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High energy diet of beef cows
during gestation promoted
growth performance of calves
by improving placental nutrients
transport

Kun Kang, Lei Zeng, Jian Ma, Liyuan Shi, Rui Hu, Huawei Zou,

Quanhui Peng, Lizhi Wang, Bai Xue and Zhisheng Wang*

Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province,

Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China

The aim of this study was to explore the e�ects of dietary energy level during

gestation on growth performance and serum parameters in o�spring using

beef cattle as research objects. Additionally, the gene expressions associated

with nutrients transport in the placenta were evaluated. Eighteen Simmental

crossbred cows (body weight = 338.44 ± 16.03 kg and 760 ± 6 days of

age) were randomly assigned to 3 dietary treatment groups: low energy (LE,

metabolic energy = 8.76 MJ/kg), medium (ME, 9.47 MJ/kg) and high (HE,

10.18 MJ/kg). The dietary treatments were introduced from day 45 before

expected date of parturition. The pre-experiment lasted for 15 days and formal

experiment lasted for 30 days. Growth performance data and blood samples

of calves were collected at birth and day 30 post-birth. The placental tissue

was collected at parturition. The results indicated that the birth weight and

average daily gain of calves in HE group were higher (P < 0.05) than those

in LE group. After parturition, the serum contents of glucose, total protein,

cortisol and leptin in neonatal calves were significantly increased (P < 0.05)

with the elevation of dietary energy levels. At 30 days postpartum, the glucose,

glutathione peroxidase, growth hormone, insulin-like growth factor 1 and

leptin concentrations of HE group were significantly increased (P < 0.05)

as compared with LE group, while the serum amyloid protein A displayed

an opposite trend between two groups. With the increase of dietary energy

concentration, placental mRNA expressions of vascular endothelial growth

factor A, glucose transporter 1 and 3 were significantly up-regulated (P < 0.05).

Furthermore, the amino acid transporter solute carrier family 38 member 1,

hydroxysteroid 11-beta dehydrogenase 2, insulin-like growth factor 1 and 2

mRNA expressions of HE group were higher (P < 0.05) than those of LE and ME

groups. In conclusion, the improved growth performance of calves from the

high energy ration supplemented beef cowsmay be attributed to the increased

placental nutrients transport, which may lead to the increased nutrient supply

to the fetus.
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Introduction

Beef plays a vital role in the global food and nutrition

security by providing high quality protein and key

micronutrients for the humans (1). In China, with the

development of economy, the consumption of beef has

increased year by year. However, the beef production is

limited and more and more beef cattle are imported in

each year. According to statistics, the demand and import

of beef were 9.3 and 2.2 million tons respectively in 2021.

The rapidly rising demand of beef has become a problem

that restricts the stable development of beef cattle industry

in China. Due to the high mortality and morbidity and low

growth rate of calves, the development of fattening cattle

industry is faced with the problem of bovine shortage in

recent years (2, 3). Calves are the future of beef cattle industry,

and rearing healthy calves are essential to the production

performance of fattening cattle in the future. At present, most

researchers paid more attention to how to raise calves after

birth (4, 5). In fact, late gestation is a critical period during

which calf producers have substantial control of management of

calves (6).

In ruminants breeding industry, the fetal growth retardation

has been confirmed as an important factor that can affect

the postnatal production performance (7). Previous study has

reported that the healthy fetal development has long-term

effects on immunity and organ function of animals, and fetal

programming has been verified to affect the survival rate of

calves and subsequent production performance (8). The concept

of fetal programming is that maternal stimulation during

critical period of fetal development has long-term effects on

offspring (7). However, this depends on the degree of nutritional

restriction, amplitude and duration of supplementation. Cows

that experience nutritional restriction during the first two

trimesters of gestation decreases the number of muscle fibers,

while in the third trimester of gestation, cows malnutrition

leads to lower birth weight and future growth rate of calves (9).

On the contrary, higher nutrients intake by pregnant cows can

induce the metabolic disorders of insulin, abnormal expression

of genes related to the formation of adipocytes in the fetus

and reduction of myogenesis, resulting in lower birth weight

of calves (10, 11). As mentioned above, inconsistent results of

maternal nutrition on the fetal development have been reported.

Therefore, feeding appropriate nutritional level is important in

fetal health.

A traditional view in dairy cow production during late

gestation is to feed low energy ration due to concerning

the postpartum metabolic disorders and milk production

performance (12). However, low energy ration can reduce the

birth weight and immune and antioxidant function of calves

(13). In cattle and sheep production, previous studies have

reported that maternal undernutrition during gestation causes

some negative influence, such as the reduction of carcass

composition and organ size of neonatal calves and lambs,

and delay of subsequent puberty onset (14, 15). The placenta

plays a critical role in modulating maternal-fetal resource

allocation, thereby affecting fetal growth and long-term health

of the offspring (16). The fetus exchanges substances with the

mother mainly through the placental blood circulation system,

obtaining nutrients and excreting metabolic wastes (17). As the

interface between mother and fetus, the placenta can transport

important nutrients, such as glucose (GLU), amino acid and

fatty acid, from mother to fetus by specific transporters (18).

Higher expressions of nutrient transporters in the placenta

are beneficial for nutrients transport, which have important

effects on the healthy development of fetus (19). Moreover, the

up-regulated expressions of vascular endothelial growth factor

A (VEGFA), insulin-like growth factor (IGF) and leptin (LEP)

have significant influence on the placental angiogenesis and fetal

birth weight (20, 21).

Although the nutritional physiology of newborn calf has

been well-researched, the extent to which prenatal energy

nutrition of cow affects the blood metabolites, immunity

and antioxidant ability in neonatal calves, and placental

gene expression associated with nutrients transport are yet

to be further studied. Based on previous findings, we

hypothesized that high maternal energy intake during late

gestation could affect growth performance and immunity of

calves by regulating the gene expression related to nutrients

transport in the placenta. Therefore, the experiment was

performed to investigate the effects of cows fed different

dietary energy concentrations during the last 45 days prepartum

on the growth performance and blood biochemical, immune,

antioxidant and hormone parameters of calves. In addition,

the nutrients transport gene expressions in the placenta

were evaluated.

Materials and methods

Ethics statement

All experimental procedures involving animal care and

management were authorized by the Institutional Animal

Care and Use Committee of Sichuan Agricultural University

(Chengdu, Sichuan, China).

Experimental design and diet

This animal experiment was performed at a commercial

beef cattle farm (Kunming, Yunan, China; altitude ∼2,200m;

25◦30
′

N latitude and 102◦66
′

E longitude). The current

study was conducted from November (2020) to March (2021).

A total of 18 healthy Simmental crossbred cattle in late

gestation were used in this study. The selected cows [338.44
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TABLE 1 Feed composition and nutrient levels of experimental rations

(Dry matter basis).

Items Energy levels

LE ME HE

Ingredients, %

Whole corn silage 25.00 35.00 40.00

Rice straw 35.00 25.00 20.00

Corn 6.00 14.00 20.50

Wheat bran 18.00 12.90 4.00

Cottonseed meal 1.00 2.75 1.00

Rapeseed meal 2.00 2.00 1.50

Soybean meal 1.00 1.50 5.45

Distillers dried grains with soluble 8.00 2.70 1.70

Active dry yeast 0.20 0.20 0.20

Fatty powder 0 0 1.50

CaCO3 0.40 0.55 0.45

CaHPO4 0.45 0.45 0.75

NaHCO3 0.45 0.45 0.45

NaCl 0.50 0.50 0.50

Premix1 2.00 2.00 2.00

Nutrient levels, %

Metabolic energy2 , MJ/kg 8.76 9.47 10.18

Total digestible nutrient 63.43 66.01 69.74

Crude protein 10.16 10.17 10.18

Neutral detergent fiber 45.72 40.53 35.74

Acid detergent fiber 27.91 24.84 22.51

Ca 0.60 0.59 0.60

P 0.40 0.40 0.40

LE, low energy; ME, medium energy; HE, high energy.
1The premix provided following per kilogram of experimental diet: VA 3000 IU, VD

500 IU, VE 50 IU, Cu (as copper sulfate) 10mg, Fe (as ferrous sulfate) 50mg, Mn (as

manganese sulfate) 40mg, Zn (as zinc sulfate) 30mg, I (as potassium iodide) 0.5mg, Se

(as sodium selenite) 0.1mg, Co (as cobalt chloride) 0.1mg.
2Metabolic energy was a calculated value; the other nutrient levels of the ration were

measured values.

± 16.03 kg of body weight (BW) and 760 ± 6 days of age]

were randomly allocated to 3 groups with 6 cows in each

group as follows: low energy (LE, metabolic energy = 8.76

MJ/kg), medium energy (ME, 9.47 MJ/kg) and high energy (HE,

10.18 MJ/kg).

In this research, the experimental diets were designed

based on the NRC (22) recommendation for beef cattle.

The ration of ME group was formulated according to the

nutrient requirements of beef cattle at 350 kg and 9 months

of gestation. Compared with ME group, the dietary energy

levels of LE and HE groups were changed by 0.71 MJ/kg.

The roughage-to-concentrate ratio of diets was adjusted to

60:40 and all the basal diets were isonitrogenous. The feed

ingredients and nutrient levels of basal diet are shown in

Table 1.

Animal management

Before experiment, all cattle were marked with ear tags, and

then housed in 18 pens with 1 cow in each pen. Each pen also had

a fenced area used as an exercise ground for the cattle. All cows

were fed a total mixed ration and regularly provided diets twice

each day at 09:00 and 16:00. During the experiment, the animals

had free access to water. A 15-day adaptive phase (−45 to −30

days relative to calving) was followed by 30 days of experimental

period (−30 days to parturition).

The cows were moved to an individual delivery room that

was carpeted with rice straw at 5 days prior to expected calving

date. After parturition, cattle were transferred to an individual

chute within 2 h and then milked via a transportable milking

machine (Xulangte Machinery Co. Ltd., Zibo, Shandong,

China). Colostrum yield was recorded and the immunoglobulin

G (IgG) concentration was evaluated by a portable bovine

colostrum detector (Yaming Instruments and Apparatus Co.

Ltd., Xuzhou, Jiangsu, China).

The neonatal calves were processed after calving, mainly

including navel disinfection, vaccination, earmark andweighing.

Subsequently, calves were transferred to individual hutches.

All the hutches were placed on rice straw that was renewed

every 3 days. The calves’ hutches were located at the fenced

ares of their dams. The calves had free access to the hutches;

however, the cows were not allowed to enter the hutches.

All calves were fed with colostrum (10% of BW) within

1 h of birth from the respective dam. Then, the calves were

cultivated by dam. After 7 days of birth, the calves were offered

starter (21.16% crude protein and 14.22% neutral detergent

fiber). Starter grain was provided once daily at 09:00 for

ad libitum intake. Water was offered ad libitum during the

experiment. In this study, the period of raising calves lasted

for 30 days.

Sample collection

On the first and thirtieth day after birth, the BW of all

calves was measured via a digital scale before receiving milk,

and the average daily gain (ADG) was obtained via the initial

and final BW. In the meantime, the withers height, body

length, cannon circumference and heart girth of calves were

also determined. In addition, the blood samples were collected

from the jugular vein of all calves by using evacuated tubes

after weighing. Subsequently, blood samples were centrifuged

at 3,000 rpm and 4◦C for 15min to separate serum. Serum

samples were preserved in 1.5mL sterile microtubes and stored

at −20◦C. After parturition, the placenta was washed by

ice-cold sterile phosphate-buffered saline. Then, the placental

samples from mid-portion were collected and snap-frozen in

liquid nitrogen and stored at −80◦C for quantitative real-time

PCR analysis.
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Sample analysis

The frozen serum samples were thawed and thoroughly

mixed. Then, serum samples were used to determine the

biochemical parameters, including GLU, β-hydroxybutyric

acid (BHBA), non-esterified fatty acid (NEFA), triglyceride

(TG) and total protein (TP), via a automatic biochemical

analyzer (BS-280, Mindray Bio-Medical Electronics Co. Ltd.,

Shenzhen, Guangdong, China). Moreover, the concentrations of

IgG, haptoglobin (HP), ceruloplasmin (CER), cortisol (COR),

serum amyloid protein A (SAA), interleukin 6 (IL-6), IL-10,

tumor necrosis factor α (TNF-α), glutathione peroxidase

(GSH-Px), superoxide dismutase (SOD), total antioxidant

capacity (T-AOC), malondialdehyde (MDA), retinol (RET),

tocopherol (TOC), growth hormone (GH), IGF-1, LEP, insulin

(INS), and fibroblast growth factor 21 (FGF-21) were measured

using commercial kits (Solarbio Science and Technology Co.

Ltd., Beijing, China) according to the instructions.

Quantitative real-time PCR was used to quantitate the

relative expressions of VEGFA, nitric oxide synthase 3 (NOS3),

glucose transporter 1 (GLUT1), GLUT3, GLUT4, and amino

acid transporter solute carrier family 38 member 1 (SLC38A1),

SLC38A2, SLC38A4, fatty acid transport family protein 1

(FATP1), FATP4, fatty acid-binding protein 4 (FABP4), LEP,

IGF-1, IGF-2, superoxide dismutase 1 (SOD1), catalase (CAT),

GSH-Px, heat shock protein 70 (HSP70), and hydroxysteroid

11-beta dehydrogenase 2 (11β-HSD2) in the placental samples

at the mRNA level. The cDNA was reversely transcribed from

the extracted RNA, which was extracted from placental samples,

using the cDNA Synthesis Kit (Sangon Biotechnology, Shanghai,

China) reference to the descriptions. Quantitative real-time

PCR was performed using the SYBR Green Kit (Sangon

Biotechnology, Shanghai, China) and CFX96 TouchTM Real-

Time PCR System (Bio-Rad Inc, Hercules, CA, USA) reference

to the specifications. Each sample was processed in triplicate.

The gene relative expressions were calculated using 2−11Ct

method (23) with GAPDH as the housekeeping gene. The

primers information of all genes which were designed by primer

5.0 software are presented in Supplementary Table S1.

Statistical analysis

Before analysis, the normality and homogeneity of data were

tested first. Subsequently, all data were analyzed by one-way

ANOVA procedure of the SPSS statistical software (Version

20.0 for Windows; SPSS, Chicago, USA), with each animal as

an experimental unit. The Duncan test was utilized to analyze

the differences among three treatments. Data were presented as

means and standard error of mean (SEM). A significance level

was indicated at P < 0.05, and 0.05 ≤ P < 0.10 represented

a tendency. Correlation analysis between differential genes and

growth performance and serum parameters was conducted

TABLE 2 E�ects of maternal dietary energy concentration on the

growth performance of calves.

Items Groups SEM P-value

LE ME HE

Birth weight, kg 26.83b 29.43ab 32.38a 1.22 0.02

Final weight, kg 45.62b 50.07ab 56.93a 2.73 0.03

ADG, kg 0.63b 0.69ab 0.82a 0.07 0.03

Body measurement (birth, cm)

Withers height 67.00 70.00 71.00 2.02 0.19

Body length 56.67 60.17 62.67 2.04 0.14

Cannon circumference 11.00 11.33 11.58 0.33 0.48

Heart girth 76.09 76.58 77.67 1.66 0.47

Body measurement (30 days of age, cm)

Withers height 75.17 77.50 79.83 1.78 0.21

Body length 71.17 71.17 74.50 1.26 0.13

Cannon circumference 12.17 12.12 12.50 0.36 0.72

Heart girth 84.33 85.06 86.11 1.20 0.24

LE, low energy; ME, medium energy; HE, high energy; BW, body weight; ADG, average

daily gain; SEM, standard error of the mean.

In the same row, values with different small letter mean significant difference (P < 0.05).

using GraphPad Prism software (version 7.0 for Windows;

GraphPad Prism, San Diego, USA). P-value < 0.05 and the

absolute value of correlation coefficient higher than 0.6 were

deemed to be a significant correlation.

Results

Growth performance of calves

Effects of maternal dietary energy density on the growth

performance of calves are shown in Table 2. At the first and

thirtieth day after birth, the BWof calves inHE groupwas higher

(P < 0.05) than that in LE group. Compared with LE group, the

ADG of HE group was increased by 30.16% (P < 0.05). During

the experiment, no significant difference (P > 0.05) of withers

height, body length, cannon circumference and heart girth was

found among three groups.

Serum biochemical index of calves

As shown in Table 3, on day 1, the concentrations of BHBA,

NEFA, TG and IgG were similar (P > 0.05) among three groups.

However, the serum contents of GLU and TP were significantly

increased (P< 0.05) with the rise of dietary energy levels. On day

30, the serum GLU content of calves in ME and HE groups was

higher (P < 0.05) than that in LE group. No obvious difference

(P > 0.05) of BHBA, NEFA, TG, TP, and IgG was observed

among all groups.
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TABLE 3 E�ects of maternal dietary energy concentration on the

serum biochemical indexes of calves.

Items Groups SEM P-value

LE ME HE

Day 1

GLU, mmol/L 2.73c 3.17b 4.04a 0.09 <0.01

BHBA, mmol/L 0.46 0.40 0.38 0.03 0.14

NEFA, mmol/L 0.34 0.32 0.29 0.01 0.15

TG, mmol/L 0.35 0.36 0.36 0.02 0.68

TP, g/L 36.97c 38.53b 39.92a 0.39 <0.01

IgG, g/L 0.59 0.56 0.54 0.02 0.19

Day 30

GLU, mmol/L 4.60b 5.35a 5.48a 0.06 <0.01

BHBA, mmol/L 0.05 0.05 0.04 0.00 0.12

NEFA, mmol/L 0.20 0.22 0.20 0.01 0.34

TG, mmol/L 0.29 0.30 0.30 0.02 0.46

TP, g/L 38.69 39.07 39.46 0.41 0.43

IgG, g/L 14.38 14.29 13.97 0.23 0.14

LE, low energy; ME, medium energy; HE, high energy; GLU, glucose; BHBA, β-

hydroxybutyric acid; NEFA, non-esterified fatty acid; TG, triglyceride; TP, total protein;

IgG, immunoglobulin G; SEM, standard error of the mean.

In the same row, values with different small letter mean significant difference (P < 0.05).

Serum inflammatory index of calves

The concentrations of HP, CER, and SAA in serum did not

show significant difference (P > 0.05) among three groups on

day 1 (Table 4). As dietary energy levels rise, the serum COR

content was significantly increased (P < 0.05). Additionally, the

IL-6 and TNF-α concentrations in serum of HE group were

higher (P < 0.05) than those of LE group, whereas the IL-10

content exhibited an opposite trend between two groups. On day

30, the SAA content was significantly decreased (P < 0.05) with

the increase of dietary energy levels. No significant difference (P

> 0.05) of other parameters was found among three groups.

Serum antioxidant index of calves

On day 1, the GSH-Px and RET concentrations of LE and

ME groups were significantly increased (P < 0.05) as compared

with HE group (Table 5). The serum T-AOC activity of LE group

was slightly higher (P = 0.06) than that of ME group. The

SOD, MDA and TOC concentrations in serum of calves were

similar (P > 0.05) among all groups. On day 30, the serum

concentrations of SOD and T-AOCwere not different (P> 0.05)

among all groups. However, compared with LE and ME groups,

the GSH-Px activity of HE group was significantly increased (P

< 0.05). With the increase of dietary energy levels, the RET and

TOC contents were markedly elevated (P < 0.05). Moreover, the

TABLE 4 E�ects of maternal dietary energy concentration on the

serum inflammatory indexes of calves.

Items Groups SEM P-value

LE ME HE

Day 1

HP, mg/mL 0.44 0.44 0.46 0.03 0.86

CER, umol/L 0.58 0.57 0.63 0.03 0.43

COR, ng/mL 40.69c 42.69b 47.00a 0.40 <0.01

SAA, µg/mL 53.45 55.63 59.60 2.10 0.15

IL-6, ng/mL 0.27b 0.34a 0.38a 0.02 0.01

IL-10, 10−1 ng/mL 0.77a 0.74ab 0.66b 0.03 0.03

TNF-α, ng/mL 0.17b 0.18b 0.22a 0.01 0.02

Day 30

HP, mg/mL 0.29 0.28 0.27 0.01 0.58

CER, umol/L 2.34 2.24 2.21 0.07 0.38

COR, ng/mL 17.35 17.95 17.47 0.32 0.41

SAA, µg/mL 146.30a 136.17b 129.9c 1.97 <0.01

IL-6, ng/mL 0.19 0.19 0.18 0.01 0.79

IL-10, 10−1 ng/mL 0.98 0.97 0.95 0.03 0.69

TNF-α, ng/mL 0.10 0.11 0.11 0.01 0.60

LE, low energy; ME, medium energy; HE, high energy; HP, haptoglobin; CER,

ceruloplasmin; COR, cortisol; SAA, serum amyloid protein A; IL-6, interleukin-6; IL-10,

interleukin-10; TNF-α, tumor necrosis factor α; SEM, standard error of the mean.

In the same row, values with different small letter mean significant difference (P < 0.05).

MDA activity in ME group tended to be higher (P = 0.08) than

that in LE group.

Serum hormone and growth factor of
calves

Compared with HE group, the GH concentration of LE and

ME groups was significantly increased (P < 0.05), while the

FGF-21 displayed a contrary tendency on day 1 (Table 6). LE

group had highest serum INS content that was higher (P < 0.05)

than ME and HE groups. However, the IGF-1 and LEP contents

of HE group were higher (P < 0.05) than those of LE group.

On day 30, no obvious difference (P > 0.05) of INS and FGF-

21 was found among three groups. The serum GH and IGF-1

concentrations of HE group were higher (P < 0.05) than those

of LE and ME groups. Similarly, the LEP content of ME and HE

groups was increased (P < 0.05) as compared with LE group.

Gene mRNA expression in the placenta

Notably, with the increase of dietary energy concentration,

the mRNA expressions of GLUT1 (Figure 1A) and GLUT3

(Figure 1B) were significantly up-regulated (P < 0.05).
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TABLE 5 E�ects of maternal dietary energy concentration on the

serum antioxidant indexes of calves.

Items Groups SEM P-value

LE ME HE

Day 1

GSH-Px, U/mL 175.97a 176.69a 166.07b 2.44 0.01

SOD, U/mL 90.63 86.44 87.34 2.22 0.39

T-AOC, U/mL 22.78 21.36 20.10 0.73 0.06

MDA, nmol/mL 7.79 7.65 7.95 0.12 0.20

RET, µg/dL 8.31a 8.21a 7.45b 0.07 <0.01

TOC, µg/mL 0.32 0.31 0.33 0.01 0.59

Day 30

GSH-Px, U/mL 149.48b 153.66b 165.47a 3.07 <0.01

SOD, U/mL 94.62 97.60 95.91 2.03 0.59

T-AOC, U/mL 23.00 21.62 23.48 1.30 0.58

MDA, nmol/mL 5.51 6.02 5.85 0.15 0.08

RET, µg/dL 28.23c 33.11b 35.08a 0.20 <0.01

TOC, µg/mL 2.31c 2.41b 2.97a 0.03 <0.01

LE, low energy; ME, medium energy; HE, high energy; GSH-Px, glutathione peroxidase;

SOD, superoxide dismutase; T-AOC, total antioxidant capacity; MDA, malondialdehyde;

RET, retinol; TOC, tocopherol; SEM, standard error of the mean.

In the same row, values with different small letter mean significant difference (P < 0.05).

TABLE 6 E�ects of maternal dietary energy concentration on the

serum hormone and growth factor of calves.

Items Groups SEM P-value

LE ME HE

Day 1

GH, ng/mL 5.11a 5.26a 4.23b 0.21 <0.01

IGF-1, ng/mL 150.91b 171.08a 169.31a 2.81 0.04

LEP, ng/mL 0.80c 0.85b 0.93a 0.02 <0.01

INS, ug/L 1.01a 0.91b 0.88b 0.03 0.02

FGF-21, ug/L 1.35b 1.34b 1.42a 0.02 0.02

Day 30

GH, ng/mL 10.42b 10.68b 12.02a 0.18 <0.01

IGF-1, ng/mL 222.76b 220.75b 254.84a 4.94 <0.01

LEP, ng/mL 2.15b 2.32a 2.37a 0.06 0.02

INS, ug/L 1.06 1.08 1.05 0.04 0.89

FGF-21, ug/L 0.93 0.98 1.04 0.04 0.20

LE, low energy; ME, medium energy; HE, high energy; GH, growth hormone; IGF-1,

insulin-like growth factor 1; LEP, leptin; INS, insulin; FGF-21, fibroblast growth factor

21; SEM, standard error of the mean.

In the same row, values with different small letter mean significant difference (P < 0.05).

Additionally, the SLC38A1 mRNA expression (Figure 1D) of

HE group was higher (P < 0.05) than that of LE and ME groups.

There was no significant difference (P > 0.05) of GLUT4,

SLC38A2, SLC38A4, FATP1, FATP4, and FABP4 mRNA

expressions in the placenta among three groups (Figure 1).

As shown in Figure 2, HE group had maximum VEGFA

mRNA expression that was higher (P < 0.05) than LE and

ME groups. Compared with ME group, the mRNA expression

of NOS3 in HE group was increased by 52.68% (P < 0.05).

In Figure 3, the SOD1 and CAT mRNA expressions of LE

group were higher (P < 0.05) than those of HE group.

However, the expression of GSH-Px (Figure 3C) was similar

(P > 0.05) among all groups. Overall, higher dietary energy level

increased (P < 0.05) the IGF-1 (Figure 4B), IGF-2 (Figure 4C),

and 11β-HSD2 (Figure 4E) mRNA expressions. No obvious

difference (P > 0.05) of LEP (Figure 4A) andHSP70 (Figure 4D)

was observed among three groups.

Associations between gene expression
and growth performance and serum
parameters

Correlation analysis revealed that the genes, including

VEGFA, NOS3, GLUT1, GLUT3, SLC38A1, IGF-1, IGF-2,

and 11β-HSD2, were positively correlated with birth weight

(r ranged from 0.603 to 0.772, P < 0.05) (Figure 5A). The

VEGFA, GLUT1, GLUT3, and IGF-1 mRNA expressions

had positive correlations with serum GLU, TP, and COR

concentrations collected on day 1 (r ranged from 0.600 to 0.898,

P < 0.05). However, an opposite relationship was found between

those genes and IL-10 and GSH-Px (r ranged from −0.713 to

−0.620, P < 0.05). Moreover, the VEGFA, GLUT1, and GLUT3

were negatively correlated with RET (r ranged from −0.796 to

−0.632, P < 0.05) and positively correlated with LEP (r ranged

from 0.638 to 0.769, P < 0.05).

As shown in Figure 5B, the mRNA expressions of VEGFA,

NOS3, GLUT3, SLC38A1, IGF-1, and 11β-HSD2 were positively

correlated with BW andADG collected on day 30 (r ranged from

0.647 to 0.882, P < 0.05). An opposite relationship was observed

between SOD1 and those parameters (r ranged from −0.858 to

−0.705, P < 0.05). The VEGFA, GLUT1, GLUT3, IGF-1, and

11β-HSD2 had positive correlations with serum GLU, GSH-Px,

TOC, and GH contents (r ranged from 0.652 to 0.918, P < 0.05).

However, there was a negative correlation between those genes

and SAA and RET (R ranged from−0.938 to−0.627, P < 0.05).

Besides, the VEGFA, GLUT1, and GLUT3 displayed positive

correlations with IGF-1 (r ranged from 0.626 to 0.677, P < 0.05).

Discussion

The prenatal development has important impact on

the healthy growth and production performance of cattle

throughout postnatal life. Maternal nutrition, which provides

amino acid, vitamin, GLU and fatty acid to the fetus by
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FIGURE 1

E�ects of maternal dietary energy concentration on the mRNA expressions of glucose (A–C), amino acid (D–F), and fatty acid (G–I) transporters

in the placenta. LE, low energy (metabolic energy = 8.76 MJ/kg); ME, medium energy (metabolic energy = 9.47 MJ/kg); HE, high energy

(metabolic energy = 10.18 MJ/kg); GLUT1, glucose transporter 1; GLUT3, glucose transporter 3; GLUT4, glucose transporter 4; SLC38A1, amino

acid transporter solute carrier family 38 member 1; SLC38A2, amino acid transporter solute carrier family 38 member 2; SLC38A4, amino acid

transporter solute carrier family 38 member 4; FATP1, fatty acid transport family protein 1; FATP4, fatty acid transport family protein 4; FABP4,

fatty acid-binding protein 4. Means in the columns without a common small letter di�er (P < 0.05).

placenta, plays an important role in the growth and development

of fetus (24). Late gestation is a critical period because the

growth and development of fetus occur the last 2 trimesters of

gestation (25). Thus, in this period, cows undergo an increased

nutritional requirements to maintain body health and fetal

development. Inadequate maternal nutrition during gestation

seriously affects the fetal development since the changes of

maternal metabolic status damages provision of fetal nutrients,

which would compromise postnatal growth and health of fetus

(26). Our previous study found that maternal malnutrition

reduced the birth weight and increased morbidity of calves

(27). In the current study, higher dietary energy density of beef

cows increased the birth weight of calves, suggesting that the

fetus could obtain more nutrients from the cows, which was

conducive to promoting growth. A recent study reported that

calves born to cows fed the high energy ration during gestation

were significantly heavier than those born to cows fed low energy

ration at birth (28), which were in accordance with our results.

Our results indicated that the BW at 30 days postpartum

and ADG of HE group were higher than those of LE group,

indicating that higher prenatal nutrition had long-term effects

on growth rate of calves. Consistent with our findings, a study

used beef cows as research objects and found that the calves

of cows fed high energy diet were significantly heavier than

those of the low energy diet-fed cows at 3 weeks postpartum

(29). To a certain extent, the body measurements can be used

to evaluate the development situation of calves (30). In our

trial, the body measurements were similar among all groups.

Inconsistent with our study, Gao et al. (13) reported that higher

prepartum maternal energy increased withers height, body

length and thoracic girth of Holstein calves. The reason may

be that the birth weight of Simmental crossbred calves was less
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FIGURE 2

E�ects of maternal dietary energy concentration on the mRNA expressions of VEGFA (A) and NOS3 (B) in the placenta. LE, low energy (metabolic

energy = 8.76 MJ/kg); ME, medium energy (metabolic energy = 9.47 MJ/kg); HE, high energy (metabolic energy = 10.18 MJ/kg); VEGFA,

vascular endothelial growth factor A; NOS3, nitric oxide synthase 3. Means in the columns without a common small letter di�er (P < 0.05).

FIGURE 3

E�ects of maternal dietary energy concentration on the mRNA expressions of SOD1 (A), CAT (B), and GSH-Px (C) in the placenta. LE, low energy

(metabolic energy = 8.76 MJ/kg); ME, medium energy (metabolic energy = 9.47 MJ/kg); HE, high energy (metabolic energy = 10.18 MJ/kg);

SOD1, superoxide dismutase 1; CAT, catalase; GSH-Px, glutathione peroxidase. Means in the columns without a common small letter di�er (P <

0.05).

than Holstein calves, and the difference of body measurements

in Simmental crossbred calves was relatively lower.

Feeding low energy diet is commonly used in dairy cows

production because of considering postpartum disease and

milking performance (12). However, lower maternal energy

intake decreases the birth weight and immunity of calves. In

beef cattle production, higher birth weight of calves is favorable

to future productivity (31). On the other hand, high energy diet

during late gestation can induce difficult labor. In this study, the

dietary energy levels were within the range of 8.76–10.18 MJ/kg.

Although the difference of energy level was relatively small (0.71

MJ/kg), we observed that the rate of dystocia in HE group was

33.33%. Thus, in production, the dietary energy level should be

considered. According to our results, a reasonable rise of dietary

energy level could increase the birth weight and postpartum

growth of calves. Generally, the better birth weight of calves is

associated with improved nutrients supply before parturition.

Therefore, we performed the following study to explore the

effects of dietary energy level of beef cows on nutrients supply

by collecting blood samples of calves and placental tissue.

Blood biochemical parameters, which are associated with

metabolic status of body, can be used to reflect the health

of animals (32). As a key index of protein metabolism, the

serum content of TP is commonly used to evaluate whether

the calves has achieved passive immunity. In the present study,

no obvious difference of IgG was found among three groups,
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FIGURE 4

E�ects of maternal dietary energy concentration on the mRNA expressions of LEP (A), IGF-1 (B), IGF-2 (C), HSP70 (D), and 11β-HSD2 (E) in the

placenta. LE, low energy (metabolic energy = 8.76 MJ/kg); ME, medium energy (metabolic energy = 9.47 MJ/kg); HE, high energy (metabolic

energy = 10.18 MJ/kg); LEP, leptin; IGF-1, insulin-like growth factor 1; IGF-2, insulin-like growth factor 2; HSP70, heat shock protein 70;

11β-HSD2, hydroxysteroid 11-beta dehydrogenase 2. Means in the columns without a common small letter di�er (P < 0.05).

but higher dietary energy increased the serum TP content. The

results indicated that calves in HE group had higher ability

to produce immunoglobulin. Serum GLU concentration is an

important parameter that can reflect the energy metabolism

of animals. In dairy calves, a previous research reported that

increasing prepartum maternal energy density could increase

the serum GLU content of neonatal calves (13). Consistent with

previous study, we found that higher dietary energy level of

beef cows significantly increased the GLU content in serum

of calves. Increased GLU content was conducive to promoting

growth of calves, which matched to growth performance data.

The possible reason is that dietary energy improves the maternal

glycometabolism and promotes GLU transfer by the placenta,

which result in increased GLU content in blood of calves.

As important inflammatory mediators, the IL-6 and TNF-α

are closely related to body inflammation. In addition, IL-10

plays an essential role in the synthesis of pro-inflammatory

cytokines, then relieves the damage of inflammatory response

to the body (33). In our study, the HE group exhibited higher

contents of IL-6 and TNF-α and lower content of IL-10 in

serum as compared to LE group, suggesting that the calves in

HE group may exist inflammatory response after parturition.

These results may be attributed to difficult labor in beef cows

fed high energy diet. At 30 days postpartum, no significant

difference of these parameters was found among all groups,

which indicated that all the calves were in a healthy state. As a

glucocorticoid, COR is released after an acute-phase response

and can regulate immune response (34). In calves, the blood

COR concentration peak after parturition (35). The present

study showed that with the elevation of maternal dietary energy

level, the serum COR content was significantly increased. A

previous study has reported that COR may induce acute-phase

response that can damage the innate and humoral immune

reaction (36). High dietary energy diet resulted in difficult

labor of beef cows and then induced inflammatory response

of neonatal calves. However, as the days of age increasing, the

inflammatory response was gradually relieved.

In general, the reactive oxygen free radical will be produced

during the development and metabolism of animals. The

accumulated free radicals can impair the structure and function

of cells, resulting in oxidative stress (5). Moreover, stress

reaction, such as the change of living environment and difficult

labor, can induce oxidative stress of calves (37). Maternal

energy level affected the antioxidant ability of neonatal calves. A

previous study found that higher maternal dietary energy could

enhance the activity of serum GSH-Px, SOD and T-AOC in

neonatal calves (28). However, in our study, the serum GSH-

Px and T-AOC activities of neonatal calves in HE group were
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FIGURE 5

Correlation analysis between placental genes and growth performance and serum parameters collected on day 1 (A) and 30 (B). The circle in

red color represents a positive correlation (r > 0.6 and P < 0.05), and the circle in blue color represents a negative correlation (r < −0.6 and

P < 0.05). The circle with larger size and darker color indicates a higher correlation. BW, body weight; ADG, average daily gain; GLU, glucose; TP,

total protein; COR, cortisol; IL-10, interleukin-10; TNF-α, tumor necrosis factor α; SAA, serum amyloid protein A; GSH-Px, glutathione

peroxidase; RET, retinol; TOC, tocopherol; GH, growth hormone; IGF-1, insulin-like growth factor 1; LEP, leptin; VEGFA, vascular endothelial

growth factor A; NOS3, nitric oxide synthase 3; GLUT1, glucose transporter 1; GLUT3, glucose transporter 3; SLC38A1, amino acid transporter

solute carrier family 38 member 1; SOD1, superoxide dismutase 1; CAT, catalase; IGF-2, insulin-like growth factor 2; 11β-HSD2, hydroxysteroid

11-beta dehydrogenase 2.

lower than LE group. GSH-Px can suppress lipid peroxidation

via eliminating excessive free radicals in the body. T-AOC

reflects the antioxidative ability of the body’s defense system

(30). Our results indicated that the neonatal calves of HE group

existed oxidative stress, which may be related to mogitocia

caused by higher dietary energy level. The RET and TOC have

important effects on the regulation of oxidative stress (38, 39).

In the current study, the serum RET concentration of HE

group at birth was lower than LE group, while the RET and

TOC concentrations displayed an opposite trend between two

groups on day 30. Likewise, the GSH-Px activity of HE group

was significantly increased as compared with LE group. After a

period of growth, calves born to cows fed the high energy ration

during late gestation showed improved antioxidant ability,

suggesting that highermaternal energy level had long-term effect

on antioxidant ability of calves.

As a peptide hormone, the GH can regulate protein

synthesis, fatty and mineral metabolism, and plays a key role

in animals’ growth and development. IGF-1 is an active protein

polypeptide that is necessary in the physiological process of

GH action (40). In sheep, an early study reported that nutrient

restriction of singleton pregnancies could lead to elevated GH

concentration in fetus (41). Similarly, in our study, the serum

GH concentration of HE group was lower than LE and ME

groups after birth. Low nutrient levels required more GH to

regulate energy metabolism and maintain body health, which

might explain why LE group had higher GH levels. At 30

days of age, the HE group displayed higher GH concentration.

Likewise, the IGF-1 concentration of HE group was higher than

LE group, which was beneficial for growth of calves. When

animals experience malnutrition or reduced body fat, the serum

LEP decreases significantly, then stimulates the ability to ingest

nutrients and reduces body energy expenditure (42). Our results

showed that higher dietary maternal energy could increase the

serum LEP content of calves, indicating that higher dietary

energy level was beneficial for growth and development of

calves. The FGF-21 can promote GLU inhalation by adipocytes,

which has important effects on the lipid and carbohydrate

metabolism (43). In the current study, higher maternal energy

intake increased serum FGF-21 concentration of neonatal calves.

The increase of serum FGF-21 in calves may be partly attributed

to the response of fetus to high energy nutrients from maternal

body (44). However, the specific regulation mechanism still

needs elucidation.

As a channel, the placenta acts as a vital role in the

fetal growth and development by transporting nutrients and

oxygen from mothers. Generally, the fetal development is

mainly affected by maternal nutrient availability and placental
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transport efficiency (45). The healthy development of placental

angiogenesis is essential for transporting nutrients from mother

to fetus (46). In this experiment, VEGFA and NOS3, key

angiogenesis factors (47), were expressed higher in the placenta

of beef cows receiving high energy ration than in the LE cows,

suggesting that placental angiogenesis may be enhanced by high

energy ration. This effect of high energy diet contributes to

promoting the transfer of nutrients and oxygen to the fetus,

then improving the future growth and development of calves

as it was been observed that VEGFA and NOS3 expressions

were positively correlated with BW, ADG, serum GLU, and

TP contents.

Fetal access to maternal nutrients requires the participation

of nutrient transporters in the placenta. As an important energy

source, GLU is essential for healthy growth of fetus. The

transport of GLU in the placenta is regulated by facilitated

diffusion through GLU transporters (e.g., GLUT1, GLUT3,

and GLUT4) (47). In our study, with the elevation of dietary

energy levels, the mRNA expressions of GLUT1 and GLUT3

were significantly up-regulated, which indicated that calves in

HE group could obtain more GLU to promote growth. The

GLUT1 is mainly expressed in basal membrane of placenta,

while GLUT3 is located in microvillus membrane (48). The up-

regulated expressions of GLUT1 and GLUT3 may be related

to the increased placental angiogenesis. In addition to GLU,

the transport of amino acid and fatty acid through placenta is

also important for fetal growth. We found that the SLC38A1

expression of HE group was significantly increased as compared

to LE and ME groups, indicating that higher dietary energy

concentration could improve the utilization of amino acid in

fetus. Batistel et al. (49) found that the increased birth weight

of neonatal calves was strongly related to the up-regulated

mRNA expression of genes encoding amino acid, GLU and fatty

acid transporters in the placenta. Our experiment showed that

the expressions of GLU and amino acid transporters displayed

positive correlations with growth performance of calves, which

were in accordance with previous results.

During pregnancy, insulin-like growth factors in the

placenta are involved in the regulation of GLU and amino acid

transport, as well as glycogen reserve, and are associated with

fetal birth weight. A previous study reported that feeding high fat

diet of mice can up-regulate the placental mRNA expression of

IGF-2, which promotes the growth of offspring (50). Consistent

with previous research, our results showed that high energy diet

significantly increased the IGF-1 and IGF-2 mRNA expressions

in the placenta, suggesting that the fetus obtainedmore nutrients

from cows as reflected in the positive correlations between IGF-1

expression and serum nutrients contents. As ametabolic enzyme

of glucocorticoid secreted by the placenta, the 11β-HSD2

prevents excessive maternal glucocorticoid from entering the

fetus and avoids the harm of fetal physical decline in the future

(51). In the current study, high energy diet improved 11β-HSD2

expression in the placenta, which had protective effects for future

growth of calves as shown in the positive correlation between

11β-HSD2 and ADG. A study in piglets found that the placenta

for low birth weight neonate was vulnerable to oxidative stress

(46). However, in our study, theHE group showed lower levels of

SOD1 and CAT, indicating that the dietary energy concentration

should be controlled within a certain range. In the future, the

mechanism of high energy diet regulating the expression of

placental nutrient transporters deserves in-depth investigation.

Conclusion

The results from our study showed that appropriate increase

of dietary energy concentration (0.71 MJ/kg) in Simmental

crossbred beef cows during late gestation improves the growth

performance of calves. This beneficial effect of high dietary

energy level may be attributed to the increased supply of

nutrients to fetus from mother, mediated by up-regulated genes

expression associated with nutrients transport in the placenta.
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