Check for updates

OPEN ACCESS

EDITED BY Sara Pegolo, University of Padua, Italy

REVIEWED BY

Yanhui Lu, Zhejiang Academy of Agricultural Sciences, China Hui Li, Guangxi University, China

*CORRESPONDENCE Yongju Zhao zyongju@163.com

SPECIALTY SECTION

This article was submitted to Livestock Genomics, a section of the journal Frontiers in Veterinary Science

RECEIVED 28 September 2022 ACCEPTED 02 November 2022 PUBLISHED 17 November 2022

CITATION

Zhao L, Yang H, Li X, Zhou Y, Liu T and Zhao Y (2022) Transcriptome-based selection and validation of optimal reference genes in perirenal adipose developing of goat (*Capra hircus*). *Front. Vet. Sci.* 9:1055866. doi: 10.3389/fvets.2022.1055866

COPYRIGHT

© 2022 Zhao, Yang, Li, Zhou, Liu and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Transcriptome-based selection and validation of optimal reference genes in perirenal adipose developing of goat (*Capra hircus*)

Le Zhao, Haili Yang, Xingchun Li, Yumei Zhou, Taolu Liu and Yongju Zhao () *

Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China

Brown adipose tissue (BAT) is mainly present in young mammals and is important for maintaining body temperature in neonatal mammals because of its ability to produce non-shivering thermogenesis. There is usually a large amount of BAT around the kidneys of newborn kids, but the BAT gradually "whiting" after birth. Screening and validating appropriate reference genes is a prerequisite for further studying the mechanism of goat brown adipose tissue "whiting" during the early stages. In this study, the expression stability of 17 candidate reference genes: 12 COPS8, SAP18, IGF2R, PARL, SNRNP200, ACTG1, CLTA, GANAB, GABARAP, PCBP2, CTSB, and CD151) selected based on previous transcriptome data as new candidate reference genes, 3 (PFDN5, CTNNB1, and EIF3M) recommended in previous studies, and 2 traditional reference genes (ACTB and GAPDH) was evaluated. Real-time quantitative PCR (RT-qPCR) technology was used to detect the expression level of candidate reference genes during goat BAT "whiting". Four algorithms: Normfinder, geNorm, Δ Ct method, and BestKeeper, and two comprehensive algorithms: ComprFinder and RefFinder, were used to analyze the stability of each candidate reference genes. GABARAP, CLTA, GAPDH, and ACTB were identified as the most stable reference genes, while CTNNB1, CTSB, and EIF3M were the least stable. Moreover, two randomly selected target genes IDH2 and RBP4, were effectively normalized using the selected most stable reference genes. These findings collectively suggest that GABARAP, CLTA, GAPDH, and ACTB are relatively stable reference genes that can potentially be used for the development of perirenal fat in goats.

KEYWORDS

goat, reference genes, brown adipose tissue, whiting, transcriptome

Introduction

Nowadays, people's over-nutritious diets and sedentary lifestyles are easily causing obesity. Notably, obesity is closely related to hypertension and cardiovascular and metabolic diseases, having long-term health impacts (1). Mammalian adipose tissue can be divided into white adipose tissue (WAT) and brown adipose tissue (BAT)

(2, 3). WAT is mainly in the form of triglycerides which store excess energy that is used when needed. BAT can increase the energy consumption of the body, and the adipose tissue has strong plasticity (4). Activating the formation of BAT or converting WAT into BAT could thus be an important strategy for treating obesity in the future (5). BAT also helps protect young animals against cold because it produces non-shivering thermogenesis.

Various techniques and tools, such as whole genome sequencing (WGS), methylated DNA co-immunoprecipitation (MeDIP-Seq), chromatin co-immunoprecipitation (ChIP-seq), and transcriptome sequencing (RNA-seq) have been used to further explore the developmental regulation process of adipose tissue. Quantitative real-time PCR (RT-qPCR) is an important method for analyzing gene expression because of its strong specificity, high sensitivity, and good repeatability. It has thus become a very effective method for detecting gene transcription levels (6–9). However, RT-qPCR results largely depend on the stability of the reference genes (8, 10). The expression of reference genes is not completely universal, and certain differences exist between different tissues, environmental conditions, and species (11–15).

To date, there are only a few systematic studies on goat adipose tissue reference genes despite many scholars having used different algorithms to evaluate some reference genes suitable for human and mouse adipose tissues (12, 16–21). In addition, the internal regulatory mechanism driving the change from BAT to WAT in goat kids remains unclear despite the change process of BAT to WAT occurring in goat and sheep perirenal adipose tissue from birth to adulthood (22, 23). It is particularly important to screen suitable reference genes to further study the internal regulatory mechanism driving this change process.

In this study, we systematically studied the perirenal adipose tissue of Dazu black goats at 0, 7, 14, 21, and 28 d after birth and screened 12 novel candidate reference genes through transcriptome sequencing. The candidate reference genes were compared and ranked using currently available major computational programs geNorm (14), Δ Ct (24), Normfinder (25), BestKeeper (26), and RefFinder (27) methods and a comprehensive method ComprFinder (a newly developed method by our team) (10).

Materials and methods

Sample collection

Samples were collected at five postnatal stages: 0 days (n = 4), 7 days (n = 4), 14 days (n = 3), 21 days (n = 3), and 28 days (n = 4), denoted as D0, D7, D14,

D21, and D28, respectively. The Dazu black goats were provided by Chongqing Tengda Animal Husbandry Co., Ltd., China.

The perirenal adipose tissue was collected after bloodletting and slaughtering the goats. Part of the perirenal adipose tissues were immediately stored in liquid nitrogen for RNA extraction. The remaining perirenal adipose tissues were washed with sterile saline, preserved in 4% paraformaldehyde, and stored at 4°C for later use in immunohistochemical tests.

Histological analysis and immunohistochemistry (IHC)

Perirenal adipose tissues were first fixed in 4% neutral buffered formaldehyde (pH 7.4) for over 24 h at room temperature and were then paraffin-embedded and cut into $5\,\mu$ m sections. The sections were then subjected to hematoxylineosin (HE) and IHC staining following standard procedures. The primary antibody (anti-uncoupling protein 1 (UCP1) was purchased from Proteintech Group (Chicago, IL, USA). All images were taken using an Olympus DP73 camera installed on an Olympus IX51 inverted microscope.

Selection of candidate reference genes

We screened candidate reference genes from the RNA-seq data (Unpublished data) of 18 perirenal adipose tissues in the five stages. The screening of reference genes was based on the coefficient of variation (CV, %) and the fragments per kb per million reads (FPKM) value. The screening criteria were FPKM>50 and CV<15%.

RNA extraction and cDNA synthesis

Total RNA from perirenal adipose tissue collected at different stages was extracted using the Trizol reagent (Invitrogen, USA) following the manufacturer's instructions. In brief, the adipose tissues were placed into a centrifuge tube containing 1 mL TRIzol reagent and incubated for 15 min, followed by the addition of 200 mL chloroform (cdkelong, Chengdu, China). The mixture was then centrifuged at 12,000 rpm for 20 min at 4°C to collect the supernatant to which 500 mL isopropanol (cdkelong, Chengdu, China) was added and the mixture further centrifuged at 12,000 rpm for 10 min at 4°C to pellet the RNA. The supernatant was drained off, and the pellet was washed several times with 1 mL of cold 75% ethanol by centrifuging at 12,000 rpm for 5 min at 4°C. The pellets were then air-dried and resuspended in 20 μ L of DEPC-treated water. A Nanodrop2000 (ThermoFisher,

FIGURE 1

Selection of novel candidate reference genes. (A) Hematoxylin-eosin (HE) and UCP1immunohistochemical staining of perirenal adipose tissue; (B) Venn diagram of overlapping genes with FPKM >50 and CV<15%; (C) The top 20 enriched signaling pathways of the 12 candidate reference genes based on KEGG analysis.

Meridian, USA) was then used to measure the concentration and optical density (OD) ratio of OD260/OD280 of the RNA. RNA integrity was checked using agarose gel electrophoresis (Bio-Rad, Richmond, USA). First-strand cDNA was synthesized using Prime Script TM RT reagent Kit with gDNA Eraser (Tiangen, China).

RT-qPCR analysis

The primer pairs of COP9 signalosome subunit 8 (COPS8), Sin3A associated protein 18 (SAP18), Insulin-like growth factor 2 receptor (IGF2R), Small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200), Presenilin associated rhomboid like (PARL), glucosidase II alpha subunit (GANAB), Actin gamma 1 (ACTG1), Poly(rC) binding protein 2 (PCBP2), Clathrin light chain A (CLTA), GABA type A receptor-associated protein (GABARAP), Cathepsin B (CTSB), CD151 molecule (Raph blood group) (CD151), Prefoldin subunit 5 (PFDN5), Catenin beta 1 (CTNNB1), Eukaryotic translation initiation factor 3 subunit M (EIF3M), Actin beta (ACTB) and, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were designed using the Primer Premier 5.0 software. The sequences of the primer pairs are outlined in Supplementary Table 1. The RT-qPCR reactions were performed on a CFX96 Real-Time System (BIO-RAD) using TB Green $^{(\mathbb{R})}$ Premix Ex TaqTM III. The RT-qPCR reaction conditions were: initial denaturation at 95°C for 30s, followed by 40 cycles of denaturation and annealing at 95°C for 5s and 60°C for 30s, respectively. The Ct values were automatically generated using the default settings of the Real-Time System.

Determination of the expression stability of the candidate reference genes

The evaluation of reference gene expression stability was based of the Ct data from all candidate reference genes obtained from RT-qPCR experiments. It was done using 5 widely used algorithms: geNorm (14), Δ Ct (24), Normfinder (25), BestKeeper (26), and RefFinder (27), and the newly developed algorithm ComprFinder (10).

Validation of selected reference genes

Two genes, *IDH2* which is highly expressed in brown adipose tissue, and *RBP4* which are highly expressed in white adipose tissue, were selected to further verify the effect of the screened reference genes on the normalized target genes. The expression of the target genes was analyzed using traditional, the most stable, and the most unstable reference genes. The relative differences in gene expression were calculated using the $2^{-\Delta\Delta CT}$ method.

Results

RNA-seq-based selection of novel candidate reference genes during perirenal fat development in goats

The histological study of goat perirenal fat showed that the perirenal fat gradually changed from brown adipose tissue at D0 to white adipose tissue at D28 (Figure 1A). The immunohistochemical results of UCP1 also showed that the content of UCP1 was highest at D0, and then gradually decreased (Figure 1A).

Analysis of the transcriptome sequencing data, based on FPKM>50 and CV<15%, revealed 12 candidate reference genes: COPS8, SAP18, IGF2R, PARL, SNRNP200, ACTG1, CLTA, GANAB, GABARAP, PCBP2, CTSB, and CD151 (Figure 1B). KEGG enrichment analysis revealed that the genes were mainly enriched in lysosome pathways (Figure 1C). Reference genes reported in previous studies, including PFDN5, CTNNB1, and EIF3M (28), and 2 (ACTB and GAPDH) traditional reference genes used to study the expression of target genes (10, 29–31) were also included to study the expression levels of target genes

in goat perirenal fat. The 17 genes were ranked according to their CV values, with the lower CV values get a higher-ranking order (Supplementary Table 2).

RNA purity and primer verification of the candidate reference genes

The RIN values of the 18 RNA samples extracted herein were between 7.6 and 9.7, and their concentrations were also high (Supplementary Table 3), indicating that the RNA quality of the samples was good and could be used for the next experiment. Primer specificity detection results showed that the 17 candidate reference genes had a single melting curve, with no nonspecific amplification (Figure 2A). Agarose gel electrophoresis also revealed a single band of the amplified product, suggesting good primer specificity (Figure 2B).

Analysis of the expression levels of the candidate reference gene

The expression levels of the 17 candidate reference gene were tested by qPCR. Notably, *SAP18* (mean Ct value: 22.938) had the lowest cycle threshold (Ct) value, while *GANAB* (mean Ct value: 30.617) had the highest Ct (Figure 3). The Ct values of

the other genes lay within certain ranges: GAPDH 22.56 and 23.30 (mean Ct value: 22.9535), GABARAP 22.51 and 24.00 (mean Ct value: 23.187), PFDN5 22.41 and 24.01 (mean Ct value: 23.3385), EIF3M 22.87 and 26.02 (mean Ct value: 24.3755), PCBP2 23.69 and 25.51 (mean Ct value: 24.5305), CLTA 24.09 and 25.85 (mean Ct value: 25.0085), ACTG1 24.09 and 26.31 (mean Ct value: 25.147), COPS8 24.44 and 26.32 (mean Ct value: 25.3245), ACTB 25.59 and 26.80 (mean Ct value: 26.089), PARL 25.31 and 27.19 (mean Ct value: 26.186), CTNNB1 25.68 and 28.15 (mean Ct value: 26.186) 27.0155, SNRNP200 26.83 and 28.55 (mean Ct value: 27.797), CD151 27.92 and 29.75 (mean Ct value: 28.687), IGF2R 29.38 and 30.63 (mean Ct value: 29.8755), CTSB 29.19 and 32.67 (mean Ct value: 30.363), and GANAB 29.88 and 31.32 (mean Ct value: 30.617). GABARAP, GANAB, IGF2R, ACTB, and GAPDH had the most stable Ct values, while the CTSB, EIF3M, and CTNNB1 had the most unstable Ct values.

GeNorm analysis

GeNorm was used to analyze the expression stability of the 17 candidate reference genes in goat perirenal fat at different periods after birth. The M value reflected the gene expression stability; the lower the M value, the more stable the gene expression and vice versa. *GANAB* and *SAP18* had the

		D0		07	D 1	14	D2	1	D:	28	All sa	mples
8	PFDN5	0.040	CTNNB1	0.017	COPS8	0.019	CD151	0.029	GABARAP	0.029	GABARAP	0.158
Most stable genes	АСТВ	0.047	PCBP2	0.039	PFDN5	0.051	PCBP2	0.030	EIF3M	0.060	CLTA	0.195
lble	COPS8	0.057	CTSB	0.047	PARL	0.052	GANAB	0.052	GAPDH	0.078	PARL	0.229
t sta	ACTG1	0.069	SAP18	0.054	GABARAP	0.066	PFDN5	0.061	SAP18	0.090	PCBP2	0.257
Mos	CD151	0.123	CD151	0.073	GAPDH	0.082	SNRNP200	0.068	PFDN5	0.092	ACTB	0.265
2	CLTA	0.126	PARL	0.073	PCBP2	0.096	EIF3M	0.073	COPS8	0.111	GAPDH	0.271
	IGF2R	0.134	GABARAP	0.077	CTNNB1	0.114	COPS8	0.090	ACTG1	0.113	ACTG1	0.340
	PARL	0.138	PFDN5	0.080	SAP18	0.117	PARL	0.103	CTNNB1	0.118	PFDN5	0.355
	EIF3M	0.150	ACTG1	0.094	CLTA	0.119	CTNNB1	0.121	CTSB	0.155	SNRNP200	0.375
	GANAB	0.152	АСТВ	0.114	GANAB	0.141	АСТВ	0.121	GANAB	0.166	GANAB	0.391
nes	CTNNB1	0.152	GAPDH	0.131	ACTG1	0.150	ACTG1	0.124	PARL	0.173	IGF2R	0.404
e ge	SAP18	0.154	EIF3M	0.133	EIF3M	0.150	CLTA	0.134	ACTB	0.176	COPS8	0.467
tabl	GAPDH	0.171	SNRNP200	0.139	ACTB	0.150	GABARAP	0.138	CLTA	0.177	CD151	0.480
Least stable genes	GABARAP	0.204	GANAB	0.148	CTSB	0.155	GAPDH	0.147	IGF2R	0.221	CTNNB1	0.554
Lea	PCBP2	0.244	COPS8	0.156	SNRNP200	0.165	SAP18	0.172	SNRNP200	0.228	SAP18	0.684
	SNRNP200	0.279	CLTA	0.158	CD151	0.195	CTSB	0.255	CD151	0.325	EIF3M	0.740
¥	CTSB	0.434	IGF2R	0.224	IGF2R	0.356	IGF2R	0.261	PCBP2	0.325	CTSB	0.865
E 5	rsis the average ex			с I.	l - t							

lowest M values, while CTSB had the highest M values at D0 (Figure 4A). PFDN5 and ACTG1 were the most stable genes, while IGF2R was the least stable at D7 (Figure 4B). CTSB and GANAB were the most stable genes, while IGF2R was the least stable gene at D14 (Figure 4C). PFDN5 and PCBP2 were the most stable genes, while IGF2R was the least stable gene at D21 (Figure 4D). COPS8 and GANAB were the most stable genes, while CD151 was the least stable gene at D28 (Figure 4E). The rank order of all samples based on the M value was: CTSB>EIF3M>SAP18>CTNNB1>COPS8>PFDN5>CD151> IGF2R>GANAB>SNRNP200>GAPDH>ACTB>ACTG1> PCBP2>PARL> GABARAP CLTA and (Figure 4F). In the pairwise variation analysis, we found all the experimental variables were below the cut-off value of 0.15 (Supplementary Figure 1).

Normfinder analysis

Figure 5 shows the Normfinder-based analysis results of the expression stability of the 17 candidate reference genes. *PFDN5* was the most stable gene, while *CTSB* was the least stable gene

at D0. *CTNNB1*, *COPS8*, and *CD151* were the most stable genes at D7, D14, and D21, respectively, while *IGF2R* was the most unstable gene. *GABARAP* was the most stable gene, while *PCBP2* was the most unstable gene at D28. Notably, *GABARAP* was the most stable gene, while *CTSB* was the most unstable gene in all samples.

BestKeeper analysis

The stability of the candidate reference genes was also assessed using the BestKeeper; the lower the std-value, the more stable the gene expression, and vice versa. *ACTB* and *PCBP2* were the most stably expressed genes at D0 and D21, respectively (Figure 6). In contrast, *CTSB* was the most unstable gene at D0 and D21but the most stable gene at D7. *IGF2R* was the most unstable gene at D7 and D14. *GABARAP* was the most stable gene, while *CD151* was the most unstable gene at D28. Notably, *GAPDH*, *IGF2R*, *SNRNP200*, *ACTB*, *GANAB*, *COPS8*, *PFDN5*, and *GABARAP* were the most stable genes, while *CTNNB1*, *EIF3M*, and *CTSB* were the most unstable genes in all samples.

	D0	D7	D14	D21 .	D28	All samples
8	ACTB 0.030	CTSB 0.036	COPS8 0.010	PCBP2 0.023	GABARAP 0.027	GAPDH 0.211
Most stable genes	ACTG1 0.040	CTNNB1 0.039	GABARAP 0.041	CD151 0.026	SAP18 0.067	IGF2R 0.278
ble	PFDN5 0.064	CD151 0.040	GAPDH 0.055	GANAB 0.041	PFDN5 0.070	SNRNP200 0.308
t sta	GAPDH 0.083	PCBP2 0.042	PARL 0.058	PFDN5 0.043	EIF3M 0.070	ACTB 0.318
Aost	CTNNB1 0.102	PARL 0.044	CTNNB1 0.065	EIF3M 0.048	COPS8 0.076	GANAB 0.340
4	COPS8 0.113	GABARAP 0.048	PFDN5 0.070	SNRNP200 0.050	CTSB 0.080	COPS8 0.376
	PCBP2 0.118	SAP18 0.060	PCBP2 0.095	COPS8 0.069	GAPDH 0.081	PFDN5 0.391
	CLTA 0.134	ACTG1 0.065	SAP18 0.107	ACTB 0.079	ACTG1 0.088	GABARAP 0.402
	IGF2R 0.136	PFDN5 0.067	ACTB 0.108	PARL 0.090	CTNNB1 0.090	CD151 0.481
	CD151 0.144	ACTB 0.070	ACTG1 0.113	CTNNB1 0.090	ACTB 0.105	SAP18 0.496
les	SNRNP200 0.150	GAPDH 0.088	CLTA 0.113	ACTG1 0.093	CLTA 0.115	PCBP2 0.521
genes	EIF3M 0.155	GANAB 0.090	SNRNP200 0.118	CLTA 0.095	GANAB 0.116	CLTA 0.540
able	PARL 0.163	SNRNP200 0.108	EIF3M 0.123	GABARAP 0.100	IGF2R 0.152	PARL 0.567
Least stable	GANAB 0.168	EIF3M 0.113	GANAB 0.132	GAPDH 0.110	PARL 0.153	ACTG1 0.577
Leas	SAP18 0.175	COPS8 0.125	CTSB 0.143	SAP18 0.135	SNRNP200 0.180	CTSB 0.812
	GABARAP 0.189	CLTA 0.126	CD151 0.150	IGF2R 0.181	PCBP2 0.230	EIF3M 0.816
↓ ↓	CTSB 0.303	IGF2R 0.173	IGF2R 0.218	CTSB 0.182	CD151 0.275	CTNNB1 0.838

ΔCt analysis

Figure 7 shows the analysis results of the expression stability of the 17 candidate reference genes based on the Δ Ct method. *COPS8* was the most stable gene at D0 and D14, while *CTSB* was the least stable gene at D0. *CTTNB1* and *PCBP2* were the most stably expressed genes at D7 and D21, respectively. In contrast, *IGF2R* was the most unstable gene at D7, D14, and D21. *EIF3M* was the most stable gene, while *CD151* was the most unstable gene at D28. *GABARAP* was the most stable gene, while *CTSB* was the most unstable gene in all samples.

RefFinder analysis

The RefFinder algorithm was used to comprehensively rank the candidate reference genes based on geNorm, Normfinder, BestKeeper, and Δ Ct methods. *ACTB* was the most stable gene, while *CTSB* was the most unstable gene at D0. *CTTNB1*, *COPS8*, and *PCBP2*were the most stably expressed genes at D7, D14, and D21, respectively. In contrast, *IGF2R* was the most unstable gene at D7, D14, and D21. *GABARAP* was the most stable gene, while *CD151* was the most unstable gene at D28. *GABARAP* was the most stable gene, while *CTSB* was the most unstable gene in all samples (Figure 8).

ComprFinder analysis

ComprFinder is a new comprehensive analysis algorithm developed by our team during the early stage. Figure 9 shows the ComprFinder-based analysis results of the expression stability of the 17 candidate reference genes. *ACTB* was the most stable gene, while *CTSB* was the most unstable gene at D0. *CTTNB1*, *COPS8*, and *PCBP2*were the most stably expressed genes at D7, D14, and D21, respectively. However, *IGF2R* was the most unstable gene at D7, D14, and D21. *GABARAP* was the most stable gene, while *CD151* was the most unstable gene at D28. *GABARAP* was the most stable gene, while *CD151* was the most unstable gene at D28. *GABARAP* was the most stable gene, while *CTSB* was the most unstable gene in all samples.

Validation of the most stable reference genes with target genes

GABARAP was the most stable gene, while CTSB was the most unstable gene amongst the 17 candidate reference genes

				_	_	_				_		
ទ្ឋ 🕇	COPS8	0.168	CTNNB1	0.111	COPS8	0.141	PCBP2	0.126	EIF3M	0.170	GABARAP	0.463
gei	PFDN5	0.173	PCBP2	0.117	PFDN5	0.143	CD151	0.127	GABARAP	0.171	CLTA	0.479
able	ACTB	0.176	CTSB	0.119	PARL	0.145	GANAB	0.135	SAP18	0.175	ACTB	0.493
t sta	ACTG1	0.179	SAP18	0.120	GABARAP	0.151	PFDN5	0.136	COPS8	0.180	PARL	0.494
Most stable genes	PARL	0.195	CD151	0.128	GAPDH	0.159	SNRNP200	0.141	GAPDH	0.183	GAPDH	0.503
2	CLTA	0.196	PARL	0,129	CLTA	0.162	EIF3M	0.142	ACTG1	0.185	PCBP2	0.509
	GANAB	0.201	PFDN5	0.130	PCBP2	0.163	PARL	0.152	PFDN5	0.189	PFDN5	0.543
	IGF2R	0.202	GABARAP	0.130	SAP18	0.165	COPS8	0.155	CTNNB1	0.200	ACTG1	0.547
	SAP18	0.202	ACTG1	0.136	CTNNB1	0.175	АСТВ	0.160	GANAB	0.212	SNRNP200	0.560
	CD151	0.211	ACTB	0.150	GANAB	0.177	ACTG1	0.165	CTSB	0.219	GANAB	0.562
es	CTNNB1	0.215	GAPDH	0.161	EIF3M	0.187	GABARAP	0.168	PARL	0.225	IGF2R	0.580
gen	EIF3M	0.219	EIF3M	0.168	ACTG1	0.187	CLTA	0.171	АСТВ	0.227	COPS8	0.606
lble	GAPDH	0.241	SNRNP200	0.173	CTSB	0.188	CTNNB1	0.173	CLTA	0.233	CD151	0.618
t sti	GABARAP	0.249	GANAB	0.176	АСТВ	0.201	GAPDH	0.188	IGF2R	0.273	CTNNB1	0.691
Least stable genes	PCBP2	0.291	COPS8	0.180	SNRNP200	0.210	SAP18	0.196	SNRNP200	0.280	SAP18	0.769
-	SNRNP200	0.316	CLTA	0.190	CD151	0.232	CTSB	0.274	PCBP2	0.355	EIF3M	0.821
↓	CTSB	0.456	IGF2R	0.243	IGF2R	0.367	IGF2R	0.282	CD151	0.356	CTSB	0.924

at different stages of goat development. Similar target genes were normalized using the most stable reference genes GABARAP and CLTA, the traditional reference genes ACTB and GAPDH, and the most unstable reference genes CTSB, EIF3M, and CTNNB1 to further validate the candidate reference genes. The gene expression levels of IDH2 and RBP4 were consistent with the RNA-seq data. IDH2 was highly expressed at D0 (brown adipose tissue), while RBP4 was highly expressed at D28 (white adipose tissue). The expression of IDH2 at D0 was significantly higher than at D7 (P < 0.01), D14 (P < 0.01), D21 (P < 0.01), and D28 (P < 0.01), while its expression at D7 was significantly higher than at D14 (P < 0.01), D21 (P < 0.01), and D28 (P< 0.01) when IDH2 was normalized with GABARAP, CLTA, ACTB, GAPDH, and CTSB. In the same line, the expression of IDH2 at D0 was significantly higher than at D7 (P < 0.01), D14 (P < 0.01), D21 (P < 0.01), and D28 (P < 0.01), while its expression at D21 was significantly higher than at D7 (P <0.05), D14 (P < 0.05) and D28 (P < 0.05) when IDH2 was normalized with EIF3M and CTNNB1. The expression of RBP4 at D28, D21, and D14 was significantly higher than at D0 (P <0.01) and D7 (P < 0.01), its expression at D28 was significantly higher than at D14 (P < 0.01) and D21 (P < 0.01), while its expression at D21 was significantly lower than D14 (P <0.01) when RBP4 was normalized with GABARAP, CLTA, ACTB,

GAPDH, *CTSB*, and *CTNNB1*. The expression of *IDH2* at D28, D21, and D14 was significantly higher than at D0 (P < 0.01) and D7 (P < 0.01), while its expression at D28 was significantly higher than at D21 (P < 0.01) when *IDH2* was normalized with *EIF3M* (Figure 10). Of note, the target genes exhibited varying statistical differences when different reference genes were used, highlighting the importance of selecting appropriate reference genes.

Discussion

Goat BAT is mainly observed around the kidney at birth. In this study, BAT rapidly "whiting" within 2 weeks and turns into WAT at about 4 weeks, which was consistent with the results of previous studies in goats and sheep (22, 23, 28). Transcriptome sequencing is an important research method for gene expression analysis and screening differentially expressed and functional genes. Notably, screening reference genes using transcriptome data is an effective experimental method for screening reference genes in non-model species (32–34). *RPS4X* and *RPS6* are more stable than traditionally used housekeeping genes in the goat rumen (35), while *NCBP3*, *SDHA*, and *PTPRA* are more stable

	I	00	D	7	D1	4	D2	1	D 2	28	All sa	mples
8	ACTB	2.546	CTNNB1	1.565	COPS8	1.732	PCBP2	1.189	GABARAP	1.934	GABARAP	1.682
gen	PFDN5	2.632	CTSB	2.913	PFDN5	3.310	CD151	2.115	EIF3M	2.515	CLTA	2.632
ble	COPS8	2.913	PCBP2	3.253	PARL	4.120	PFDN5	2.828	SAP18	2.913	GAPDH	3.807
Most stable genes	ACTG1	3.722	CD151	4.401	GABARAP	4.331	GANAB	3.224	COPS8	3.310	АСТВ	4.356
Mos	GANAB	5.595	SAP18	4.601	GAPDH	5.477	EIF3M	4.821	GAPDH	5.010	PARL	4.651
~	PARL	6.285	PFDN5	4.738	GANAB	6.117	SNRNP200	5.477	PFDN5	5.544	PCBP2	5.701
	SAP18	6.344	ACTG1	5.045	CLTA	6.497	PARL	7.707	GANAB	5.733	SNRNP200	6.640
	CLTA	7.135	PARL	6.344	SAP18	6.727	COPS8	8.282	ACTG1	6.055	IGF2R	7.014
	CTNNB1	7.416	GABARAP	6.701	CTSB	7.228	ACTB	8.712	CTNNB1	8.239	ACTG1	7.913
	IGF2R	8.426	ACTB	10.000	PCBP2	7.364	ACTG1	10.488	CTSB	8.972	GANAB	8.190
nes	CD151	8.801	GAPDH	11.000	CTNNB1	8.000	CTNNB1	11.313	ACTB	11.219	PFDN5	8.282
gen	GAPDH	9.863	EIF3M	12.471	ACTG1	9.804	GABARAP	11.373	PARL	11.408	COPS8	10.295
able	EIF3M	10.927	GANAB	13.223	EIF3M	10.073	CLTA	11.742	CLTA	12.468	CD151	11.373
Least stable genes	PCBP2	12.398	SNRNP200	13.473	ACTB	12.306	GAPDH	14.244	IGF2R	13.962	SAP18	13.554
Lea	GABARAP	14.210	COPS8	14.743	SNRNP200	14.186	SAP18	14.473	SNRNP200	14.743	CTNNB1	14.696
	SNRNP200	14.569	CLTA	16.000	CD151	16.000	CTSB	16.244	PCBP2	16.244	EIF3M	16.000
¥	CTSB	17.000	IGF2R	17.000	IGF2R	17.000	IGF2R	16.744	CD151	<u> 16.744</u>	CTSB	16.476
E 8	is the expression s											

than traditionally used housekeeping genes in goat skin tissue (10).

Adipose tissue has strong plasticity and is easily affected by environmental temperature, diet, and hormones. Some scholars have studied the stability of reference genes in adipose tissue. For instance, WDR33 and HDAC3 are relatively stable reference genes in bovine adipose tissue (13), TOP2B and UXT in buffalo adipose tissue (36), and TBP in mice (16). Herein, GABARAP was the most stable reference gene, followed by CLTA. GABARAP has also been reported to be a more stable reference gene in ovine pulmonary adenocarcinoma (32). At the same time, CLTA is a relatively stable reference gene in melanoma samples and melanoma cell lines (37). ACTB and GAPDH are traditional reference genes but also showed better expression stability in this study, a finding that was consistent with previous reports. For example, ACTB has been postulated to be the most suitable reference gene in the 3T3-L1 adipocyte differentiation model (38). ACTB exhibits medium stability as a reference gene in goat perirenal adipose (28). In this study, ACTG1 exhibited medium stability. However, ACTG1 presents less stable expression when employed as a reference gene for cerebral cortical astrocytes (39). A previous study postulated that CTNNB1, PFDN5,

and *EIF3M* are the most stable reference genes for BAT to WAT in goats (28). However, *PFDN5* showed medium stability, while *CTNNB1* and *EIF3M* had poor stability in this study. This variance was attributed to the previous study collecting tissues at three postnatal periods (1 day, 30 days, and 1 year after birth), covering the entire growth cycle but with a larger period. In contrast, this study concentrated on the early growth stage, picking samples at five postnatal stages (0, 7, 14, 21, and 28 days). The differences in the results further indicate that the same reference gene may have large transcriptional differences in samples under different conditions. It also emphasizes the proper selection of appropriate reference genes because it directly impacts the research results.

RBP4 is a useful biomarker for diagnosing obesity and the prognosis of related diseases (40), while *IDH2* affects brown adipose tissue thermogenesis (41). In this study, *RBP4* and *IDH2* were differentially expressed based on the RNA-seq data (data not shown). However, the results differed when *RBP4* and *IDH2* were normalized using different reference genes. Therefore, selecting reference genes with relatively stable expressions under different conditions can more accurately quantify the expression of target genes in different samples.

S I	ACTB 0.126952	CTNNB1 0.043610	COPS8 0.137195	PCBP2 0.001078		01101111
ger	ACTG1 0.143239	PCBP2 0.156933	PFDN5 0.178859	CD151 0.059511	SAP18 0.113356	CLTA 0.152940
ple	COPS8 0.144577	SAP18 0.158493	PARL 0.213122	PFDN5 0.081955	EIF3M 0.116866	GAPDH 0.165098
t sta	PFDN5 0.158117	CTSB 0.167909	GABARAP 0.240200	GANAB 0.111836	COPS8 0.132093	ACTB 0.187617
Most stable genes	PARL 0.219208	PFDN5 0.168641	CLTA 0.247127	EIF3M 0.137186	GAPDH 0.178382	PARL 0.198452
4	GANAB 0.226085	CD151 0.187638	SAP18 0.264616	SNRNP200 0.193624	ACTG1 0.182185	PCBP2 0.239923
	SAP18 0.234633	ACTG1 0.193263	GANAB 0.276962	PARL 0.336683	PFDN5 0.224165	SNRNP200 0.282070
	CTNNB1 0.268601	GABARAP 0.232041	GAPDH 0.286892	COPS8 0.344109	GANAB 0.261879	IGF2R 0.304472
	CLTA 0.302650	PARL 0.239204	CTSB 0.312737	ACTB 0.369335	CTNNB1 0.273674	GANAB 0.306214
-	IGF2R 0.321841	ACTB 0.390769	PCBP2 0.328438	ACTG1 0.423870	CTSB 0.363281	PFDN5 0.330040
es	CD151 0.345330	GAPDH 0.475574	CTNNB1 0.351020	GABARAP 0.445905	ACTB 0.406616	ACTG1 0.330113
gen	GAPDH 0.370732	EIF3M 0.553816	ACTG1 0.387718	CLTA 0.450952	PARL 0.436468	COPS8 0.411754
ble	EIF3M 0.372405	GANAB 0.562062	EIF3M 0.392115	CTNNB1 0.460655	CLTA 0.447795	CD151 0.440189
t sta	GABARAP 0.480355	SNRNP200 0.603781	ACTB 0.468841	GAPDH 0.556569	IGF2R 0.620398	SAP18 0.665179
Least stable genes	PCBP2 0.512553	COPS8 0.655880	SNRNP200 0.514139	SAP18 0.610815	SNRNP200 0.643235	CTNNB1 0.692055
-	SNRNP200 0.604635	CLTA 0.706602	CD151 0.611387	CTSB 0.954118	PCBP2 0.928145	EIF3M 0.861993
¥	CTSB 1.000000	IGF2R 1.000000	IGF2R 1.000000	IGF2R 0.998428	CD151 1.000000	CTSB 0.989633
9						

The relative expression of *IDH2* and *RBP4* normalized by different reference genes. (A) The mRNA expression level measured by RNA-seq. (B) The expression of *IDH2* and *RBP4* was normalized using *GABARAP*, *CLTA*, *ACTB*, *GAPDH*, *CTSB*, *EIF3M*, and *CTNNB1* genes. *p < 0.05; **p < 0.01.

Conclusion

GABARAP, *CLTA*, *GAPDH*, and *ACTB* genes are relatively stable reference genes that can potentially be used to develop perirenal fat in goats.

Data availability statement

The data presented in the study are deposited in the Genome Sequence Archive (Genomics, Proteomics and Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), accession number CRA008594.

Ethics statement

All animal experiments followed the Southwest University Institutional Animal Care and Use Committee (22-9-2019, No. GB14925-2010) regulations. Written informed consent was obtained from the owners for the participation of their animals in this study.

Author contributions

LZ drafted the manuscript. LZ, XL, YZho, and TL collected experimental tissues. LZ, HY, and XL collected the data and organized the references. YZha was involved in this study design and wrote the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This work was financially supported by the Chongqing's Modern Agricultural Industry Technology System Program for Herbivore [2022(12)], the Collection, Utilization and

References

1. Koletzko B, Godfrey KM, Poston L, Szajewska H, van Goudoever JB, de Waard M, et al. Nutrition during pregnancy, lactation and early childhood and its implications for maternal and Long-Term child health: The early nutrition project recommendations. *Ann Nutr Metab.* (2019) 74:93–106. doi: 10.1159/000496471

2. Symonds ME, Pope M, Budge H. The ontogeny of brown adipose tissue. Annu Rev Nutr. (2015) 35:295–320. doi: 10.1146/annurev-nutr-071813-105330

3. Zhao L, Yang H, Li X, Zhao Y. Current understanding of the role of microRNAs from adipose-derived extracellular vesicles in obesity. *Biochem Soc Trans.* (2022) 50:447–57. doi: 10.1042/BST20211031

4. Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. *Cell.* (2022) 185:419–46. doi: 10.1016/j.cell.2021.12.016

5. Cypess AM. Reassessing human adipose tissue. *N Engl J Med.* (2022) 386:768–79. doi: 10.1056/NEJMra2032804

Innovation of Germplasm Resources by Research Institutes and Enterprises of Chongqing, China (cqnyncw-kqlhtxm), the National Natural Science Foundation of China (No. 31772564), the Chongqing Postgraduate Research Innovation Project (CYB22141).

Acknowledgments

We appreciate the Chongqing Key Laboratory of Herbivore Science for providing data of this study and technical assistance.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/ fvets.2022.1055866/full#supplementary-material

^{6.} Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. *J Mol Endocrinol.* (2002) 29:23–39. doi: 10.1677/jme.0.0290023

^{7.} Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. (2006) 1:1559-82. doi: 10.1038/nprot.2006.236

Dheda К, Bustin 8. Huggett J, S, Zumla А. Real-RT-PCR considerations. time normalisation; Strategies and Genes Immun. (2005)6:279-84. doi: 10.1038/sj.gene.6 364190

^{9.} Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: Minimum information for publication of quantitative realtime PCR experiments. *Clin Chem.* (2009) 55:611–22. doi: 10.1373/clinchem.200 8.112797

10. Zhang J, Deng C, Li J, Zhao Y. Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (*Capra hircus*). *BMC Genomics*. (2020) 21:493. doi: 10.1186/s12864-020-06912-4

11. Yin J, Sun L, Zhang Q, Cao C. Screening and evaluation of the stability of expression of reference genes in Lymantria dispar (Lepidoptera: Erebidae) using qRT-PCR. *Gene.* (2020) 749:144712. doi: 10.1016/j.gene.2020.144712

12. Fan X, Yao H, Liu X, Shi Q, Lv L, Li P, et al. High-Fat diet alters the expression of reference genes in male mice. *Front Nutr.* (2020) 7:589771. doi: 10.3389/fnut.2020.589771

13. Cao KX, Hao D, Wang J, Peng WW, Yan YJ, Cao HX, et al. Cold exposure induces the acquisition of brown adipocyte gene expression profiles in cattle inguinal fat normalized with a new set of reference genes for qRT-PCR. *Res Vet Sci.* (2017) 114:1–5. doi: 10.1016/j.rvsc.2017.02.021

14. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* (2002) 3:H34. doi: 10.1186/gb-2002-3-7-research0034

15. van Rijn SJ, Riemers FM, van den Heuvel D, Wolfswinkel J, Hofland L, Meij BP, et al. Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs. *Mol Neurobiol.* (2014) 49:893–9. doi: 10.1007/s12035-013-8567-7

16. Almeida-Oliveira F, Leandro J, Ausina P, Sola-Penna M, Majerowicz D. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease. *Biomed Pharmacother*. (2017) 88:948–55. doi: 10.1016/j.biopha.2017.01.091

17. Mehta R, Birerdinc A, Hossain N, Afendy A, Chandhoke V, Younossi Z, et al. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples. *BMC Mol Biol.* (2010) 11:39. doi: 10.1186/1471-2199-11-39

18. Taube M, Andersson-Assarsson JC, Lindberg K, Pereira MJ, Gäbel M, Svensson MK, et al. Evaluation of reference genes for gene expression studies in human brown adipose tissue. *Adipocyte.* (2015) 4:280–5. doi: 10.1080/21623945.2015.1039884

19. Perez LJ, Rios L, Trivedi P, D'Souza K, Cowie A, Nzirorera C, et al. Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research. *Sci Rep.* (2017) 7:3612. doi: 10.1038/s41598-017-03730-9

20. Gabrielsson BG, Olofsson LE, Sjögren A, Jernås M, Elander A, Lönn M, et al. Evaluation of reference genes for studies of gene expression in human adipose tissue. *Obes Res.* (2005) 13:649–52. doi: 10.1038/ob y.2005.72

21. Chechi K, Gelinas Y, Mathieu P, Deshaies Y, Richard D. Validation of reference genes for the relative quantification of gene expression in human epicardial adipose tissue. *PLoS One.* (2012) 7:e32265. doi: 10.1371/journal.pone.0032265

22. Basse AL, Dixen K, Yadav R, Tygesen MP, Qvortrup K, Kristiansen K, et al. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling. *BMC Genom.* (2015) 16:215. doi: 10.1186/s12864-015-1405-8

23. Wang L, Yang X, Zhu Y, Zhan S, Chao Z, Zhong T, et al. Genome-Wide identification and characterization of long noncoding RNAs of brown to white adipose tissue transformation in goats. *Cells-Basel.* (2019) 8:904. doi: 10.3390/cells8080904

24. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. *Bmc Mol Biol.* (2006) 7:33. doi: 10.1186/1471-2199-7-33

25. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to

identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res.* (2004) 64:5245–50. doi: 10.1158/0008-5472.CAN-04-0496

26. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. *Biotechnol Lett.* (2004) 26:509–15. doi: 10.1023/B:BILE.0000019559.84305.47

27. Xie F, Xiao P, Chen D, Xu L, Zhang B. MiRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. *Plant Mol Biol.* (2012). doi: 10.1007/s11103-012-9885-2

28. Wang L, Chen X, Song T, Zhang X, Zhan S, Cao J, et al. Using RNA-Seq to identify reference genes of the transition from brown to white adipose tissue in goats. *Animals (Basel).* (2020) 10:1626. doi: 10.3390/ani10091626

29. Nazari F, Parham A, Maleki AF, GAPDH. β-actin and β2-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells. *J Anim Sci Technol.* (2015) 57:18. doi: 10.1186/s40781-015-0050-8

30. Najafpanah MJ, Sadeghi M, Bakhtiarizadeh MR. Reference genes selection for quantitative real-time PCR using RankAggreg method in different tissues of *Capra hircus. PLoS ONE.* (2013) 8:e83041. doi: 10.1371/journal.pone.0083041

31. Zhu W, Lin Y, Liao H, Wang Y. Selection of reference genes for gene expression studies related to intramuscular fat deposition in *Capra hircus* skeletal muscle. *PLoS One.* (2015) 10:e121280. doi: 10.1371/journal.pone.0121280

32. Yang H, Zhang L, Liu S. Determination of reference genes for ovine pulmonary adenocarcinoma infected lung tissues using RNA-seq transcriptome profiling. *J Virol Methods*. (2020) 284:113923. doi: 10.1016/j.jviromet.2020.113923

33. Zheng Q, Wang X, Qi Y, Ma Y. Selection and validation of reference genes for qRT-PCR analysis during fruit ripening of red pitaya (*Hylocereus polyrhizus*). *FEBS Open Bio.* (2021) 11:3142–52. doi: 10.1002/2211-5463.13053

34. Sampathkumar NK, Sundaram VK, Danthi PS, Barakat R, Solomon S, Mondal M, et al. RNA-Seq is not required to determine stable reference genes for qPCR normalization. *Plos Comput Biol.* (2022) 18:e1009868. doi: 10.1371/journal.pcbi.1009868

35. Zhao J, Wang C, Zhang L, Lei A, Wang L, Niu L, et al. Genome-Wide identification of reference genes for Reverse-Transcription quantitative PCR in goat rumen. *Animals (Basel)*. (2021) 11:3137. doi: 10.3390/ani11113137

36. Feng X, Cao X, Zhu R, Huang J. Selection and validation of reference genes for RT-qPCR in adipose and longissimus dorsi muscle tissues of buffalo. *Anim Biotechnol.* (2022) 33:526–35. doi: 10.1080/10495398.2020.1811715

37. Christensen JN, Schmidt H, Steiniche T, Madsen M. Identification of robust reference genes for studies of gene expression in FFPE melanoma samples and melanoma cell lines. *Melanoma Res.* (2020) 30:26–38. doi: 10.1097/CMR.00000000000644

38. Arsenijevic T, Grégoire F, Delforge V, Delporte C, Perret J. Murine 3T3-L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis. *PLoS ONE.* (2012) 7:e37517. doi: 10.1371/journal.pone.0037517

39. Oliveira SR, Vieira HL, Duarte CB. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR. *Nitric Oxide.* (2015) 49:80–9. doi: 10.1016/j.niox.2015.07.003

40. Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, González-Calixto C, Flores-Alfaro E, Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). *Mol Med Rep.* (2022) 26:244. doi: 10.3892/mmr.2022.12760

41. Lee JH, Go Y, Kim DY, Lee SH, Kim OH, Jeon YH, et al. Isocitrate dehydrogenase 2 protects mice from high-fat diet-induced metabolic stress by limiting oxidative damage to the mitochondria from brown adipose tissue. *Exp Mol Med.* (2020) 52:238–52. doi: 10.1038/s12276-020-0379-z