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Dietary supplementation with marine lipids modulates ruminant milk

composition toward a healthier fatty acid profile for consumers, but it also

causes milk fat depression (MFD). Because the dairy goat industry is mainly

oriented toward cheese manufacturing, MFD can elicit economic losses.

There is large individual variation in animal susceptibility with goats more

(RESPO+) or less (RESPO–) responsive to diet-induced MFD. Thus, we used

RNA-Seq to examine gene expression profiles in mammary cells to elucidate

mechanisms underlying MFD in goats and individual variation in the extent

of diet-induced MFD. Di�erentially expression analyses (DEA) and weighted

gene co-expression network analysis (WGCNA) of RNA-Seq data were used

to study milk somatic cell transcriptome changes in goats consuming a

diet supplemented with marine lipids. There were 45 di�erentially expressed

genes (DEGs) between control (no-MFD, before diet-induced MFD) and

MFD, and 18 between RESPO+ and RESPO–. Biological processes and

pathways such as “RNA transcription” and “Chromatin modifying enzymes”

were downregulated in MFD compared with controls. Regarding susceptibility

to diet-induced MFD, we identified the “Triglyceride Biosynthesis” pathway

upregulated in RESPO– goats. The WGCNA approach identified 9 significant

functional modules related to milk fat production and one module to the

fat yield decrease in diet-induced MFD. The onset of MFD in dairy goats

is influenced by the downregulation of SREBF1, other transcription factors

and chromatin-modifying enzymes. A list of DEGs between RESPO+ and

RESPO– goats (e.g., DBI and GPD1), and a co-related gene network linked

to the decrease in milk fat (ABCD3, FABP3, and PLIN2) was uncovered.

Results suggest that alterations in fatty acid transport may play an important

role in determining individual variation. These candidate genes should be

further investigated.
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Introduction

Several feeding strategies have proven efficient in

modulating ruminant milk composition toward a healthier

fatty acid (FA) profile for consumers (1, 2). This includes, for

instance, reductions in atherogenic saturated FA and increases

in CLA, vaccenic acid or long chain n-3 polyunsaturated

FA (3, 4). However, some of these strategies (namely, diet

supplementation with marine lipids) can induce milk fat

depression (MFD) in dairy ruminants, although goats are less

prone than cows to this syndrome (2, 5). Because most caprine

milk is used for cheese manufacturing, MFD is always related to

economic losses in this species.

Interestingly, a large individual variation in the extent of

diet-induced MFD has been observed in dairy ruminants (6, 7),

including dairy goats from the same experimental flock when

consuming a diet supplemented with 2% fish oil (8). When

trying to improve milk fatty acid composition, understanding

the genetic mechanisms behind this variability, which remain

uncertain, would help explain individual variation in fish oil-

induced MFD severity and select for less-susceptible animals.

The introduction of high-throughput technologies to study

the genome provides ruminant scientists with a valuable tool

to better understand animals’ responses to nutrition, and

it has boosted research in the field of nutrigenomics [i.e.,

the study of genome-wide influences of nutrition (9, 10)].

Technologies such as RNA-sequencing (RNA-Seq) along with

bioinformatics allow for examining the expression of the entire

set of transcribed genes in a sample, offering key information on

the fundamental effects of dietary components on physiological

outcomes (10). This approach has been applied for elucidating

genes involved in mammary transcriptome responses to dietary

lipid supplementation in cows and sheep (11–13). In dairy

goats, less information on the effects of lipid supplementation

on lipogenic gene expression is available (14); we are only

aware of one in vivo study applying RNA-Seq to examine the

transcriptomic changes associated with MFD in the mammary

gland of goats fed different levels of degradable starch (15).

However, in this species, MFD associated with dietary starch is

a much less usual condition than marine lipid-induced MFD (1,

2, 8). Thus, the characterization of the transcriptomic changes

underlying marine lipid-induced MFD would provide useful

information to determine the genetic mechanisms influencing

this complex trait. Moreover, the identification of genes and

variants involved in the individual susceptibility toMFD in goats

and their potential use as biomarkers could be useful to improve

the classification of the animals and select those less susceptible

to diet-induced MFD.

Differential gene expression analyses (DEA) have been

successfully used to determine genes that are differentially

expressed between experimental conditions (16, 17). However,

the use of network approaches, such as the Weighted Gene Co-

expression Network Analysis (WGCNA) method, has emerged

as a useful alternative to elucidate the genetic basis of complex

traits. These approaches do not aim to identify individual

differentially expressed transcripts but clusters (modules) of

highly co-expressed genes that are up/down regulated under

certain biological, chemical or environmental conditions (18).

Based on the hypothesis that MFD in goats is partly driven

by changes in the mammary gland gene expression profile, the

aim of the present study was to use RNA-Seq data from the milk

somatic cells (MSC) to identify genes and gene co-expression

networks that differentiate distinct responses to diet induced

MFD in goats.

Materials and methods

Animals, diets, and management

A detailed description of procedures, including animals,

diets, and sampling, is provided by Della Badia et al. (8). All

experimental procedures were performed in accordance with

European Union and Spanish legislations (Council Directive

2010/63/EU and R. D. 53/2013). The animal use protocol was

approved by the Research Ethics Committees of the Instituto de

Ganadería de Montaña, the Spanish National Research Council

(CSIC), and the Junta de Castilla y León (Spain).

Briefly, 25 Murciano-Granadina goats (body weight: 30.5 ±

3.6 kg) at a similar stage of their first lactation (days in milk: 40.1

± 5.9) were housed in individual tie stalls. During a 3 weeks

adaptation period, goats were fed a TMR formulated with alfalfa

hay (particle size > 4 cm) and concentrate (forage:concentrate

ratio 50:50) without lipid supplementation [see Della Badia

et al. (8) for details]. Subsequently, goats were supplemented

with 20 g of fish oil (FO; Afampes 121 DHA, Afamsa)/kg of

diet DM, which is known to cause MFD in dairy goats (8),

for five additional weeks to induce a stable inhibition in milk

fat synthesis. At the end of this second period, and on the

basis of the magnitude of MFD, the five most-responsive goats

(RESPO+; with a mean decrease in milk fat content of 26.0%)

and the five least-responsive goats (RESPO–; with a mean

decrease in milk fat content of 9.7%) were selected. Animals

were milked once daily at ∼08:30 h in a 10-stall milking parlor

(DeLaval). They had ad libitum access to diets daily, and clean

drinking water was available at all times.

Sampling, RNA-extraction and
RNA-sequencing

Milk samples for RNA extraction were collected at the

end of the adaptation period (no-MFD, control samples) from

all goats and at the end of the fish-oil (FO) supplementation

period from goats selected as RESPO– and RESPO+. Sample

collection and RNA extraction were performed according to
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Toral et al. (19), with little modifications. Milk somatic cells

from healthy udders have been proven to represent the lactating

mammary gland transcriptome in ruminants and a valid proxy

to more invasive approaches, with correlations of 0.98 with

mammary gland biopsies (20, 21). Moreover, this source of

RNA has already been successfully applied in nutrigenomic

studies in sheep to determine genes and pathways involved

in MFD associated with FO and conjugated linoleic acid

supplementation (11, 12). Briefly, milk samples were collected

1 h after milking and 10min after injection of 5 IU of

oxytocin/animal (Facilpart, Laboratorios SYVA) to maximize

milk somatic cell concentration. To prevent RNA degradation,

udders were cleaned with soap and water and disinfected

with povidone-iodine, and the nipples were also flushed with

RNAseZap (Ambion). A sterile gauze was used to cover the

collection tube to avoid contamination.

For RNA extraction, theMSCs from 50ml of fresh milk were

pelleted by centrifugation at 650 × g for 10min at 4◦C in the

presence of a final concentration of 0.5mM of EDTA. Then, the

pellet was washed three times with 10, 2, and 1.5ml of PBS (pH

7.2 and 0.5mM of EDTA), followed by centrifugation at 650× g

for 10min at 4◦C. The last pellet was kept in RNAlater (Sigma-

Aldrich) and stored at −80◦C until RNA extraction using 500

µl of TRIzol (Invitrogen). The RNA quality was evaluated using

an Agilent 2100 Bioanalyzer (Agilent Technologies). The mean

RNA integrity number (RIN) of the samples was 8.5± 0.7.

A total of 15 samples were used for RNA sequencing:

RESPO+ (n = 5), RESPO– (n = 5), and no-MFD

(controls, n = 5). Milk production records (content

and yield) in controls, RESPO+ and RESPO– animals,

after and before FO supplementation are summarized

in Supplementary Table S1; particularly, the milk fat

percentage variation ranged between 21.74%−29.68% and

7.77%−10.81% in the RESPO+ and RESPO– groups,

respectively. With the aim of maximizing transcriptomic

differences between goats with and without MFD, the latter

(i.e., the 5 no-MFD) corresponded to control samples collected

from RESPO+ goats before offering them the diet that

induced MFD.

The RNA sequencing was conducted at Centro

Nacional de Análisis Genómico (CNAG, Barcelona,

Spain), where the TruSeq Stranded Total RNA Library

Prep Kit (Illumina, San Diego, CA, USA) was used for

library preparation. A NovaSeqTM 6000 Sequencing System

(Illumina) was used to generate stranded paired-end reads of

51 bp.

Alignment and quantification

RNA-Seq data files were aligned to the ARS1 goat reference

genome (GCF_001704415.1_ARS1 from NCBI database) using

STAR v. 2.7.6a (22). In addition to the default arguments for

the alignment, we added the options “–outFilterType BySJout”

to reduce spurious junctions, “–outWigStrand Stranded” to

indicate that our RNA-Seq data was stranded, and the option “–

quantMode TranscriptomeSAM” to the necessary output for the

quantification with RSEM software (23). For the quantification

with RSEM, we used the option “–paired-end” to indicate our

data were paired-end and “–no-bam-output” to indicate that

no bam output should be created. In addition, we used the

options “–estimate-rspd” to estimate the start position of the

distribution, “–calc-ci” to calculate 95% credibility intervals

and posterior mean estimates, “–seed 12345” to set the seed

for the random number of generators used in calculating

posterior mean estimates and credibility intervals, and “-p

8” to fix the parallel environment. RSEM software can deal

with mapping uncertainty due to multi-mapped reads using

the expectation maximization (EM) algorithm to estimate the

maximum likelihood value of gene or transcript abundance (24).

After alignment and quantification, we followed two

different analytical approaches: a standard DEA and aWGCNA.

The bioinformatics workflow applied to analyze the RNA-Seq

data is summarized in Figure 1.

Di�erential gene expression analyses

We used the R package tximport (25) to import the

results from the quantification step with RSEM software

into R environment. The program DESeq2 v.1.34.0 (16) was

used to perform the DEA. First, we used the function

“collapseReplicates” in DESeq2 to collapse technical replicates.

We computed the Euclidean distance among the samples using

“dist” function in R and plotted the hierarchical clustering

using “hclust” to check for outliers. Moreover, PCAtools

(26) was used to perform a principal component analysis

(PCA) to cluster samples based on gene expression data.

Then, we performed differential expression analysis to identify

differentially expressed genes (DEG) between control (n =

5) and MFD samples [the latter including both RESPO+

(n = 5) and RESPO– samples (n = 4; after removing

outliers)]. In addition, we performed a DEA to evaluate

differences between RESPO+ (n = 5) and RESPO– goats (n

= 4). For both analyses, we considered genes as differentially

expressed at a P-adjusted value (Padj) <0.05, i.e., after the

correction of P-values for multiple testing using the Benjamini–

Hochberg’s approach.

Functional enrichment analyses

Functional enrichment analyses were performed

using the web-tool ToppFun in ToppGene Suite (27).

Functional enrichment was performed for Gene Ontology

(GO):Molecular function, GO:Biological Processes, GO:Cellular
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FIGURE 1

Bioinformatics workflow followed for the analysis of the RNA-Seq data.

Component, and Pathway databases. The following

options were applied to perform the analyses: “P-value

Method = probability density function,” “multiple test

correction = false discovery rate (FDR),” “FDR cutoff <

0.05,” “Gene Limits 1 ≤ n ≤ 2,000.” These analyses were

performed for the different lists of DEGs obtained from the

previous analyses, i.e., the upregulated or downregulated

genes identified by the different comparisons between

control and MFD samples and between RESPO+ and

RESPO– samples.

Weighted gene correlation network
analyses

Expression values of genes were normalized using DESeq2 to

obtain a matrix of counts to be used in the R package WGCNA

(18), for weighted gene co-expression network construction.

Briefly, the similarity matrix between each pair of genes

across all samples was constructed by calculating Pearson

correlations. Then, the similarity matrix was transformed into

an adjacency matrix (A) raised to a soft threshold power based

on the free-scale topology criterion. We used the function

“pickSoftThreshold” to calculate the soft-thresholding power.

In this study, the soft threshold (β parameter) was 12, which

corresponds to a free-scale topology of R2 > 0.80. Subsequently,

the topological overlap matrix (TOM) was used to define

modules based on dissimilarity (1-TOM). Then, a hierarchical

clustering from the dissimilarity matrix was generated with

the “hclust” function. Modules of co-expression were then

detected by using the dynamic tree cut (DTC) algorithm. The

minimum size selected to construct the gene co-expression

modules was 15.

Once the gene modules were detected, their associations

with the studied milk fat traits (fat yield, fat percentage,

variation in fat yield, and variation in fat percentage;

Supplementary Table S1) were estimated using the correlation
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between the module eigengene (ME) and phenotypic values

for each trait and animal, allowing the identification of

modules highly correlated with the interest traits. Genes of

modules with significant module-trait associations (P-value

≤ 0.05), for at least one trait, were used for functional

enrichment analysis.

Functional enrichment analysis for milk
fat genes

To determine if the gene co-expressed modules significantly

correlated to the phenotypic traits were functionally enriched in

genes involved in milk fat synthesis or MFD, we developed the

following functional enrichment analysis. First, we performed

a functional prioritization analysis on ToppGene (27) using

the genes from the gene modules significantly correlated to

our traits as the test list. The training set was a list of 432

known genes linked to milk fat synthesis in cattle and goats,

and to MFD in sheep (Supplementary Table S2) (11, 28, 29).

The functional enrichment analysis for the test set was

performed for the Gene Ontology (GO) (GO:Biological Process,

GO:Molecular Function, and GO:Cellular Component),

and the Pathway and Gene family databases, using as P-

value method the probability density function and FDR

< 0.05. Genes in the test set were considered functionally

prioritized when the overall P-value for the analysis

was <0.05.

Once we had our list of genes functionally associated to

milk fat synthesis and/or MFD, composed by the training

gene set and the functionally prioritized genes (milk fat gene

list, 850 genes; Supplementary Table S3), we performed an

overrepresentation analysis to check which of the gene co-

expressed modules was enriched for the genes in this list.

A hypergeometric test was performed for each significantly

correlated module of genes using the phyper package (30) in

R. For each evaluated module, we computed the probability

that genes overlapping (specific for each gene co-expressed

module) with the milk fat gene list was higher than expected

by chance (i.e., overrepresented) using as background the

11,624 genes used to create the weighted-gene correlation

networks. The P-value obtained was corrected for multiple

testing using FDR and Bonferroni methods with the P.adjust

function in R.

Results

Sequencing and alignment of the goat
MSCs transcriptome

The statistics regarding RNA-Seq are summarized in

Supplementary Table S4. The average of reads per sample was

37,335,520 (SD = 4,929,042.77), with a mode of technical

replicates per sample of 2. The mapping rate to the goat

reference genome Capra hircus assembly ARS1 was 93.86

% (SD = 0.01), with a percentage of uniquely mapped

reads of 74.87% (SD = 0.05) and 19% of multi-mapping

reads (SD= 0.04).

Gene expression levels and sample
distribution

Gene counts normalized using the Fragments per Kilobase

per Million Mapped Reads (FPKM) method were used to

evaluate gene expression levels. According to their expression,

genes were classified into four different categories: genes with

an expression lower than 0.1 FPKMs, which were not used

in subsequent analyses, low expressed (<10 FPKMs), middle

expressed (>10–500 FPKMs), and highly expressed (>500

FPKMs) genes (Supplementary Figure S1). The majority of

genes ranged between 10 and 500 FPKM. Among 66 most

expressed genes (>500 FPKMs) in goats, the top expressed genes

were caseins (CSN1S1, CSN1S2, CSN2, and CSN3) and whey

(PAEP and LALBA) proteins.

Based on the Euclidean distance, we removed one outlier (ID

= RESPO2_249 sample) from the RNA-Seq dataset (Figure 2A).

Regarding the PCA, Figure 2B shows the three principal

components accounting for more than 10% of the variance.

Altogether, PC1, PC2, and PC3 explained 53.29% of the variance.

It was expected that lipid supplementation would not explain

a high percentage of the variance in the PCA analysis when

evaluating the whole transcriptome because of the animal

variability and the fact that the number of genes expected to

have a high impact on the complex quantitative traits is low.

The first principal component (PC1), accounting for 27.85%

of the variance, and the PC2 (accounting for 14.82%) were

not able to group the samples by the conditions (Figure 2B).

Nevertheless, the PC3, accounting for 10.62% of the variance,

better discriminates the different conditions evaluated.

Di�erentially expressed genes between
control and MFD

A total of 45 genes were differentially expressed (Padj < 0.05)

between control and MFD goats (Supplementary Table S5).

Thirty-three of these were upregulated in goats with MFD

and 12 in the control. The top three differentially expressed

genes were a ncRNA LOC102181690 (Padj = 1.16E−14,

log2FoldChange=−2.16) and the gene coding for 40S ribosomal

protein S27 (LOC102171808, Padj = 0.0004, log2FoldChange=

−2), both upregulated in MFD samples, and the SREBF1-like
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FIGURE 2

Sample Distribution of the RNA-Seq data. (A) Hierarchical clustering of samples based on Euclidean distance. The red line represents the

threshold fixed to discard outliers (B) Principal Component Analysis (PCA) plots for PC1, PC2, and PC3 of milk somatic cell transcriptomes from

control (blue) and more (RESPO+; green) or less (RESPO–; red) responsive goats to a diet inducing milk fat depression (MFD).

(LOC108635517, Padj = 3.88E−05, log2FoldChange = 1.11),

upregulated in control samples.

After functional enrichment analyses, genes upregulated

in the goats with MFD were significantly clustered [False

Discovery Rate Benjamini and Hochberg (FDR B&H) <0.05]

in seven GO terms for the Molecular function category

(GO:Molecular function), 50 terms in the GO:Biological Process

category, 15 terms in the GO:Cellular Component category,

and 37 in the pathway databases (Supplementary Table S6).

The highest enriched GO terms for each category were

“structural constituent of ribosome” (seven genes, FDR B&H

= 3.966E−8) for GO:Molecular function, “SRP-dependent

cotranslational protein targeting to membrane,” “cotranslational

protein targeting to membrane,” “nuclear-transcribed mRNA

catabolic process, nonsense-mediated decay,” “protein

targeting to ER” and “establishment of protein localization to

endoplasmic reticulum” (six genes, FDR B&H = 1.985E−7) for

GO:Biological Process and “ribosomal subunit” for GO:Cellular
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Component (seven genes, FDR B&H = 7.833E−8). The highest

enriched pathway was “Selenocysteine synthesis” (BioSystems:

REACTOME, seven genes, FDR B&H= 2.052E−9).

Genes upregulated in control were significantly enriched

in 30, 14, and 14 GO terms for the Molecular Function,

Biological Process and Cellular Component categories,

respectively, and 50 pathways (Supplementary Table S7).

The top enriched GO terms for GO:Molecular function

were “chromatin binding” and “transcription factor binding”

(four genes, FDR B&H = 6.844E−3). For the GO:Biological

Processes the highest enriched GO terms were “positive

regulation of nucleic acid-templated transcription,” “positive

regulation of transcription, DNA-templated,” and “positive

regulation of RNA biosynthetic process” (six genes, FDR

B&H = 1.801E−2). For the GO:Cellular Component the top

enriched GO term was “Golgi trans cisterna” (two genes,

FDR B&H = 1.166E−3), and for the pathway databases

“Chromatin organization,” and “Chromatin modifying

enzymes” (BioSystems: REACTOME,4 genes, FDR B&H

= 1.609E−3).

Di�erentially expressed genes between
RESPO+ and RESPO–

There were 18 genes differentially expressed (Padj <

0.05) between RESPO– and RESPO+ goats, 13 were

upregulated in the RESPO+ animals and five in RESPO–

(Supplementary Table S8). The top three differentially expressed

genes were DBI (Padj = 0.002, 0.56), PBXIP1 (Padj = 0.006,

−0.89) and ELMSAN1 (Padj =0.006, −0.63). Results from

the functional enrichment analyses for the upregulated

genes in RESPO+ are detailed in Supplementary Table S9.

The top enriched GO term among those significantly

enriched was potassium channel inhibitor activity (two

genes, FDR B&H = 1.323E−3) for the GO:Molecular

function category (18 terms, FDR B&H < 0.05), regulation

of potassium ion transmembrane transport (three genes, FDR

B&H = 5.715E−3) for the GO:Biological Process category

(50 terms, FDR B&H < 0.05), and anchoring junction

(four genes, FDR B&H = 3.794E−2) for the GO:Cellular

Component (16 terms, FDR B&H < 0.05). No pathways were

significantly enriched.

All results for the functional enrichment analyses of genes

upregulated in RESPO– are in Supplementary Table S10.

For the five upregulated genes, 11 terms were enriched

for the GO:Molecular function category; “oxidoreductase

activity, acting on the CH-OH group of donors, quinone or

similar compound as acceptor” and “glycerol-3-phosphate

dehydrogenase (quinone) activity” (one gene, FDR B&H =

5.407E-3) being the highest enriched terms. For the GO:

Biological Process category, we found 22 terms significantly

FIGURE 3

Significant module-trait associations found between the module

eigengenes (ME) and the milk-fat traits analyzed [fat percentage

(Fat.), fat yield (Fat_yield), variation in fat percentage (Variation.),

and variation in fat yield (Variation_yield)]. Each row

corresponds to a module eigengene labeled with colors and

each column to a milk fat trait. Individual cells contain Pearson’s

correlation coe�cients (outside parentheses) and the P-values

of the correlation (within parentheses). The red to green color

within the cells represents the positive (red) or negative (green)

correlation of the modules with the milk fat traits.

enriched; “positive regulation of CoA-transferase activity,”

“regulation of CoA-transferase activity,” “glycerol-3-phosphate

catabolic process,” and “negative regulation of protein

lipidation” (one gene, FDR B&H = 2.958E-2) being the top

enriched ones. For the GO:Cellular component category, four

terms were significantly enriched (FDR B&H < 0.05), with

“glycerol-3-phosphate dehydrogenase complex” (one gene, FDR

B&H = 1.361E−2) being the top enriched term. Moreover,

we found 22 pathways significantly enriched, “Triglyceride

Biosynthesis” (BioSystems: REACTOME, two genes, FDR B&H

= 2.887E−3) being the top enriched pathway.

Co-expressed gene modules and
correlations with milk fat yield, milk fat
percentage and milk fat variation traits

Using the WGCNA approach, we identified 67 modules

of co-expressed and highly interconnected genes, each module

being assigned to different colors (Figure 3). Among the
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modules identified, three were significantly correlated to milk

fat percentage (orange, saddlebrown, and darkturqouise), nine

significantly correlated to milk fat yield (darkorange, green,

violet, greenyellow, turquoise, paleturquoise, darkslateblue,

grey60, and coral2) and 1 significantly correlated to the variation

in milk fat yield due to MFD (lightyellow). The module with the

highest correlation with any of the traits was the violet, with

a correlation of −0.78 with milk-fat yield (P-value = 0.0009,

46 genes). The unique module associated with milk fat yield

variation due to MFD was lightyellow with a correlation of

−0.59 (P-value = 0.025, 95 genes). None of the modules was

significant for all traits together. The list of all modules and

associated genes is provided in Supplementary Table S11.

The functional enrichment analyses performed with the

training list of genes (Supplementary Table S2) confirmed

their relevant function in processes related to milk fat

synthesis. The highest enriched terms for the GO:Molecular

function, GO:Biological Processes, GO:Cellular Component,

Pathway and Gene family categories were “acyltransferase

activity” (31 genes, FDR B&H = 4.255E−11), “lipid

metabolic process” (130 genes, FDR B&H = 5.813E−46),

endoplasmic reticulum subcompartment (64 genes, FDR

B&H = 3.769E−11), Metabolism of lipids and lipoproteins

(BioSystems:REACTOME, 103 genes, FDR B&H= 3.769E−11),

and Acyl-CoA dehydrogenase family (six genes, FDR B&H

= 7.984E−7), respectively. After the functional prioritization

analyses, 106 genes from the test gene set (genes from modules

significantly correlated to milk-fat phenotypes) overlapped

with genes in the training set, and 745 genes were functionally

prioritized (Supplementary Table S12). In total, 25% of the

genes in our test set were functionally associated to milk fat

synthesis or MFD.

Once we had the milk fat gene list (Supplementary Table S3),

we performed the overrepresentation analyses for the gene

modules significantly correlated to the milk-fat phenotypes.

The results are summarized in Table 1. There were 10

modules overrepresented; the turquoise one was the highest

enriched. The lightyellow module, was the only one significantly

correlated to the variation in fat yield due to MFD, and

was also enriched with 21 genes functionally related to milk

fat synthesis (Figure 4).

Discussion

We investigated changes in the milk somatic cell

transcriptome in goats subjected to a diet known to induce

MFD through two RNA-Seq analytical approaches to determine

genes and gene networks involved in individual differences in

the degree of MFD. First, the DEA allowed us to determine

those genes differentially expressed between the analyzed

conditions (control vs. MFD and RESPO– vs. RESPO+).

Second, the WGCNA allowed us to gain insights into the

genetic signatures related to complex quantitative phenotypes

such as milk fat synthesis and individual MFD susceptibility.

Although DEA is the methodology commonly chosen to

discriminate DEGs between different experimental conditions,

this approach can have several limitations. In addition to the

fact that genes are studied individually, the application of

this approach can be challenging when molecular differences

between the analyzed conditions are small (31). On the other

hand, the WGCNA constructs networks of genes based on the

pairwise correlations between their expression (18) such that

genes contributing to the same biological process are usually

under the same transcriptional regulation and tend to have

a correlated expression performance (32). Thus, it has been

shown that the combination of DEA and WGCNA approaches

can be advantageous for identifying genes involved in functional

differences between similar tissues where gene expression

levels do not differ much (31). The complementarity of these

two methodologies helped us gain insights into the genetic

basis of a quantitative phenotype, diet-induced MFD in the

lactating mammary gland, where most reads (∼90%) account

for major proteins involved in milk synthesis, and only subtle

differences in gene expression exist across animals (absolute

log2FoldChange hardly surpass 2).

In DEA, a total of 45 genes exhibited differences in

expression. Among them, SREBF1-like and SREBF genes were

upregulated in the control group. Sterol regulatory element-

binding transcription factors (SREBFs) act as main regulators

in controlling enzymes involved in de novo synthesis of fatty

acids and cholesterol (33, 34). Our findings agree with reports

in cattle and sheep, where decreases in SREBF1 expression have

been associated withMFD (5, 35, 36). Although a recent study in

goats under starch-induced MFD found no variation in SREBF

abundance, a decrease in INSIG1 expression was detected,

which may affect SREBP activity (15). Similarly, a previous

study performed by our research group, aiming to identify

differentially expressed genes from the MSCs transcriptome of

FO-induced MFD in dairy sheep, did not detect differential

expression for SREBF1, but the SREBP signaling pathway

was enriched (11). Among the GO (Molecular Function and

Biological Processes) terms and biological pathways that were

enriched in the present study, several contained genes involved

in the regulation of RNA transcription (SREBF1, HIVEP3,

ZNF827, PPRC1, DOT1L, and ASH1L), chromatin-modifying

enzymes (NCOR2, CHD4, DOT1L, and ASH1L), and histone

methyltransferase activity (DOT1L and ASH1L).

Dietary lipids have been postulated as regulators of

gene expression in a hormonal-independent manner through

regulation of activity and/or abundance of transcription factors

and nuclear receptors affecting the transcription of many genes

(37, 38). Moreover, epigenetic changes in gene expression due

to modifications in the chromatin have been attributed to

dietary unsaturated fatty acids in non-ruminant animal models

(39). For upregulated genes during MFD, we mainly observed
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TABLE 1 Results from the overrepresentation analyses among genes in modules significantly correlated to milk fat phenotypes and the milk fat

gene lista.

Module name Number of genes in

the module

Common genes (modules vs. milk fat gene list) P-value FDR B&H Bonferroni

Number %

Turquoise 2,014 564 28.00 1.40E−246 1.82E−245 1.82E−245

Green 552 114 20.65 5.77E−26 3.75E−25 7.50E−25

Greenyellow 210 50 23.81 8.96E−15 3.88E−14 1.16E−13

Grey60 110 24 21.82 2.56E−07 8.32E−07 3.33E−06

Darkturquoise 83 20 24.10 3.45E−07 8.98E−07 4.49E−06

Lightyellow 95 21 22.11 9.48E−07 2.05E−06 1.23E−05

Violet 46 12 26.09 1.64E−05 3.05E−05 0.0002

Coral2 23 6 26.09 0.0009 0.0015 0.0123

Saddlebrown 53 10 18.87 0.0013 0.0019 0.0173

Paleturquoise 47 9 19.15 0.0018 0.0023 0.0232

Orange 65 8 12.31 0.0459 0.0497 0.5968

Darkorange 64 8 12.50 0.0422 0.0497 0.5482

Darkslateblue 30 4 13.33 0.0641 0.0641 0.8338

aThe milk fat gene list (obtained from the literature and prioritization analyses) is detailed in Supplementary Table S3.

genes encoding proteins that are structural constituents of the

ribosome (MRPL27, RPL24, RPLP0, RPL3, RPS7, RPL13, and

RPS8), supporting the hypothesis that RPL genes are targets

of dietary long-chain polyunsaturated fatty acids in rodents

(40). On the contrary, these results contrast with the previously

reported stability of RPLP0 expression in the mammary gland of

ruminants (41), which prompted its use as a reference gene in

nutritional trials, including the study of mammary lipogenesis

in goats under marine lipid-induced MFD conditions (42).

Once the main DEGs due to the MFD-inducing diet

were determined, we identified those differentially expressed

in RESPO+ and RESPO– goats. Only 18 genes were deemed

differentially expressed. The upregulated GO terms clustering

genes upregulated in RESPO+ goats were mainly related to the

regulation of potassium ion transmembrane transport (WNK4,

BIN1, and CAV1), specifically, potassium channel inhibitor

activity. Supplementation with potassium-based products has

been suggested to improve milk fat concentration in dairy

ruminants. However, this effect has not been related to a direct

effect in the mammary gland, but to decreased production of

ruminal trans-10 18:1 and trans-10, cis-12 CLA (43). In the

companion study (8), FO supplementation tended to induce a

greater increase in milk trans-10 18:1 concentration in RESPO+

than RESPO–, but no relationship between milk trans-10, cis-12

CLA and responsiveness to theMFD-inducing diet was detected.

In RESPO– goats, two upregulated genes (GPD1 and

DBI) explained the enrichment in the pathway “Triglyceride

biosynthesis,” suggesting that less susceptible goats had higher

synthesis of triglycerides in mammary cells. The GPD1 encodes

for glycerol-3-phosphate dehydrogenase 1, which acts in the

reversible conversion of dihydroxyacetone phosphate (DHAP)

and reduces nicotine adenine dinucleotide (NADH) to glycerol-

3-phosphate (G3P) and NAD+, having a critical role in

carbohydrate and lipid metabolism. A study in dairy cows

and goats fed diets supplemented with starch, plant oil, or

fish oil showed no differences in the expression of GDP1

in the mammary gland due to changes in milk fat content

in response to diets (44). This agrees with our findings

when comparing control vs. MFD. However, the GDP1 gene

was differentially expressed when we compared RESPO+ and

RESPO–, suggesting a relevant role of this gene in the individual

differences in MFD severity.

Bernard et al. (44) reported a negative correlation between

GDP1 gene expression and the milk content of cis-11 16:1, a

fatty acid that is present in FO. Although there is no research

deciphering the biological meaning of this correlation, milk

concentrations of cis-11 16:1 seem associated with reduced milk

fat content (g/kg) (44–46). However, in the companion paper

by Della Badia et al. (8), we observed a higher cis-11 16:1

proportion in RESPO– goats (P = 0.028), which would not

support the negative correlation between GDP1 gene and this

fatty acid. In any event, further research is necessary to elucidate

the mechanisms underlying these links and to verify whether

they denote causation (e.g., a biological effect of cis-11 16:1 on

gene expression) or not (i.e., a simple reflection of cis-11 16:1

supply with FO).

The other gene upregulated in RESPO– animals and linked

to lipid metabolism was DBI. This gene, also known as ACBP,
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FIGURE 4

Gene co-expression network for the lightyellow module significantly correlated with milk fat-yield reduction due to the MFD-inducing diet.

Yellow squared nodes (yellow genes) represent genes functionally associated with mammary lipid metabolism in ruminants. Red edges indicate

the connections of yellow genes in the network. The width of the edges corresponds to the weight in the WGCNA. The border color of the node

is related to the number of connections, reddish nodes represent highly connected hub genes, and lighter red border colors of nodes represent

genes with fewer connections.

encodes for acyl-CoA binding protein, which plays a role in

modulating the regulatory functions and utilization of long-

chain fatty acyl-CoA, preventing the inhibitory effects of these

compounds on enzyme activity (e.g., on mitochondrial acyl-

CoA synthetase and acetyl-Coa carboxylase) (47). The DBI

gene was downregulated in dairy cows and sheep displaying

MFD due to the consumption of diets rich in unsaturated

fatty acids (11, 35). In this study, DBI was not among the

differentially expressed genes when comparing control vs. MFD

groups, but when evaluating more and less susceptible animals

(i.e., RESPO+ vs. RESPO–). Thus, it could be speculated that

changes in the expression of DBI gene might represent a

mechanism that protected mammary cells of RESPO– goats

from excessive accumulation of long-chain fatty acyl-CoA due

to FO supplementation (47).

In the WGCNA, most modules significantly correlated with

milk fat phenotypes were related to milk fat yield, which

would suggest that transcriptomic changes associated to milk

fat decrease are subtle in comparison with those observed for

milk fat synthesis. Our companion study postulated that some

pre-existing variations in some traits, such as milk fat yield,

may influence the susceptibility of sheep to dietary components

inducing MFD, but this trend was not confirmed in goats (8).

The relevance of this trait might explain that none of the

modules correlated to milk fat yield was also correlated to

variations in milk fat yield in response to diet, the latter variable
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having only one significantly correlated module. Regarding milk

fat percentage traits, none of the gene modules correlated with

milk fat percentage was correlated with milk fat yield. In small

ruminants, milk fat yield and milk yield are usually positively

correlated, whereas milk fat percentage is negatively correlated

with milk yield, which has often been attributed to a dilution

effect (48, 49). This fact supports the idea that different gene

correlated networks might drive both traits. One of the genes

included in the turquoise module, which positively correlated to

milk fat yield, was LALBA. This gene encodes alpha-lactalbumin,

an essential protein for lactose synthesis, a major milk osmolyte

influencing milk volume (50, 51), which may account for the

relationship between this module and milk fat yield. Although

there were also some discrepancies in significant modules

and their correlations to different phenotypic traits, nearly all

modules were enriched in genes functionally related to milk

fat synthesis, which would support their biological relevance in

relation to the evaluated traits.

As the main objective of the work was to identify genes

and gene networks related to the individual susceptibility of

goats to MFD, we paid particular attention to the lightyellow

module of co-expressed genes, which was negatively correlated

to MFD. Among the 95 genes in this network, 21 functionally-

related to milk fat traits were enriched (Figure 4). Within these,

FABP3 has been shown as the intracellular fatty acid transporter

with the greatest expression in the lactating mammary gland of

cows, together with the previously discussed DBI/ACBP (28).

Moreover, FABP3 has been demonstrated to be a target gene of

SREBP1 and PPARG, the central regulators of lipid metabolism

(52). A study in cows demonstrated that oleic acid increases lipid

droplet accumulation in mammary epithelial cells by affecting

the expression of FABP3 (53). In line with this, we detected

within the lightyellow gene co-expressed network two members

of perilipin family proteins (PLIN2 and PLIN3) related to lipid

droplets (54). Specifically, PLIN2 is involved in mammary lipid

droplet formation, stabilization and secretion in goat mammary

epithelial cells and regulates triglyceride accumulation (55).

Although further research is necessary, these findings suggest

that alterations in fatty acid transport might play an important

role in inter-animal differences in susceptibility to diet-induced

MFD in goats.

Conclusions

The combination of two approaches, DEA and WGCNA,

helped elucidate MSC transcriptomic changes caused during

diet-induced MFD in dairy goats. Results supported that MFD

in dairy goats is mediated by SREBF downregulation and

variations in additional transcription factors and chromatin-

modifying enzymes. Regarding individual susceptibility toMFD,

we uncovered several DEGs between RESPO+ and RESPO–

goats (e.g., DBI and GPD1) and a co-related gene network

linked to the decrease in milk fat. Although all candidate genes

potentially related to individual susceptibility to MFD severity

should be further investigated, alterations in fatty acid transport

seem to play an important role.
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