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Identification of hub genes
associated with follicle
development in multiple births
sheep by WGCNA

Jinglei Wang1, Hanying Chen2 and Xiancun Zeng1*

1College of Animal Science and Technology, Shihezi University, Shihezi, China, 2School of

Pharmacy, Shihezi University, Shihezi, China

Sheep exhibit a distinct estrous cycle that includes four di�erent phases:

proestrus, estrus, late estrus, and luteal phase. As the estrous cycle repeats,

follicular development regularly alternates. We thus investigated ovarian

transcriptome data from each of the four phases using weighted gene co-

expression network analysis (WGCNA) to identify modules, pathways, and

genes essential to follicle growth and development. We clustered mRNA

and long non-coding RNA (lncRNA) into di�erent modules by WGCNA, and

calculated correlation coe�cients between genes and Stages of the estrous

cycle. Co-expression of the blackmodule (cor= 0.81, P<0.001) and the yellow

module (cor = 0.61, P<0.04) was found to be critical for follicle growth and

development. A total of 2066 genes comprising the black and yellow modules

was used for functional enrichment. The results reveal that these genes are

mainly enriched in Cell cycle, PI3K-Akt signaling pathway, Oocyte meiosis,

Apoptosis, and other important signaling pathways. We also identified seven

hub genes (BUB1B, MAD2L1, ASPM, HSD3B1, WDHD1, CENPA, and MXI1)

that may play a role in follicle development. Our study may provide several

important new markers allowing in depth exploration of the genetic basis for

multiparous reproduction in sheep.

KEYWORDS
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Introduction

The Cele Black sheep is an exCelent lambskin sheep in Xinjiang, China. It is

characterized by a high reproduction rate, year-round estrus, and an average lambing

rate of 215.6% (1). It is an ideal model for studying and identifying genes related to

multiparous traits. Follicle development is a crucial factor affecting multiparous traits

in sheep, and improving the multiparous capacity in sheep will effectively enhance

the efficiency of animal production and reproduction. As the basic functional unit

of the ovary (2), the follicle consists of oocytes, which are surrounded by theca and

granulosa cells (GC), and biological processes such as development, maturation, and

atresia alternately generated during the estrous cycle (3). The interaction of oocyte

and granulosa cells in early follicular stages has been demonstrated, and the specificity
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of oocyte-secreted steroid hormones and intraovarian regulators

jointly determine follicular development. The balance of ovarian

granulosa cell proliferation and apoptosis also plays an essential

role in follicle dominance selection (4, 5). Therefore, identifying

genes related to follicular development is crucial for studying

multiparous traits in sheep. In the past, it has been reported

that mutations in the Booroola fecundity (FecB) gene associated

with sheep reproduction lead to the inactivation of the BMPR1B

protein and impair BMP signaling, thereby regulating ovarian

granulosa cell differentiation, increasing ovulation rate and litter

size (6, 7). Intensive research has led to the identification of

several genes related to fecundity, such as KLF transcription

factor 5(KLF5) (8), myosin heavy chain 15 (MYH15) (9), growth

differentiation factor 9 (GDF9) (10), and bone morphogenetic

protein-15 (BMP15) genes (11).

Long non-coding RNAs (LncRNAs) regulate gene

expression through multiple mechanisms and are involved

in follicle maturation. For example, LncRNA affects promoter

activity and regulates ovarian granulosa cell proliferation

and follicle maturation (12, 13). LncRNA can also act as a

competitive endogenous RNA for miRNA, interacting with

miRNA to regulate gene expression and affect ovarian granulosa

cell proliferation (14). In recent years, lncRNA expression

profiles have been obtained in the ovaries of mammalian goats

(Anhui White Goat) (15) and sheep (Dorset sheep, Small-tailed

Han Sheep) (9, 16) and indicated that they are reproductively

important lncRNAs.

The rapid development of high-throughput sequencing

technologies has improved our knowledge and insights into

molecular biology. The ease of use and comprehensiveness

of weighted gene co-expression network analysis (WGCNA)

has been applied by researchers in fields including medicine,

microbiology, and zoology. The WGCNA algorithm uses the

inter-molecular relationship to simplify complex data into

different classes of modules (17, 18). Molecular expression

patterns of the genes of the same module may help identify the

genes that play the same role or participate in the same signaling

pathway and finally help discover the biological significance

of these genes (19). WGCNA has made tremendous progress

in identifying genes implicated in reproduction in mammals.

It has been reported that VAV1, RUNX3, ZC3H12D, MYCL,

IRF5, WEE2, and miR-3940-5P play critical roles in oocyte

development and ovarian granulosa cell proliferation (20–22).

In recent years, studies on the application of WGCNA on

sheep fertility data have shown that AKT3 and lncRNA genes,

including NR0B1, XLOC_041882, and MYH15, are essential for

follicle growth, oocyte maturation, and ovulation, being closely

related genes in sheep reproduction (23, 24).

Previous studies by the project team have demonstrated

that crucial reproductive genes, including FecB, GDF9, and

BMP15, are not significantly differentially expressed in Cele

black sheep. Therefore, it is speculated that other genes act

as potential regulators to alter the expression patterns of

reproduction-related genes, thereby affecting the multiparity

of Cele black sheep (25). Follicular development is regulated

by an extensive network of cytokines, and the associated gene

expression may change depending on the stage of the estrous

cycle. Therefore, we applied the WGCNA algorithm to the

analysis of the ovarian transcriptome data of Cele black sheep

to identify co-expressed module genes associated with follicular

development at various stages of the estrous cycle of high-

yielding sheep, and whose function may affect multiparity

traits. This study provides a valuable resource for better

understanding the molecular mechanisms of genes regulating

sheep reproduction at different physiological stages.

Materials and methods

Ethical statement

Cele black sheep were purchased from a sheep farm in

Cele County, Hotan Region, Xinjiang Uygur Autonomous

Region, China. All experiments were conducted under the

relevant guidelines and regulations established by the Ministry

of Agriculture of the People’s Republic of China. The Animal

Experiment Ethics Committee of the First Affiliated Hospital

of the Shihezi University School of Medicine approved all

experimental procedures (A2016-085).

Laboratory animal samples and collection

Twelve Cele black ewes of similar age, between 3 and 4

years, were selected based on breeding records, age, and body

size. The 12 ewes were synchronized to estrus by injecting

human synthetic progesterone, and the ewes were tested daily

for artificial and ram estrus. Then, after the third estrus, the

two ovaries of the ewes were collected in groups: 7 days after

the end of estrus, 14 days after the end of estrus, day 1 of

estrus, and days 2–3 of estrus. The estrous cycle was divided

into the luteal stage, pre-estrus, estrus, and late estrus, and three

replicate samples were selected from each group and named

sequentially (QP1, QP2, QP3, QE1, QE2, QE3, QD1, QD2,

QD3, QM1, QM2, and QM3). Tubes containing test samples

were immediately frozen in liquid nitrogen and finally stored at

−80◦C for subsequent experiments.

Total RNA library construction and
sequencing

Total tissue RNA was extracted using TRIzol reagent

(InvitrogenTM, Carlsbad, CA, USA) according to the

manufacturer’s manual, and the extracted RNA was tested

for quality and integrity (Agilent Technologies, CA, USA).
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FIGURE 1

Graphical representation of DEmRNAs at each stage of the estrous cycle in sheep. The Volcano map and Hierarchical clustering analysis of

DEmRNAs in the QD-QP (A), QE-QP (B), and QM-QP (C).

Next, rRNA was removed using the Epicenter-Ribo-zero rRNA

Removal Kit (Epicentre, USA), and rRNA-free residues were

removed by ethanol precipitation. Then, sequencing libraries

were generated using NEBNext Ultra Directed RNA Library

Preparation Kit for Illumina (NEB, USA). The library was

sequenced at Novogene (Beijing, China) using the Illumina

Hiseq 4000 base platform, and 150 bp paired-end reads

were generated.

Raw data quality control and transcript
assembly

Poor-quality bases and adaptor sequences were removed

from the raw data using FastQC software (v0.11.9) to obtain

clean reads. The reference genome index was constructed using

bowtie2 (v2.2.8), and paired-end clean reads were aligned

to the reference genome using HISAT2 (v2.2.1), followed

by the reference sheep genome (http://ftp.ensembl.org/pub/

release-103/fasta/ovis_aries1) comparison analysis. StringTie

(http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual)

assembled mapped reads for each sample.

Data analysis

lncRNA screening

The screening process involved the following steps: (1) Filter

out a large number of low-expression and low-confidence single-

exon transcripts in the transcript splicing results, and select

transcripts with exon number ≥2; (2) Select transcripts with

a transcript length > 200 bp; (3) Use Cuffcompare software

to screen out transcripts that overlap with the exon region

annotated in the database and put the transcripts in the database

that overlap with the exon region of this spliced transcript,

fragments per kilobase per million reads (FPKM) of lncRNAs

≥ 0.5 were included in the subsequent analysis as database

annotation lncRNAs; (4) Finally, the analysis was performed

using the coding potential calculator (score < 0) (26), coding-

noncoding index (score < 0) (27), and Pfam (E-value <

0.001) (28) software. Transcripts that pass all these stages are
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FIGURE 2

Graphical representation of DELncRNAs at each stage of the estrous cycle in sheep. The Volcano map and Hierarchical clustering analysis of

DELncRNAs in the QD-QP (A), QE-QP (B), and QM-QP (C).

considered lncRNAs. Expression levels of lncRNAs are reflected

in FPKM.

Di�erential expression analysis

The Ballgown suite includes functions for interactive

exploration of the transcriptome assembly, visualization of

transcript structures and feature-specific abundances for each

locus, and post-hoc annotation of assembled features to

annotated features. Transcripts with an P-adjust <0.05 were

assigned as differentially expressed.

Weighted gene co-expression network
analysis

Weighted gene co-expression network
construction

We constructed a co-expression network using the

WGCNA algorithm under the R package and RStudio

(v 4.1.0) environment (https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/). First, the genes

with the highest average FPKM values were selected from

the analyzed samples after using the Pearson correlation

matrix and the average linkage method, using the power

function A_mn=|C_mn|∧β (C_mn = Pearson correlation

between Gene_m and Gene_n; A_mn = adjacency between

gene m and gene n). β is a soft threshold parameter that can

emphasize strong correlations between genes and penalize

weak correlations. After selecting the power of the βvalue, the

adjacency was transformed into a topological overlap matrix

(TOM), which can measure the network connectivity of a

gene, defined as the sum of its adjacencies with all other genes,

which is used for network generation, and the corresponding

dissimilarity (1-TOM) is calculated.

Module-feature correlation analysis and
identification of modules of interest

Genes with similar expression profiles were classified into

gene modules, and average linkage hierarchical clustering was

performed according to the TOM-based dissimilarity measure,

with the sensitivity set to 3. Based on the dissimilarity of the

module eigengenes (ME), we selected a cutting line for the
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FIGURE 3

Upset plot diagram of the gene comparison result. (A) Upset plot diagram was employed to intersect the six gene sets and obtained 2245

common DEmRNAs. (B) Upset plot diagram of all DELncRNAs numbers among the six gene sets.

module dendrogram, merging a few modules. We performed

a correlation analysis between each module and each stage

of the estrous cycle to unearth the relevant modules highly

related to follicle development. Subsequently, intra-module

analysis was performed using gene significance (GS) andmodule

membership (MM). GS signifies the relationship between

gene expression levels and the stages of the estrous cycle of

sheep, whereas MM represents the association between the

gene expression profile of a given module and ME. Modules

containing genes with significant correlations between GS and

MM were considered significant.

Functional enrichment analysis

LncRNA target genes and differentially expressed mRNAs

(DEmRNAs) were subjected to GO and KEGG enrichment

analysis using the KOBAS online database (http://kobas.cbi.pku.

edu.cn/). Gene set enrichment analysis (GSEA) is a method

to identify functional pathways. Using R package functions

“ClusterProfiler”, “GSEABase”, and RStudio (v4.1.0) for GSEA,

genes were ranked briefly based on the absolute value of logFC

between each genome of sheep in the QD, QE, QM, and QP

groups, and enrichment scores were calculated. Next, we fed

the sorted list of genes into the GSEA algorithm to correlate

gene expression with functional enrichment. The criteria for

statistical significance were at p < 0.05 and FDR < 0.25.

Construction of PPI network
construction and identification of hub
genes

We searched through the Search Tool for Interacting

Genes/Proteins (STRING) database at (https://string-db.org/)

for the construction of the protein-protein interaction (PPI)
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FIGURE 4

GO enrichment analysis of DElncRNAs and DEmRNAs. (A) QD-QP. (B) QE-QP. (C) QM-QP.

network. The network graph was visualized and analyzed

using the MCODE plugin in Cytoscape (v3.7.1) for highly

connected hub proteins throughout the network. Ultimately,

overlapping genes among PPI hub proteins, intra-module genes,

and differential genes were identified as key candidate genes for

regulating follicle development.

Transcription factor analysis transcription
factor analysis

AnimalTFDB (http://bioinfo.life.hust.edu.cn/AnimalTFDB

/#!) database was used for transcription factor prediction. In

addition, control options were set by Blast E-value (1.0E-5) and

selection of Hummsacn E-value (1.0E-5).

Results

Assembly of RNA-seq data

A total of 1,367,886,468 raw reads were obtained by

sequencing all samples QD (QD1, QD2, QD3), QE (QE1,

QE2, QE3), QM (QM1, QM2, QM3), QP (QP1, QP2, QP3)

12 libraries. After removing redundant and low-quality reads,

1,330,939,226 clean single-ended reads were obtained. The

mapping rate ranged from 97.15 to 97.85%, the Q30 ratio
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FIGURE 5

KEGG enrichment analysis of DElncRNAs and DEmRNAs. (A) QD-QP. (B) QE-QP. (C) QM-QP.

was above 93.23%, and the GC content was above 47.17%

(Supplementary Table S1).

Identification of di�erential lncRNA,
mRNA

Gene expression levels were quantified using FPKM.

Volcano plots were used to illustrate all DEmRNAs and

DElncRNAs in the genome between QE and QM, QD and QE,

QD and QM, QD and QP, QE and QP, and QM and QP. Based

on gene differential expression levels, there were significant

differences between QD and QP, QE and QP, and QM and

QP, with 913, 921, and 511 detected DEmRNAs, respectively

(Figures 1A–C). A total of 298, 248, and 245 DEmRNAs

were identified in the QD-QE, QD-QM, and QE-QM groups,

respectively (Supplementary Figure S1). In the six comparison

groups, we obtained a total of 2245 DEmRNAs by screening

criteria (Figure 3A, Supplementary Table S2).

Eighteen, 24, and 16 DElncRNAs were detected in QD-QP,

QE-QP, and QM-QP comparisons, respectively (Figures 2A–C).

Fourteen, ten, and eighteen DElncRNAs were found between

the QD-QE, QD-QM, and QE-QM groups, respectively

(Supplementary Figure S2). In the six comparison groups, we

obtained a total of 78 DELncRNAs by screening criteria

(Figure 3B, Supplementary Table S3).

Functional enrichment analysis

We searched coding genes 100 k upstream and downstream

of lncRNA and took the intersection with the genes that had

significant co-expression with these lncRNAs. As a result, 56

DElncRNAs had to target regulatory relationships with 145

genes (Supplementary Table S4). In this context, we used the

KOBAS online database for GO and KEGG pathway annotation

analysis. GO enrichment analysis showed that in the QD-QP

groups, genes were mostly enriched in the regulation of the

primary metabolic process, regulation of the cellular metabolic
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FIGURE 6

The process of screening follicular development mRNAs using WGCNA. (A) Network topology analysis for various soft-threshold powers.

Scale-free topologies were examined; the adjacency matrix was defined using a soft threshold of β = 17. (B) Clustered dendrograms of genes,

based on di�erences in topological overlap, and the specified module colors. (C) Heat map of the intergenic topological overlap matrix (TOM)

based on co-expression modules. A redder background indicates a higher module correlation. (D) Visualization of gene networks using heat

maps.

process, positive regulation of cellular process, cell cycle and

positive regulation of biological process (Figure 4A). In the

QE-QP groups, these DEmRNAs were significantly enriched in

the positive regulation of cellular process, positive regulation

of biological process, cellular protein modification process,

regulation of cell cycle process (Figure 4B). In the QM-QP

groups, genes were significantly enriched in processes such as

cellular macromolecule metabolic process, cellular catabolic

process, positive regulation of cellular process and multicellular

organism development (Figure 4C). In addition, differential

genes were significantly enriched in QD-QM, QE-QM,

and QD-QE for cell cycle process, cellular macromolecule

metabolic process, cellular macromolecule biosynthetic process,

cellular biosynthetic process, cell migration, and cell motility

(Supplementary Figure S3).

The top 20 pathways are shown in (Figures 5A–C). As

a result, different KEGG signaling pathways associated with

reproduction, cell proliferation, apoptosis and gonadotropin
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FIGURE 7

The process of screening follicular development LncRNAs using WGCNA. (A) Selecting for soft threshold (power). When the power value is 8,

the degree of independence was > 0.85 for the first time. (B) A Clustering dendrogram of genes. Dissimilarity was based on the topological

overlap, together with assigned module colors. The 17 coexpression modules are displayed in di�erent colors. (C) Heat map of the intergenic

topological overlap matrix (TOM) based on co-expression modules. A redder background indicates a higher module correlation. (D)

Visualization of gene networks using heat maps.

secretion were identified. In QD-QP, DEGs enrichment

pathways include Cell cycle, Oocyte meiosis, PI3K-Akt signaling

pathway and MAPK signaling pathway (Figure 5A). In the

QE-QP group, DEGs were involved in Metabolic pathways,

Oocyte meiosis, Cell cycle and other pathways (Figure 5B).

In QM-QP, DEGs were significantly enriched in Metabolic

pathways, Cellular senescence, and TGF-beta signaling pathway

(Figure 5C). In the QD-QM, QE-QM, and QD-QE groups,

these DEGs were significantly enriched in many pathways,

including Metabolic pathways, Autophagy–animal, Apoptosis,

MAPK signaling pathway, and TGF-beta signaling pathway

(Supplementary Figure S4).

Gene co-expression network
construction

Clustering of mRNA co-expression modules

We further explored the genes involved in follicle

development by constructing co-expression modules using

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2022.1057282
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wang et al. 10.3389/fvets.2022.1057282

FIGURE 8

Key module analysis. mRNA module-feature relationships (A), and LncRNA module-feature relationships (B), The number of each grid indicates

the module-feature correlation, and the number in parentheses indicates the p-value. (C) Heat map gene expression patterns of mRNA key

modules. (D) LncRNA key modules. The upper panel shows the heat map of gene expression in modules in di�erent samples, and the lower

panel shows the expression pattern of module feature values in di�erent samples.

the WGCNA software package tools. First, we filtered genes

with minor or abnormal variants; then, based on R2 = 0.86,

the best β = 17 was selected in the gene expression matrix

to construct an approximately scale-free topological overlap

matrix (Figure 6A). All selected genes were clustered using a

topological overlap matrix (TOM)-based dissimilarity measure,

which was based on a dynamic tree-cutting algorithm that

divided the dynamic tree into seven modules each marked

with different colors (Figure 6B). The number of genes in each

module is shown in Supplementary Figure S5. Next, the Pearson

correlation coefficient was used to analyze the interaction

of these co-expression modules. Hierarchical clustering of

eigengenes was performed on the modules in a cluster analysis,

and branches (meta-modules) of the dendrogram were grouped

based on the correlation of the eigengenes (Figure 6C). Each

module contains a different gene cluster and is marked with a

different color in the topologically overlapping heat map; red

represents positive correlation and blue represents negative

correlation (Figure 6D).

Clustering of lncRNA co-expression modules

In the lncRNA expression matrix, based on R2 = 0.86, a

soft threshold of β = 8 was set to construct a scale-free network

with a scale-free topological fit index > 0.85 (Figures 7A,B). We

determined the final 17 modules based on average hierarchical

clustering and dynamic tree cutting, and the number of genes

in each module is shown in Supplementary Figure S6. As shown

in Figure 7C, based on the correlations of the eigengenes, a

heatmap of topological overlap was constructed while being

marked with different colors (Figure 7D).

Module–trait relationship analysis

We summarized the gene co-expression of eigengenes and

calculated the correlation of each eigengene with each stage

of the estrous cycle, i.e., estrus, late estrus, luteal phase,

and proestrus, which was determined by ME, the principal

components of gene expression in the module, and the

Spearman correlation coefficients the stages of the estrous cycle.

Module-trait relationship analysis showed that in the mRNA

co-expression relationship graph, genes in the black module

(cor= 0.81, P<0.001) were positively correlated with the luteal

phase, and genes in the yellowmodule (cor= 0.61, P<0.04) were

positively correlated with estrus (Figure 8A). In the lncRNA

co-expression relationship map, the genes in the lightcyan

module (cor = 0.79, P<0.002) and the genes in the salmon

module (cor= 0.78, P < 0.003) were significantly positively

correlated with the pre-estrus and luteal phases, respectively
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FIGURE 9

KEGG pathway enrichment analysis of key module. (A) GO analysis of the black module and yellow module. (B) GO analysis of the light cyan

module and salmon module. (C) KEGG enrichment analysis of black module and yellow module. (D) KEGG enrichment analysis of the lightcyan

module and salmon module.

(Figure 8B). Genes in these modules may be associated with

follicular development.

Next, we analyzed the gene expression patterns of the four

modules in detail and identified specific expression patterns

at different stages. Gene expression of the black and salmon

modules was elevated generally during the luteal phase. During

the estrus and pre-estrus stages, the gene expression of the yellow

and lightcyan modules was typically higher (Figures 8C,D).

Functional enrichment analysis of key
modules

Follicular developmental processes and pathways

can be shared and differentially regulated in sheep. GO

enrichment analysis showed that genes in the black and

yellow modules were enriched in the positive regulation

of transcription by RNA polymerase II, positive regulation

of cell population proliferation, negative regulation of cell

growth, negative regulation of apoptotic process, positive

regulation of transcription, DNA-templated and DNA-binding

transcription factor activity, RNA polymerase II-specific

(Figure 9A). Genes in the lightcyan and salmon modules

were enriched in the negative regulation of transcription,

negative regulation of apoptotic process, positive regulation

of transcription by RNA polymerase II, cytokine activity

and growth factor activity (Figure 9B). In addition, different

KEGG signaling pathways related to reproduction, cell

proliferation, cell cycle and gonadal hormone secretion

were identified. In black and yellow modules, genes were

significantly enriched in Metabolic pathways, Cell cycle,

PI3K-Akt signaling pathway, Oocyte meiosis, Cellular

senescence, Progesterone-mediated oocyte maturation

and Apoptosis pathways (Figure 9C). In KEGG signaling

pathway analysis of lncRNA target genes of lightcyan and

salmon modules, associations with reproduction and cell

proliferation, differentiation, and migration were identified.

These include: Calcium signaling pathway, Metabolic pathways,
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FIGURE 10

Identification of hub genes. (A) Typical hub cluster of the PPI network in module black and yellow. (B) Wayne diagram of overlapped genes

between PPI hub cluster genes, DEmRNAs and intra-module hub genes. (C) GSEA enrichment plots in BUB1B, MAD2L1, ASPM, and HSD3B1.
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FIGURE 11

Identification of hub LncRNAs. (A) TOM matrix between candidate LncRNAs. (B) Wayne diagram of overlapped genes between LncRNAs and

intra-module hub genes.

MAPK signaling pathway, and PI3K-Akt signaling pathway

(Figure 9D).

Identification and analysis of hub genes

PPI network analysis and hub gene
identification

We constructed a PPI network from the STRING

database to explore gene interactions in the modules

(Supplementary Figure S7). Hub gene clusters scoring higher

than 3 in each PPI network were identified using the Cytoscape

MCODE plug-in (Figure 10A). The “Ballgown” package was

used to study DEGs between genes and other stages at each

estrus stage time point, with thresholds of P < 0.05 and

|log (FC)|> 1. The intra-module hub genes in each module are

listed in Supplementary Table S5. PPI hub cluster genes, DEGs,

and highly connected overlapping genes were in their respective

modules at each stage time point. Based on our results, we

focused on the following four hub genes: the BUB1B, MAD2L1,
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FIGURE 12

TF family statistics and heatmap analysis in black and yellow modules. (A) TF prediction and family statistics of three modules. (B) Heatmap of

TFs in three modules. Red and Blue represent up- and down-regulated DEmRNAs, respectively.

and ASPM genes in the yellow module and the HSD3B1 gene

in the black module (Figure 10B). In addition, GSEA was

performed to explore the potential regulatory mechanisms of

BUB1B, MAD2L1, ASPM, and HSD3B1. The results showed

that these genes were functionally enriched in cell cycle, oocyte

meiosis, and WNT signaling pathways (Figure 10C).

Identification of central lncRNA

By filtering under the thresholds of MM>0.8 and GS>0.8,

the intra-module hub genes in each module are listed in

Supplementary Table S6. The TOM matrix among candidate

lncRNAs was drawn based on the significance and degree of

difference in fold change (Figure 11A). DElncRNAs in each stage

overlapped with highly connected LncRNAs in the respective

modules. Our results show that LNC_006453, LNC_005683,

LNC_003443, and LNC_003367 overlap (Figure 11B).

TF forecasting and analysis in related
modules

We aligned the putative protein sequences with the

animal TFdb database for TF prediction. A total of 1302

expressed TFs belonging to 71 TF families were identified

(Supplementary Figure S8). TFs play an important role

in follicular development. For example, the transcription

factor RUNX1 improves estrogen secretion by regulating the

expression of genes related to steroidogenesis (FSHR, LHR,

etc.), stimulates cell proliferation in ovarian granulosa cells, and

promotes follicle growth and maturation (29). Our WGCNA

results indicated that the expression of central genes in the

above-mentioned black and yellow modules was associated with

follicular development. We identified 79 TFs belonging to 25 TF

families in these two modules. The most abundant TF families

were zf-C2H2, bHLH, THR-like, HMG, IRF, and TF_bZIP

(Figures 12A,B).

Next, we performed network analysis to investigate the

interactions between hub genes and TFs involved in follicle

development. A regulatory network of HUB genes and TFs

was constructed using Cytoscape software, with 57 nodes, 150

edges, and six hub genes (BUB1B, MAD2L1, ASPM, WDHD1,

CENPA, MXI1). Our network analysis indicated (Figure 13)

that TFs in modules may be key regulators during follicle

development.GSEA analysis indicated that module WDHD1,

CENPA, and MXI1 genes may regulate follicle and maturation

through the cell cycle and GnRH signaling pathway, P53

signaling pathway, etc., but this finding needs further validation

(Supplementary Figure S9).

Discussion

WGCNA is a systems biology method used to describe

gene association patterns between different samples.

Analyzing the associations between genes and dividing

them into multiple modules based on their expression

patterns, and then analyzing them in modules, reduces
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FIGURE 13

Construction of Hub genes and TFs regulation networks about follicular development pathway by Cytoscape software. The Red and cyan

hexagons represent identified hub genes involved in the network.

the computational workload and increases accuracy.

The difference between WGCNA and Differential Gene

Analysis (DEG) is that DEG mainly analyzes sample-

to-sample differences, whereas WGCNA considers not

only individual gene functions but also the relationships

between genes.

We used WGCNA to probe gene association patterns

and assess potential interactions between expressed genes.

Two modules (the black module in the luteal phase and

the yellow module in the estrus phase) were determined to

be highly correlated with the estrus cycle. KEGG analysis

of both module genes found significant enrichment in

the cell cycle, PI3K-Akt signaling pathway, and Oocyte

meiosis. During reproduction, regulating cell cycle-related

factors contributes to better follicle development and protects

female fertility (30, 31). Activation of the PI3K-Akt signaling

pathway and Oocyte meiosis can promote oocyte maturation

(32–34). Our results suggest that the cell cycle, PI3K-Akt

signaling pathway, and Oocyte meiosis play important roles in

follicle development.
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In our study, WGCNA results identified 7 hub genes

(BUB1B, MAD2L1, ASPM, WDHD1, CENPA, MXI1, and

HSD3B1). Steroid hormones are essential for follicular

development, and HSD3B1 is a steroid hormone metabolism

gene involved in progesterone biosynthesis (35). HSD3B1 is

known to be progressively upregulated after ovulation and

peaks during the luteal phase (36, 37), which is consistent with

the findings of this study. Our results identified the HSD3B1

gene affecting follicle development as a central gene, which

further demonstrated the high reliability of our transcriptome

analysis. MAD2L1 accumulates early in oocyte maturation (38)

and affects cell proliferation and cell cycle progression (39).

Reduced levels of MAD2L1 expression have been shown to

lead to a shortened duration of meiotic I and meiotic spindle

abnormalities, promoting oocyte maturation (40). In this study,

MAD2L1 expression was downregulated from the luteal phase

to estrus, indicating that MAD2L1 plays an important role in

oocyte maturation during the estrous cycle in sheep. BUB1B

is essential for mammalian meiosis and is an important factor

necessary for follicular development (41). Complete loss of

BUB1B reduces ovarian function and fertility in female mice

(42). ASPM is a spindle pole intermediate protein that regulates

reproduction in female mammals (43). Loss of ASPM results

in abnormal ovarian function while preventing folliculogenesis

(44). Silencing ASPM causes cell cycle arrest and leads to

apoptosis (43). This study found that ASPM was significantly

higher in the estrous phase than in the luteal and pre-estrous

phases, suggesting that ASPM may have an integral role in

follicular development by regulating cell proliferation and the

cell cycle.

The transcription factor WDHD1 is involved in chromatin

assembly, transcription, and replication (45). To clarify its

mechanism, we performed GSEA analysis, which showed that

it was mainly enriched in oocyte meiosis and cell cycle,

which is consistent with current studies on the WDHD1

mechanism. In addition,WDHD1 has been reported to affect cell

proliferation, apoptosis, and cell cycle through transcriptional

regulation of target gene Skp2 expression (46). CENPA, also

known as the histone H3 variant (CenH3), is localized as a

marker of centromeric components (47). As previously reported,

the transcription factor CENPA mediates an important role

for MYBL2 in ovarian cancer cell proliferation (48). MAX

interactor 1 (Mxi1), a member of the mitotic arrest defect

(MAD) family, can be regulated at the transcriptional level

(49). Mxi1 has been reported to promote cell proliferation

through the IL-8 and ERK1/2 pathways (50), but no studies

have reported the function of this gene in the ovary. Therefore,

this study speculates that WDHD1, CENPA, and Mxi1 act

as potential regulators of other genes, alter the expression

pattern of reproduction-related genes, and have a positive

effect on follicle development in sheep, thereby affecting

the multiparity of Cele black sheep, but this finding needs

further validation.

Conclusion

In this study, we used WGCNA analysis to identify

important genes regulating follicle development in multiparous

sheep. Our results indicate that “Cell cycle”, “PI3K-Akt signaling

pathway”, and “Oocyte meiosis pathway” play key roles in

multiparous reproduction. We also identified seven genes that

may be central to this mechanism. Overall, our RNA-seq

data provide an alternative strategy and a valuable resource

for investigations.
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