoxia in yak, and it was the first time to study ferroptosis

genes and pathways related to the hypoxia adaptation by bulk-seq in yak. This

study provided su�cient transcriptome datas for hypoxia adaptation.

KEYWORDS
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Introduction

Yaks are a hypoxia-tolerant species that live in a high-altitude environment (1), which

can adapt to hypoxia and cold environment (2). Studies have been carried out on hypoxia

adaptation of Yak Gluteus (3), heart tissues (4), and lung (5), but there were few studies

carried out on the hypoxia adaptation in yak oviduct, which is an important organ

for transporting sperm, oocytes and oosperm, and it is the first environment for early

embryo exposure. Therefore, this study focuses on the hypoxia adaptation of oviduct.

Ferroptosis is a popular research topic, which is a new type of iron-dependent

programmed cell death, which is different from apoptosis, cell necrosis
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and autophagy. Ferroptosis leads to smaller mitochondria,

increased membrane density, decreased cristae, and no

obvious morphological changes in nucleus. Hypoxia inhibits

ferritinophagy, increases in mitochondrial ferritin, and protects

from ferroptosis (6). Hypoxia regulates the expression of

ferroptosis genes in acute myocardial infarction (7), osteoclasts

(8), gastric cancer (9), and hepatocellular Carcinoma (10). The

above research indicates that hypoxia has a regulatory effect

on ferroptosis. Yak is a plateau animal living in low oxygen

environment, but there is no research on ferroptosis in yak.

The mechanism of ferroptosis in hypoxia adaptation remains

unclear. In addition, many ferroptosis genes have not been

discovered, so it is necessary to further study ferroptosis genes.

At present, we usedWeighted Correlation Network Analysis

(WGCNA) to identify hub genes of hypoxic adaptation on lung,

muscle, and spleen (11), RNA-Seq analysis also was used to

analysis yak ovary (12). But there is no bioinformatics research

on the mechanism of ferroptosis genes in hypoxia adaptation.

As a result, we used data mining and data analysis techniques

to screen DEGs between yak and bovine, and DE-FRGs were

obtained from the DEGs and ferroptosis data. DE-FRGs were

enriched in functional pathways and analyzed to construct a

protein-protein interaction (PPI) network. Then, we screened

for ferroptosis-related hub genes. Our results will contribute

to the understanding of ferroptosis genes and provide new

research thought. They were also basic datas for the study of

hypoxia adaptation.

Materials and methods

Sample collection and microarray data
collection

Yak oviduct samples were collected from Xining city,

Qinghai province, China, at an altitude of 3,800∼4,500m.

We performed the sequencing analysis, storing dataset in the

Genome Sequence Archive (https://ngdc.cncb.ac.cn/gsa/) with

series Numbers CRA007411. We selected a dataset of isthmus

epithelial cells and ampulla epithelial cells of the oviduct. The

RNA expression data of bovine were downloaded from the

GEO (http://www.ncbi.nlm.nih.gov/geo/) database with series

numbers GSE124110 (13). Apart from that, Munich has an

altitude of about 520m. 259 ferroptosis-related genes were

retrieved from the public FerrDb database (Table 1) (http://

www.zhounan.org/ferrdb/current/).

Identification of DEGs and DE-FRGs

We compared the data sets of yak and bovine, selection

criteria for adjusted-P < 0.05 and |log2FC| > 1. Under

these screening conditions, some DEGs were identified, and

volcano plot and heatmap showed a better repeatability of

data. Then we devided DEGs into up-DEGs and down-

DEGs, then these differential genes and ferroptosis genes

were analyzed by Venn website (http://bioinformatics.psb.

ugent.be/webtools/Venn/). These DE-FRGs were used for

subsequent analysis.

Functional enrichment analyses for DEGs
and DE-FRGs

The above DEGs and DE-FRGs were extracted, and then

they were used for GO (Gene Ontology, GO) functional

enrichment and KEGG (Kyoto Encyclopedia of Genes and

Genomes, KEGG) signal pathway enrichment analysis for

reference genome Bos grunniens by DAVID online database

(https://David.ncifcrf.gov/). GO contains molecular functions

(MF), biological processes (BP), and cellular component

(CC). KEGG database includes biological functions, diseases,

chemicals and drugs. Adjusted P-value < 0.05 were defined as

statistically significant.

Construction of PPI of DE-FRGs

To further explore differential protein-protein interactions,

protein interaction networks were analyzed for DE-FRGs using

online String 11.5 database (https://cn.string-db.org/). The

obtained results were imported into Cytoscape software for

visualization and a confidence score> 0.40 was set to screen PPI

pairs and build a PPI network.

Identification of hub genes and miRNAs

In protein network regulation results, nodes represent

proteins and lines represent interactions between proteins.

The hub genes were screened and scored by Cytohubba 3.7.1

plug-in in Cytoscape software. NetworkAnalyst (https://www.

networkanalyst.ca/NetworkAnalyst/home.xhtml), an online

software, which can help people find miRNA-interactions in

gene regulation networks. Using B. taurus (cow) as ID type, 10

hub genes were input to search for miRNA related to hub genes.

Results

Di�erential expression analysis of DEGs
and DE-FRGs

The flow chart of this study is shown in Figure 1. All

repeatability of used data sets were with good biological

significance by volcano plot (Figure 2A) and heatmap
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TABLE 1 Two hundred fifty-nine ferroptosis-related genes.

RPL8, IREB2, ATP5MC3, CS, EMC2, ACSF2, NOX1, CYBB, NOX3, NOX4, NOX5, DUOX1, DUOX2, G6PD, PGD, VDAC2, PIK3CA, FLT3, SCP2, TP53, ACSL4,

LPCAT3, NRAS, KRAS, HRAS, TF, TFRC, TFR2, SLC38A1, SLC1A5, GLS2, GOT1, CARS1, ALOX5, KEAP1, HMOX1, ATG5, ATG7, NCOA4, ALOX12, ALOX12B,

ALOX15, ALOX15B, ALOXE3, PHKG2, ACO1, G6PDX, ULK1, ATG3, ATG4D, BECN1, MAP1LC3A, GABARAPL2, GABARAPL1, ATG16L1, WIPI1, WIPI2, SNX4,

ATG13, ULK2, SAT1, EGFR, MAPK3, MAPK1, BID, ZEB1, DPP4, CDKN2A, PEBP1, SOCS1, CDO1, MYB, MAPK8, MAPK9, CHAC1, MAPK14, LINC00472,

PRKAA2, PRKAA1, ELAVL1, BAP1, BCC1, MIR6852, ACVR1B, TGFBR1, EPAS1, HILPDA, HIF1A, IFNG, ANO6, LPIN1, HMGB1, TNFAIP3, TLR4, ATF3, ATM,

YY1AP1, EGLN2, MIOX, TAZ, MTDH, IDH1, SIRT1, FBXW7, PANX1, DNAJB6, BACH1, LONP1, PTGS2, DUSP1, NOS2, NCF2, MT3, UBC, ALB, TXNRD1, SRXN1,

GPX2, BNIP3, OXSR1, SELENOS, ANGPTL7, SLC7A11, DDIT4, LOC284561, ASNS, TSC22D3, DDIT3, JDP2, SESN2, SLC1A4, PCK2, TXNIP, VLDLR, GPT2, PSAT1,

LURAP1L, SLC7A5, HERPUD1, XBP1, SLC3A2, CBS, ATF4, ZNF419, KLHL24, TRIB3, ZFP69B, ATP6V1G2, VEGFA, GDF15, TUBE1, ARRDC3, CEBPG,

SNORA16A, RGS4, BLOC1S5-TXNDC5, LOC390705, EIF2S1, KIM-1, IL6, CXCL2, RELA, HSD17B11, AGPAT3, SETD1B, FTL, MAFG, IL33, FTH1, SLC40A1, GPX4,

HAMP, HSPB1, NFE2L2, STEAP3, DRD5, DRD4, MAP3K5, SLC2A1, SLC2A3, SLC2A6, SLC2A8, SLC2A12, GLUT13, SLC2A14, EIF2AK4, TFAP2C, SP1, HBA1,

NNMT, PLIN4, HIC1, STMN1, RRM2, CAPG, HNF4A, NGB, YWHAE, GABPB1, AURKA, MIR4715, RIPK1, PRDX1, MIR30B, AKR1C1, AKR1C2, AKR1C3, RB1,

HSF1, GCLC, SQSTM1, NQO1, MUC1, MT1G, CISD1, FANCD2, FTMT, HSPA5, HELLS, SCD, FADS2, SRC, STAT3, PML, MTOR, NFS1, TP63, CDKN1A, MIR137,

ENPP2, FH, CISD2, MIR9-1, MIR9-2, MIR9-3, ISCU, ACSL3, OTUB1, CD44, LINC00336, BRD4, PRDX6, MIR17, NF2, ARNTL, JUN, CA9, TMBIM4, PLIN2, MIR212,

Fer1HCH, AIFM2, LAMP2, ZFP36, PROM2, CHMP5, CHMP6, CAV1, GCH1.

FIGURE 1

Flow chart of this study.

(Figure 2B). We found that CYTB and PSMB6 were significantly

up-regulated genes, while GSTA4, YME1L1, and TMCO6 were

significantly down-regulated genes. Different genes were

obtained by comparing yak and bovine, including 2,147

up-regulated differential genes and 5,634 down-regulated

differential genes (Figure 2C). We intersected these differential

genes with ferroptosis genes, respectively, and found 67 down-

regulated ferroptosis genes (Figure 3A) and 29 up-regulated

ferroptosis genes (Figure 3B).We present all DE-FRGs (Table 2).

Functional annotation of DEGs

Functional enrichment and KEGG pathway analysis

were performed on 2,147 up-DEGs. As shown in Figure 4A

(p-value < 0.05), changes in GO biological processes (BP)

mainly included cellular process, metabolic process, biological

regulation, regulation of biological process, response to

stimulus, cellular component organization or biogenesis,

localization, positive regulation of biological process,
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FIGURE 2

Comparison of yak and bovine oviduct epithelial cells. (A) The volcano plot of DEGs. (B) The heatmap of DEGs. (C) The number of up-regulated

DEGs and down-regulated DEGs.

FIGURE 3

Venn diagram displaying the DE-FRGs. (A) The venn of up-regulated DE-FRGs. (B) The venn of down-regulated DE-FRGs.
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TABLE 2 Di�erentially expressed ferroptosis genes.

Up-regulated ferroptosis genes Down-regulated ferroptosis genes

ATP5MC3, KRAS, HRAS, TF, MAP1LC3A,

GABARAPL2, SAT1, CHAC1, IFNG, TNFAIP3,

ATF3, TAZ, DNAJB6, MT3, SELENOS, DDIT3,

HERPUD1, ATF4, HSPB1, CAPG, CISD1, HSPA5,

CDKN1A, OTUB1, PRDX6, JUN, AIFM2,

CHMP6, GCH1.

IREB2, G6PD, PIK3CA, NRAS, TFRC, SLC1A5, GLS2, GOT1, NCOA4, ALOX15, ULK1, ATG4D, ATG16L1,

ATG13, MAPK3, MAPK1, MYB, PRKAA2, PRKAA1, ELAVL1, ABCC1, ACVR1B, TGFBR1, EPAS1, HIF1A,

ANO6, LPIN1, TLR4, IDH1, PANX1, BACH1, LONP1, DUSP1, NOS2, VLDLR, GPT2, PSAT1, LURAP1L,

SLC7A5, XBP1, KLHL24, ARRDC3, RELA, SETD1B, NFE2L2, STEAP3, MAP3K5, SLC2A1, SLC2A12,

EIF2AK4, SP1, GABPB1, RIPK1, RB1, HSF1, SQSTM1, NQO1, SCD, SRC, STAT3, PML, MTOR, ENPP2, NF2,

CA9, LAMP2, PROM2.

FIGURE 4

Enrichment analysis of DEGs. (A) GO enrichment analysis of up-regulated DEGs. (B) KEGG analysis of up-regulated DEGs. (C) GO enrichment

analysis of down-regulated DEGs. (D) KEGG analysis of down-regulated DEGs.

multicellular organismal process, negative regulation of

biological process, signaling, developmental process, immune

system process. Changes in cellular component (CC) mainly

focus on cell, cell part, organelle, organelle part, protein-

containing complex, membrane, membrane-enclosed lumen,

membrane part, extracellular region. The molecular function

(MF) includes binding, catalytic activity, structural molecule

activity, molecular function regulator, transporter activity,

transcription regulator activity, molecular transducer activity. In

particular (Figure 4B), ribosome and oxidative phosphorylation

were two pathways with abundant concentration and significant

differences. Thermogenesis pathway, Alzheimer’s disease
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FIGURE 5

Enrichment analysis of DE-FRGs. (A) GO enrichment analysis of up-regulated DE-FRGs. (B) KEGG analysis of up-regulated DE-FRGs. (C) GO

analysis of down-regulated DE-FRGs. (D) KEGG enrichment analysis of down-regulated DE-FRGs.

pathway, huntington disease pathway, NAFLD pathway were

another pathway with significant differences.

Functional enrichment and KEGG pathway analysis were

performed on 5,634 down-DEGs. As shown in Figure 4C (p-

value < 0.05), changes in GO biological processes (BP) mainly

included cellular process, biological regulation, metabolic

process, regulation of biological process, response to stimulus,

cellular component organization or biogenesis, localization,

multicellular organismal process, positive regulation of

biological process, signaling, developmental process, negative

regulation of biological process. Changes in cellular component

(CC) mainly focus on cell, cell part, organelle, organelle part,

membrane, protein-containing complex, membrane part. In

addition, in the molecular function (MF), the main changes

are binding, catalytic activity, transcription regulator activity,

transporter activity, molecular function regulator, membrane-

enclosed lumen. KEGG pathway analysis was rich in longevity

regulating pathway-mammal pathway, human papillomavirus

infection, axon guidance, phospholipase D signaling pathway,

Lysosome, viral carcinogenesis, thyroid hormone signaling

pathway (Figure 4D).

Functional annotation of DE-FRGs

As shown in Figure 5A (p-value < 0.05), 29 up-

regulated DE-FRGs changes in GO biological processes

(BP) mainly included cellular process, metabolic process,
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biological regulation, regulation of biological process,

response to stimulus, negative regulation of biological

process, positive regulation of biological process, cellular

component organization or biogenesis, signaling, localization,

developmental process, multicellular organismal process,

multi-organism process. Changes in cellular component

(CC) mainly focus on cell, cell part, organelle, organelle

part, membrane, protein-containing complex, membrane-

enclosed lumen, membrane part, In addition, In the molecular

function (MF), binding, catalytic activity, molecular function

regulator, transcription regulator activity. KEGG pathway

analysis is rich in mitophagy-animal pathway, protein

processing in endoplasmic reticulum pathway, prostate cancer

pathway (Figure 5B).

As shown in Figure 5C (p-value < 0.05), 67 down-

regulated DE-FRGs changes in GO biological processes

(BP) mainly included cellular process, biological regulation,

metabolic process, regulation of biological process, response

to stimulus, localization, positive regulation of biological

process, cellular component organization or biogenesis,

negative regulation of biological process, signaling,

multicellular organismal process, developmental process,

immune system process, multi-organism process. Changes

in cellular component (CC) mainly focus on cell, cell part,

organelle, membrane, organelle part, protein-containing

complex, membrane part, membrane-enclosed lumen. In

the molecular function (MF), binding, catalytic activity,

transcription regulator activity, transporter activity, In

particular, KEGG pathway analysis is rich in central carbon

metabolism in cancer pathway, HIF-1 signaling pathway,

pathways in cancer, hepatitis B pathway, relaxin signaling

pathway, Kaposi sarcoma-associated herpesvirus infection

pathway (Figure 5D).

PPI network analysis of DE-FRGs

String software was used to analyze (https://cn.string-

db.org/). We made the protein-protein interaction network

(Figure 6). Differential genes in network string interactions

short.tsv ranked by cytoHubba method. The up-regulated DE-

FRGs were: AIFM2, ATF3, ATF4, ATP5MC3, CAPG, CDKN1A,

CHAC1, CHMP6, CISD1, DDIT3, DNAJB6, GABARAPL2,

GCH1, HERPUD1, HRAS, HSPA5, HSPB1, IFNG, JUN, KRAS,

MAP1LC3A, MT3, OTUB1, PRDX6, SAT1, SELENOS, TAZ, TF,

and TNFAIP3. The down-regulated DE-FRGs were: ABCC1,

ACVR1B, ALOX15, ANO6, ARRDC3, ATG13, ATG16L1,

ATG4D, BACH1, CA9, DUSP1, EIF2AK4, ELAVL1, ENPP2,

EPAS1, G6PD, GABPB1, GLS2, GOT1, GPT2, HIF1A, HSF1,

IDH1, IREB2, KLHL24, LAMP2, LONP1, LPIN1, LURAP1L,

MAP3K5, MAPK1, MAPK3, MTOR, MYB, NCOA4, NF2,

NFE2L2, NOS2, NQO1, NRAS, PANX1, PIK3CA, PML,

PRKAA1, PRKAA2, PROM2, PSAT1, RB1, RELA, RIPK1,

SCD, SETD1B, SLC1A5, SLC2A1, SLC2A12, SLC7A5, SP1,

3SQSTM1, SRC, STAT3, STEAP3, TFRC, TGFBR1, TLR4,

ULK1, VLDLR, and XBP1. JUN regulates RELA, MAPK3,

NOS2, STAT3, NFE2L2, KRAS, SP1, RB1, PML, and MAPK1.

KRAS regulates NRAS, PIK3CA, MAPK3, SRC, MTOR,

and MAPK1. CDKN1A regulates SP1, HIF1A, JUN, RB1,

MAP3K5, and STAT3. DDIT3 regulates HSPA5, NFE2L2,

and JUN.

Hub DE-FRGs

The hub DE-FRGs were ranked as follows (Figures 7A,B):

JUN, STAT3, SP1, HIF1A, MAPK1, MAPK3, RELA,

ULK1, CDKN1A, and EPAS1. JUN and CDKN1A are

up-regulated DE-FRGs. STAT3, SP1, HIF1A, MAPK1,

MAPK3, RELA, EPAS1, and ULK1 are down-regulated

DE-FRGs. Among them, JUN, STAT3, SP1, and HIF1A

are the most significant hub genes of hypoxia adaptation

involved in ferroptosis. We used NetworkAnalyst (https://

www.networkanalyst.ca/NetworkAnalyst/home.xhtml) for

the first 10 hub genes for relevant miRNA prediction. Then,

bta-mir-21-5p, bta-mir-10a and bta-mir-17-5p associated

with STAT3 (Figure 7C). However, these findings require

further exploration.

Discussion

By comparing the oviduct epithelial cells of yak and

bovine, the key genes and pathways of hypoxia adaptation were

identified, and the key genes related to ferroptosis in hypoxia

adaptation of yak were further discussed. We found that CYTB,

PSMB6, GSTA4, YME1L1, and TMCO6 are the key genes of

hypoxia adaptation in yak, and CYTB is also the key gene of

hypoxia adaptation in previous studies (14). In the study of

the hypoxic microenvironment of cancer, mitochondrial DNA-

encoded Cytb was ∼30% lower in Lewis lung carcinoma hearts

(15), heteroplasmic changes were found in ND1 and CYTB

in epithelioma glandulae sebacei and in CYTB in lymphoma

centroblasticum (16). All the above studies on CYTB in hypoxia

indicate that hypoxia regulates the expression of CYTB, which

is consistent that CYTB is a key gene for hypoxia adaptation

in yaks. In this study, the ribosome pathway and oxidative

phoenix pathway are the key pathways of hypoxia adaptation.

Oxidative phoenix pathway leads to the production of ATP

in biological oxidation, and yak needs to consume more ATP

in hypoxia environment, which may be the key pathway of

oxidative phoenix pathway for adaptation to high altitude. The

results of this study have been replicated in other mammals,

hypoxia induced the expression of oxidative phoenix pathway

in mammals (17) and an Asian pika (18), which was consistent

with hypoxia adaptation of yak.
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FIGURE 6

PPI network of DE-FRGs.

Ferroptosis is a unique cell death mode driven by iron-

dependent phospholipid peroxidation, which is regulated by

a variety of cellular metabolic pathways, including REDOX

homeostasis, iron metabolism, mitochondrial activity and

metabolism of amino acids, lipids and sugars. Cellular iron

is essential for maintaining multiple metabolic pathways, and

excess free iron may cause oxidative damage or provoke cell

death. Hypoxic primary human macrophages have reduced

free iron and increased expression of ferritin, including

mitochondrial ferritin (FTMT), to store iron. The relationship

between hypoxia and iron death has attracted the attention

of scholars. There is no high-throughput study to explore

the potential link between ferroptosis and hypoxia in yak,

and the mechanism of ferroptosis in hypoxic adaptation. We

obtained 96 DE-FRGs by intersecting the differential genes of

hypoxia adaptation with FerrDb, including 29 up-regulated DE-

FRGs and 67 down-regulated DE-FRGs. Then, the enrichment

analysis of DE-FRGs with KEGG-GO showed that the up-

regulated ferroptosis genes were mainly involved in Mitophagy-

animal pathway, while the down-regulated ferroptosis genes

were mainly involved in HIF-1 signaling pathway, which

indicated that hypoxia might inhibit the oxygen metabolism

pathway related to ferroptosis. Mitophagy-biological pathway

is the enrichment pathway of DE-FRGs. In previous studies,

hypoxia can activate the PINK1/Parkin-mediated mitophagy

pathway (19), selective activation of mitophagy might promote

cell survival under hypoxic conditions (20), breast cancer

(21), and pulmonary fibrosis (22). Tumor cells were exposed

to hypoxia, the yak was in the hypoxic environment, the

down-regulated DE-FRGs in the oviduct is also enriched

in HIF-1 signaling pathway, HIF-1 is a central regulator

of cellular adaptation to hypoxia (23), positively selected

hypoxia-related genes in the buff-throated partridge were

distributed in the HIF-1 signaling pathway (24), Hypoxia

Enhances HIF-1α Transcription Activity by Upregulating

KDM4A and Mediating H3K9me3 (25), suppression of the

HIF-1 signaling pathway by microRNA regulation may play

a key role in the pathogenesis of un-acclimatization with

high altitude hypoxia (26), HIF-1 signaling pathway is an

important topic in high-altitude medicine (27), the previous

hypoxia research were consistent with this study. Therefore,

HIF-1 signaling pathway may play an important role in
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FIGURE 7

Hub DE-FRGs and miRNA. (A) Network of the top 10 hub DE-FRGs. (B) The rank of the hub DE-FRGs. (C) Prediction of the miRNA.

the regulation of ferroptosis by hypoxia-induced. This study

analyzed the hypoxia adaptation from the perspective of

bioinformatics, and further analyzed the ferroptosis genes

related to the hypoxia adaptation, which can provide an

effective reference for the study of hypoxia adaptation

in yak.

Finally, we analyzed the hub DE-FRGs, and found that

JUN, STAT3, SP1 and HIF1A are the most significant hub

DE-FRGs. JUN is also the hub genes of ferroptosis-related

genes of Alzheimer’s disease (28). STAT3-induced lysosomal

membrane permeabilization (29). HIF-1 is ubiquitous in human

and mammalian cells, and also expressed under normal oxygen

(21% O2), but the synthesized HIF-1 protein degrades quickly

in cells, and HIF-1 can be stably expressed only under

hypoxia. The HIF target MAFF promotes tumor invasion and

metastasis through IL11 and STAT3 signaling (30), HIF-1α

facilitates osteocyte-mediated osteoclastogenesis by activating

JAK2/STAT3 pathway (31), which indicated that HIF regulated

the expression of STAT3, but the regulation of HIF on STAT3

should be further studied, which is related to hypoxia adaptation

in yak.

In this study, the hypoxia adaptation of yak oviduct was

studied, and the genes regulating hypoxia adaptation were

excavated CYTB, PSMB6, GSTA4, YME1L1 and TMCO6. These

new genes provide new research directions. We found that

Mitophagy-animal pathway and HIF-1 signaling pathway were

very important for the study of ferroptosis genes regulated

by hypoxia. In addition, miRNA related to STAT3 is also

a potential biomolecule for the following study of hypoxia.

In the future, hypoxia adaptation can be explored from the

perspective of miRNA. The mining of these genes and pathways

provides new targeted molecules for the study of high altitude

adaptation, new omics data for the study of hypoxia-regulated

ferroptosis genes, which are also basic data for the study of

hypoxia adaptation.
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