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This study assessed the protective e�ects of selenium-chitosan (SC) against

antioxidant and immune function-related damage induced by zearalenone

(ZEN) in mice. In total, 150 female mice were allotted to five groups for a

30-day study. Control mice were fed a basal diet. Mice in the ZEN, ZEN-Se1,

ZEN-Se2 and ZEN-Se3 groups were fed the basal diet supplemented with

same dose of ZEN (2 mg/kg) and di�erent doses of SC, 0.0, 0.2, 0.4 and

0.6 mg/kg, respectively (calculated by selenium). After 30 days, the total

antioxidant capacity (T-AOC) level, glutathione peroxidase (GSH-Px) activity,

total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA)

content in plasma and liver, as well as Con A-induced splenocyte proliferation,

plasma interleukins concentrations and liver interleukin mRNA expression

levels were determined. The plasma and liver GSH-Px activities, liver T-AOC

levels, Con A-induced splenocyte proliferation, interleukin (IL) contents and

mRNA expression levels in the ZEN group were significantly lower than in the

control group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in

the ZEN groupwere significantly higher than in the control group (P< 0.01 or P

< 0.05). Additionally, plasma and liver GSH-Px activities, liver T-AOC levels, Con

A-induced splenocyte proliferation, IL-1β, IL-17A, IL-2 and IL-6 contents and

mRNA expression levels in ZEN+Se2 and ZEN+Se3 groups were significantly

higher than in the ZEN group (P < 0.01 or P < 0.05), whereas plasma and

liver MDA contents in the ZEN+Se2 and ZEN+Se3 groups were significantly

lower than in the ZEN group (P < 0.01 or P < 0.05). The plasma and liver GSH-

Px activities, Con A-induced splenocyte proliferation, IL-1β and IL-6 contents,

IL-2 and IL-17A mRNA expression levels in the ZEN+Se1 group were also

significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas the

plasmaMDA content in the ZEN+Se1 groupwas also significantly lower than in

the ZEN group (P < 0.01). Thus, SC may alleviate antioxidant function-related

damage and immunosuppression induced by ZEN in mice.
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Introduction

Zearalenone (ZEN) is a mycotoxin produced by Fusarium

fungi that widely exist in various grain crops and feedstuff

(1, 2). The mainly toxic effect of ZEN is reproductive

toxicity, and it also causes hepatotoxicity, nephrotoxicity,

immunotoxicity, cytotoxicity and genotoxicity (3, 4). The

long-term consumption of ZEN-contaminated feed causes

declines in growth performance, immunodepression and

reproductive dysfunction in livestock and poultry (5–7).

More importantly, when animals eat feed contaminated with

ZEN, it remains in the resulting animal products, such

as meat, milk and eggs, which can harm human health

(2, 8). Therefore, how to relieve the toxic effects of ZEN

on humans and animals has become a current research

hot spot.

Oxidative damage is a main pathway of ZEN toxicity (9).

The oxidative damage mechanism of ZEN to cells is caused

by the lipid peroxidation of polyunsaturated fatty acids in

their membranes and the formation of lipid peroxide. Lipid

peroxidation can eventually give rise to the formation of

a variety of lipid decomposition products, some of which

alter cell metabolism and cause dysfunction; meanwhile,

oxygen radicals induced by ZEN can also cause cell damage

through lipid hydrogen peroxide decomposition products

(9, 10). Many substances with antioxidant properties have

antagonistic effects on ZEN toxicity. For example, vitamin

C alleviates oxidative stress induced by ZEN in piglet livers

(11); and proanthocyanidins inhibit the apoptosis of mouse

intestinal epithelial cells induced by ZEN (12). In recent

years, selenium has been shown to alleviate the acute (13)

and chronic (14) toxicity of ZEN in mice by improving

the antioxidant capacity and inhibiting apoptosis (14, 15).

Similarly, Xiao et al. (16) found that selenium protects

chicken spleen lymphocyte from ZEN-induced oxidative stress

and apoptosis.

Selenium-chitosan (SC) is an organic compound of

selenium and chitosan that can simultaneously play the dual

roles of organic selenium and chitosan (17). SC improves

the performances of animals, regulates the immune state

of the body, prevents oxidative stress, inhibits apoptosis

and reduces blood sugar and blood lipid levels (17, 18).

It also protects against plasma TNF-α and IL-18 changes

caused by ZEN in mice (19). However, it is still unclear

whether SC can protect against the decreased antioxidant

capacity and immune function damage induced by ZEN

in mice. In addition, the protective mechanism needs to

be elucidated. Therefore, the aim of this study was to

investigate whether SC can reduce the toxic effects of ZEN in

female mice.

Materials and methods

Animals and diets

In total, 150, 3-week-old female Kunming mice (Animal

Center, Chinese Academy of Military Medical Sciences, China)

were allotted to five treatments of 30 mice each for a 30-

day study. Each treatment was replicated six times, with six

cages of five mice per cage in each replicate. Mice in the

control group were fed a basal diet. Mice in the ZEN, ZEN-

Se1, ZEN-Se2 and ZEN-Se3 groups were fed the basal diet

supplemented with same dose of ZEN (2 mg/kg) and different

doses of SC, 0.0, 0.2, 0.4 and 0.6 mg/kg, respectively (calculated

by selenium). Routine feeding and management throughout

the trial.

Sampling and processing

At the end of experiment, three mice from each replicate

were selected and harvested under halothane anesthesia. Blood

and liver samples were routinely collected for the determination

of total antioxidant capacity (T-AOC) level, glutathione

peroxidase (GSH-Px) activity, total superoxide dismutase (T-

SOD) activity andmalondialdehyde (MDA) content. And spleen

samples were routinely collected for the determination of the

mitogen-induced splenocyte proliferation.

Laboratory assay

Measurement of antioxidant function in plasma
and liver

Plasma and liver homogenate suspension samples were

collected. T-AOC levels, GSH-Px activities, T-SOD activities and

MDA contents in plasma and in liver were determined using the

appropriate kits (Nanjing Jiancheng Bioengineering Institute,

China). Each measurement was performed in accordance with

the manufacturer’s instructions, and all the samples were tested

in duplicate.

Measurement of mitogen-induced splenocyte
proliferation

The mitogen-induced splenocyte proliferation was

determined in accordance with Qin et al. (17). The stimulate

index (SI) was calculated using the following equation:

SI = ConA+(OD570) /Con A−(OD570)
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Measurement of plasma interleukins contents

Plasma interleukin (IL)-1β, IL-17A, IL-2 and IL-

6 contents were determined using the appropriate kit

(Jiangsu Meimian Industrial Co., Ltd, China). Each

measurement was performed in accordance with the

manufacturer’s instructions, and all the samples were tested

in duplicate.

Measurement of liver interleukins mRNA
expressions

TRIzol reagent (Invitrogen, UK) was used to extract

the total RNA of each liver sample. Then, the purity and

content of the total RNA were determined by measuring the

absorbance ratio of 260/280 nm. The total RNA was reverse

transcribed to cDNA using a First-Strand cDNA Synthesis Kit

(Genecopoeia, USA).

A CFX96 Touch real-time PCR system (Bio-Rad, USA) and

the SYBR Green qPCR mix 2.0 Kit (Genecopoeia) were used

to conduct real-time PCR. Relative mRNA expression levels

of interleukins were determined using the 2−11Ct method.

The primers, which were designed and synthesized by Beijing

Sangon Biotech Co., Ltd, are listed in Table 1. The PCR reaction

conditions were as follows: initial denaturation at 95◦C for

6min; 40 cycles of denaturation at 95◦C for 20 s, annealing at

56◦C for 20 s, and extension at 72◦C for 30 s; followed by of final

extension at 72◦C for 5 min.

Statistical analysis

The results are presented as means ± standard deviation.

The cage was defined as the experimental unit for the statistical

analyses, and all calculations were generated using cage averages.

Significance levels of differences among multiple groups were

analyzed using Tamhane’s T2 test, one-way analysis of variance

and least significant difference methods. SPSS 22.0 software

(SPSS Inc., USA) was used for all the statistical analyses.

Mean values were considered to be significantly different

at P < 0.05.

Results

Plasma antioxidant function

As shown in Figures 1A–D, plasma GSH-Px activities of

mice in the ZEN group were significantly lower than those of

mice in the control group (P < 0.01), whereas plasma MDA

contents of mice in the ZEN group were significantly greater

than those of mice in the control group (P < 0.01). Additionally,

plasma GSH-Px activities of mice in the ZEN+Se1, ZEN+Se2

and ZEN+Se3 groups were significantly higher than those of

mice in the ZEN group (P < 0.01 or P < 0.05). Plasma MDA

contents of mice in the ZEN+Se1, ZEN+Se2 and ZEN+Se3

groups were significantly lower than those of mice in the ZEN

group (P < 0.01). Plasma GSH-Px activities of mice in the

ZEN+Se3 groupwere higher than those ofmice in the ZEN+Se1

and ZEN+Se2 groups (P < 0.05).

Liver antioxidant function

As shown in Figures 2A–D, liver GSH-Px activities and

T-AOC levels of mice in the ZEN group were significantly

lower than those of mice in the control group (P < 0.01 or

P < 0.05), whereas liver MDA contents of mice in the ZEN

group were significantly greater than those of mice in the

control group (P < 0.05). Additionally, liver GSH-Px activities

of mice in the ZEN+Se1, ZEN+Se2 and ZEN+Se3 groups

were significantly higher than those of mice in the ZEN group

(P < 0.01). Liver T-AOC levels of mice in the ZEN+Se2

and ZEN+Se3 groups were significantly higher than those of

mice in the ZEN group (P < 0.01), respectively. Liver MDA

contents of mice in the ZEN+Se2 and ZEN+Se3 groups were

significantly lower than those in the ZEN group (P < 0.01 or

P < 0.05). Liver T-AOC levels of mice in the ZEN+Se3 group

were significantly higher than those of mice in the ZEN+Se2

group (P < 0.05).

Mitogen-induced splenocyte
proliferation

As shown in Table 2, Con A-induced splenocyte

proliferation in the ZEN group was significantly lower

than in the control group (P < 0.01). In addition, Con

A-induced splenocyte proliferation levels in the ZEN+Se1,

ZEN+Se2 and ZEN+Se3 groups were significantly higher than

in the ZEN group (P < 0.01 or P < 0.05). No significant

differences in Con A-induced splenocyte proliferation

were found among the control, ZEN+Se1, ZEN+Se2 and

ZEN+Se3 groups.

Plasma interleukins contents

As shown in Figures 3A–D, the plasma IL-1β, IL-17A, IL-2

and IL-6 contents of mice in the ZEN group were significantly

lower than those of mice in the control group (P < 0.01 or

P < 0.05). Plasma IL-1β and IL-6 contents of mice in the

ZEN+Se1, ZEN+Se2 and ZEN+Se3 groups were significantly

greater than those of mice in ZEN group (P < 0.01 or P

< 0.05). Plasma IL-2 and IL-17A contents of mice in the

ZEN+Se2 and ZEN+Se3 groups were significantly greater than

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2022.1036104
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Qin et al. 10.3389/fvets.2022.1036104

TABLE 1 The PCR primer sequences for amplifying GADPH, IL-1β, IL-17A, IL-2 and IL-6.

Genes Product length Primer sequence Genebank access number

GADPH 126bp F:5’-TGATGGGTGTGAACCACGAG-3’

R:5’-GCCCTTCCACAATGCCAAAG-3’

NM_008084.3

IL-1β 89bp F:5’-GCAACTGTTCCTGAACTCAACT-3’

R:5’-ATCTTTTGGGGTCCGTCAACTCC-3’

NM_008361.3

IL-17A 117bp F:5’-GGAAAGCTGGACCACCACA-3’

R:5’-CACACCCACCAGCATCTTCTC-3’

NM_010552.3

IL-2 96bp F:5’-AACTGTGGTGGACTTTCTGAG-3’

R:5’-ATGTGTTGTAAGCAGGAGGTAC-3’

NM_008366.3

IL-6 142bp F:5’-CAACGATGATGCACTTGCAGA-3’

R:5’-CTCCAGGTAGCTATGGTACTCCAGA-3’

NM_031168.1

FIGURE 1

E�ects of SC on plasma levels of di�erent parameters induced by ZEN in mice: (A) GSH-Px activity; (B) T-AOC level; (C) T-SOD activity; (D) MDA

content. Di�erent capital letters (lowercase letters) in the column chart indicate a significant di�erence at the 0.01 (0.05) level.

those of mice in the ZEN group (P < 0.01 or P < 0.05).

Plasma IL-1β and IL-6 contents of mice in the ZEN+Se2

and ZEN+Se3 groups were significantly greater than those

of mice in the ZEN+Se1 group (P < 0.01 or P < 0.05).

Plasma IL-2 and IL-17A contents of mice in the ZEN+Se3

group were greater than those of mice in the ZEN+Se1

group (P < 0.05).

Liver interleukins mRNA expressions

As shown in Figures 4A–D, IL-1β, IL-17A, IL-2 and IL-

6 mRNA expression levels of mice in the ZEN group were

significantly lower than those of mice in the control group

(P < 0.01 or P < 0.05); whereas IL-1β, IL-17A, IL-2 and

IL-6mRNA expression levels of mice in the ZEN+Se2 and
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FIGURE 2

E�ects of SC on liver levels of di�erent parameters induced by ZEN in mice: (A) GSH-Px activity; (B) T-AOC level; (C) T-SOD activity; (D) MDA

content. Di�erent capital letters (lowercase letters) in the column chart indicate a significant di�erence at the 0.01 (0.05) level.

ZEN+Se3 groups were significantly higher than those of mice

in the ZEN group (P < 0.01 or P < 0.05). In addition, IL-2 and

IL-17A mRNA expression levels of mice in the ZEN+Se1 group

were significantly higher than those of mice in the ZEN group (P

< 0.01).

Discussion

In recent years, selenium has been shown to have

antagonistic effects on the toxicity of ZEN (13, 15, 16).

Additionally, a few studies focused on the effects of SC on

the toxicity of ZEN. However, it is still unclear whether SC

can protect against the reduction in antioxidation capacity and

damage to immune functions induced by ZEN. Consequently,

this was the focus of our current study.

The T-AOC level, GSH-Px activity, T-SOD activity and

MDA content are commonly used to assess antioxidant function.

In this study, the level of MDA was used as an indicator

of oxidative damage, and the level of T-AOC, as well as the

activities of GSH-Px and T-SOD, were used as indicators of

antioxidation. Compared with the control group, the plasma

GSH-Px activity, liver GSH-Px activity and T-AOC level in

the ZEN group decreased, whereas the plasma and liver MDA

TABLE 2 E�ects of SC on Con A-induced splenocyte proliferation

induced by ZEN in mice*.

Groups Con A-(OD570) Con A+(OD570) SI

Control 0.46± 0.04 0.85± 0.10Bc 1.87± 0.10Bb

ZEN 0.41± 0.02 0.68± 0.08Aa 1.63± 0.16Aa

ZEN+Se1 0.43± 0.04 0.76± 0.06ABab 1.78± 0.11ABb

ZEN+Se2 0.45± 0.05 0.83± 0.09Bbc 1.86± 0.07Bb

ZEN+Se3 0.47± 0.05 0.87± 0.06Bc 1.86± 0.11Bb

*The different superscript capital letters (lowercase letters) in the same column indicate a

significant difference at the 0.01 (0.05) level.

contents of in the ZEN group increased. Compared with the

ZEN group, the plasma and liver GSH-Px activities, as well as the

T-AOC levels, in the ZEN+Se2 and ZEN+Se3 groups increased,

whereas the plasma and liver MDA contents in the ZEN+Se2

and ZEN+Se3 groups decreased. In addition, compared with

the ZEN group, the plasma and liver GSH-Px activities in

the ZEN+Se1 group also increased, whereas the plasma MDA

content in the ZEN+Se1 group also decreased (Figures 1, 2).

The results indicated that ZEN caused damage to antioxidant
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FIGURE 3

E�ects of SC on the plasma contents of ILs induced by ZEN in mice: (A) IL-1β; (B) IL-2; (C) IL-6; (D) IL-17A. Di�erent capital letters (lowercase

letters) in the column chart indicate a significant di�erence at the 0.01 (0.05) level.

functions of the liver and blood in mice and that SC could

alleviate the damage.

Oxidative damage is a main pathway of ZEN toxicity. It

causes lipid peroxidation of unsaturated fatty acids in the body,

which produces a variety of lipid decomposition products. The

presence of these products triggers metabolic disorders and

cellular and tissue dysfunction (9, 10). ZEN can induce tissue cell

apoptosis as a result of damage caused by oxidative stress (20).

Selenium can alleviate the toxic effects of ZEN in mice through

its antioxidant effects. Long et al. (13) reported that selenium

yeast was effective in ameliorating the effects of ZEN-induced

acute toxicity in mice owing to its antioxidant effects. Long

et al. (14) also found that selenium yeast protected reproductive

system against damage induced by ZEN by improving the

murine antioxidant capacity and inhibiting reproductive cell

apoptosis. Furthermore, Zhang et al. (15) reported that selenium

protected against the kidney damage in mice induced by ZEN

through the same mechanisms. In addition, Xiao et al. (16)

found that selenium protected against ZEN-induced oxidative

stress and apoptosis in chicken spleen lymphocytes by blocking

reactive oxygen species generation, increasing the antioxidant

capacity and reversing apoptosis. Similarly, Our results indicated

that SC could alleviate the damage to the antioxidant functions

of liver and blood induced by ZEN in mice. SC has excellent

bioavailability and biological activity, especially antioxidant

defense, compared with other organic forms of selenium in

animals (17). SC not only plays the antioxidant role of organic

selenium but also that of chitosan. In brief, SC has dual

antioxidant effects. Both chitosan (21, 22) and selenium (23,

24) can help animal resist oxidative damage and improve

the antioxidant functions. Therefore, the SC alleviation of the

decrease in antioxidant functions induced by ZEN may result

from the joint actions of organic selenium and chitosan.

Cytokine (e.g., IL-1β, IL-17A, IL-2 and IL-6) contents and

Con A-stimulated T-cell proliferation are commonly used to

evaluate immune function (25). Therefore, we tested mitogen-

induced splenocyte proliferation, plasma IL concentrations and

liver IL mRNA expression levels to observe the effects of SC on

alleviating ZEN-induced immune function damage in mice.

To understand the mode of action of SC on immune

function damage induced by ZEN in mice, we investigated

its effects on T cells in vitro using Con A-induced splenocyte

activation assays. Compared with the control group, Con A-

induced splenocyte proliferation in the ZEN group decreased.

Compared with the ZEN group, Con A-induced splenocyte

proliferation in the ZEN+Se1, ZEN+Se2 and ZEN+Se3 groups

increased (Table 2). The results indicated that ZEN had direct

inhibitory effects on T-cell activation and proliferation in mice,
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FIGURE 4

E�ects of SC on the liver contents of ILs induced by ZEN in mice: (A) IL-1β; (B) IL-2; (C) IL-6; (D) IL-17A. Di�erent capital letters (lowercase

letters) in the column chart indicate a significant di�erence at the 0.01 (0.05) level.

and SC could reverse these inhibitory effects. This may be

explained by the following: (a) selenium can affect the calcium

flux induced by T-cell receptor involvement, modulate the

redox state during T-cell activation, and also play an important

role in T-cell proliferation and differentiation (26); and (b)

selenium mediates T-cell immunity through an antioxidant

mechanism (27).

To better understand the mode of action of SC on reduced

cell-mediated immune functions induced by ZEN in mice, we

investigated its effects on regulating cytokine (IL) expression

and secretion levels. Compared with the control group, IL-1β,

IL-17A, IL-2 and IL-6 contents and mRNA expression levels in

the ZEN group decreased. Compared with the ZEN group, IL-

1β, IL-17A, IL-2 and IL-6 contents and mRNA expression levels

in the ZEN+Se2 and ZEN+Se3 groups increased. In addition,

compared with the ZEN group, IL-1β and IL-6 contents and IL-

2 and IL-17A mRNA expression levels in the ZEN+Se1 group

also increased (Figures 3, 4). The results indicated that ZEN

caused immunosuppression in mice, which was manifested by

reduced cytokine (IL) expression and secretion levels; and SC

could reverse the immunosuppression induced by ZEN.

The present study showed that ZEN supplementation led

to decreases in the IL-1β, IL-17A, IL-2 and IL-6 contents

and mRNA expression levels in mice. Similarly, Lee et al.

(28) reported that ZEN might decrease innate immunity by

attenuating the production of proinflammatory mediators and

decreasing the secretion of TNF-α, IL-1β, IL-6 and other

proinflammatory cytokines. Pistol et al. (29) also revealed that

ZEN decreased the levels of IL-1β, IL-6, and other cytokines in

the livers of the experimentally intoxicated piglets. In addition,

Yang et al. (30) reported that feed supplementation with 2.0

mg/kg ZEN or more decreases IL-2 levels in female piglets.

However, another study showed that dietary ZEN at the levels

of 300 µg/kg could increase IL-2 contents in Gilts (31). This

discrepancy may be explained by the effect of ZEN on immune

function being dose dependent. A low dose of ZEN stimulates

immune function, while a high dose of ZEN suppresses immune

function. Therefore, the effects of ZEN on IL contents and

mRNA expression levels also depends on the dose. The higher

ZEN dose resulted in inhibitory effects on IL contents and

mRNA expression levels in the present study, whereas a lower

ZEN dose in Shen et al. (31) had a stimulatory effect on

IL contents.

Our results also showed that SC supplementation led to

increased IL-1β, IL-17A, IL-2 and IL-6 contents and mRNA

expression levels induced by ZEN in mice, which indicated
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that SC could reverse the ZEN-induced immunosuppression.

Both organic selenium (32, 33) and chitosan (34, 35) can

regulate the immune functions of animals. Furthermore, SC

can regulate the immune functions of mice (17) and breeder

roosters (36). Moreover, Abdel-Tawwab et al. (37) reported

that dietary supplementation with chitosan significantly reverses

immunosuppression and transcriptomic responses induced by

ZEN in fish. Thus, we hypothesized that SC can reverse

the immunosuppression induced by ZEN, similar to the

simultaneous actions of organic selenium and chitosan.

Additionally, the mechanism may be that the increase in IL-

1β, IL-17A, IL-2 and IL-6 messenger RNA by SC increases

their secretion levels, thereby improving mouse immunity and

alleviating ZEN-induced immunosuppression. However, the

specific mechanism behind SC’s reversal of immunosuppression

induced by ZEN needs to be explored further.

Here, dietary supplementation of 0.4 and 0.6 mg/kg

SC (calculated as selenium) had a modulating effect on

almost all the measured indicators in mice, whereas dietary

supplementation of 0.2 mg/kg SC (calculated as selenium) only

had a regulatory effect on some of the measured indicators.

Therefore, considering the cost and effects, the optimal dose of

CS for resistance to ZEN in mice was 0.4 mg/kg.

Conclusions

ZEN negatively affected antioxidant functions and

immunosuppression in mice, but these effects could be

alleviated by SC.
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