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Creatine is a nitrogenous compound essential for cellular energy homeostasis

found in animal protein; however, when heat-processed for pet food, creatine

is degraded to creatinine, which is not metabolically active and excreted in

urine. The objective of the present investigation was to define the postprandial

plasma creatine and creatinine response in dogs fed a commercial diet (CON)

formulated for adult dogs, top-dressed with a combination of creatine (9.6

g/kg dry matter, DM), carnitine (2.13 g/kg DM) and choline (0.24 g/kg DM;

CCC), methionine (2.6 g/kg DM; MET), or taurine (0.7 g/kg DM; TAU). Eight

adult Beagles were fed one of the four diets for 7 days in a Latin Square design

with no washout period. On day 7, cephalic catheters were placed and blood

samples were collected before being fed (fasted) and up to 6h post-meal.

Creatine and creatinine were analyzed using HPLC and data analyzed using

PROC GLIMMIX in SAS. Plasma creatine concentrations were higher in dogs

fed CCC (103 ± 10 µmol/L) compared to MET (72 ± 7 µmol/L) at fasted

(P < 0.05) and higher compared to all other treatments from 15 to 360min

post-meal (P < 0.05). Plasma creatinine concentrations were higher in dogs

fed CCC from 60 to 180min compared to all other treatments. These data

suggest that when creatine, carnitine and choline are top-dressed for 7 days,

plasma creatine is rapidly absorbed and remains elevated up to 6h post-meal.

This may have implications for energy metabolism and should be considered

when using creatinine as a diagnostic tool in dogs.
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Introduction

Creatine, an essential nitrogenous compound, is synthesized from the amino

acids glycine and arginine to produce ornithine and guanidinoacetate (GAA). Once

synthesized, GAA can be methylated by S-adenosylmethionine (SAM) to creatine and

S-adenosylhomocysteine, which is quickly metabolized to homocysteine. This reaction
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uses more methyl groups from SAM than any other methylation

reaction (1). Creatine is stored in high concentrations

in both skeletal and cardiac muscle as both creatine

and phosphocreatine, which is available for immediate

regeneration of ATP during short bouts of intense exercise

[reviewed in (2)]. More specifically, during initial intense

exercise, phosphocreatine is readily and quickly used for ATP

regeneration whereas aerobic metabolism provides a significant

amount of ATP during subsequent bouts of intense exercise

(3). Creatine may also play a role in modulating neurological,

neuromuscular and atherosclerotic disease [reviewed in (4)].

Creatine synthesis has the potential to present a burden

for amino acid metabolism as it involves three amino acid

precursors, glycine, arginine and methionine, the precursor to

SAM. In fact, some studies in rats supplemented with creatine

report greater plasma glycine concentrations (5) and lower

plasma homocysteine concentrations (5, 6). Similar to creatine,

carnitine is a major methyl acceptor and endogenous metabolite

of methionine that plays a role in generating energy via fatty

acid transport into the mitochondria (7). On the other hand,

choline can act as a methyl donor in the remethylation pathway

to generate methionine from homocysteine.

In vertebrates, creatine is irreversibly and non-enzymatically

dehydrated to produce creatinine at a rate of about 1.5–2% of

the total creatine pool per day (8) and, as such, serum and urine

creatinine is used as a measure of glomerular filtration rate in

dogs to clinically assess kidney disease. Although no reference

range exists for plasma or serum creatine in dogs, several healthy

reference ranges have been defined for serum creatinine in dogs.

Extremes in serum creatinine have been reported from 35 to

250 µmol/L but reference ranges can depend on the laboratory

method used and on the breed of dog (9). In fact, a separate

reference range has been defined for greyhound dogs from 106

to 168 µmol/L given that creatinine concentrations are directly

related to muscle mass (10). Accordingly, this reference range is

higher than the reference range determined in the same study

for healthy mixed breed dogs [70–150 µmol/L; (10)]. The serum

concentrations of creatinine need to be interpreted carefully

with an understanding of dietary composition and total feed

intake, the body composition of the individual, and the intensity

and duration of exercise that the individual participates in.

Sources of creatine in pet food are animal tissues and

by-products; however, after heat-processing, creatine in kibble

and meat and bone meal is rapidly degraded to creatinine

resulting in lower concentrations of creatine and higher

concentrations of creatinine in cooked pet food compared

to raw meats (11). Although not currently supplemented, or

even commonly measured in pet food, creatine has important

implications for amino acid and energy metabolism in the dog.

As such, the objective of the current study was to define the

postprandial plasma creatine and creatinine response in dogs

fed a commercial meat-based diet top-dressed with methyl

acceptors, creatine and carnitine, and methyl donor, choline, or

methionine, or a downstreammetabolite of methionine, taurine.

We hypothesize that dogs supplemented with creatine, carnitine

and choline will have greater postprandial plasma creatine and

creatinine concentrations compared to dogs fed methionine,

taurine and control.

Materials and methods

Animals, dietary treatments, and meal
response

All data that will be presented herein were collected but

not published in Banton et al. (12) and as such, a detailed

explanation of the methods can be found there. In short, eight

pair-housed healthy Beagle dogs (1.6 ± 0.04 yrs, 7.8 ± 1.5 kg)

were fed a commercial control diet formulated for all life stages

and fed to maintain body weight (BW; Nutrience Grain-Free

Pork, Lamb and Duck Formula, single batch, Rolf C. Hagen

Inc., QC, Canada, Supplementary Table 1). This diet was fed

either on its own (CON) or supplemented with 2.6 g/kg DM

99% DL-methionine (MET) to achieve 2.2 times the National

Research Council (13) recommended allowance for adult dogs

(7.2 g/kg dry matter; DM); 0.7 g/kg DM 98.5% taurine (TAU)

to achieve a similar amount to a taurine supplemented diet for

dogs with early cardiac disease (Royal Canin Early Cardiac Dry

Dog Food, Mars Pet Care, St. Charles, MO; 1.6 g/kg DM); or a

mixture of 9.6 g/kg DM 99.5% creatine monohydrate, 2.13 g/kg

DM 60% choline chloride and 0.24 g/kg DM 50% L-carnitine

(CCC). The control diet contained 0.195 g/kg of creatine and

0.563 g/kg creatinine on an as-fed basis. After supplementation,

dogs fed CCC received a total of 9.123 g/kg creatine on an as-

fed basis. The creatine dose was selected based on McBreairty

et al. (14) study done in pigs, which is 200 mg/kg BW/day and is

similar to a typical creatine dosing level in humans (15). Choline

was supplemented to achieve 2.3 times the NRC recommended

allowance for adult dogs (3.8 g/kg DM) and carnitine was

supplemented to exceed the commonly supplemented dose of

0.1–0.2 g/kg DM in dog food [0.33 g/kg DM; (16)]. Dogs were

fed one of the treatments or CON once daily for 7 d in a

complete, randomized 4 × 4 Latin Square design. On d 7, a

cephalic catheter was placed, a fasted blood sample was taken,

the meal was fed and blood samples were collected at 15, 30,

60, 90, 120, 180, 240, 300, and 360min after the meal. Blood

was placed in a sodium-heparin tube and centrifuged at 4◦C at

1,200× g for 10min. Plasma was separated and stored at−80◦C

until analysis.

Creatine and creatinine analysis

The creatine and creatinine content of the control diet was

analyzed at AlzChem Trostberg GmbH (Trostberg, Germany)
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using an ion chromatography system (Dionex ICS3000 or 5000)

as reported in van der Poel et al. (17). The creatine and

creatinine concentrations in the plasma was analyzed using

High Performance Liquid Chromatography (HPLC) [Adapted

from (18); Aligent Technologies, Santa Clara, CA]. Briefly,

60 uL of trifluoroacetic acid (TFA) was added to 300 uL of

plasma and 300 uL of tris buffer in order to deproteinate the

plasma. The sample was set on ice for 10min before centrifuging

at 14,500 rpm for 10min. The supernatant was then filtered

through a 0.2 uM nylon filter. Creatine and Creatinine (100

uL injection volume) were separated in a Hypercarb column

(4.6 × 100mm, 5 um; Fisher Scientific, Ottawa, ON) that was

maintained at room temperature usingHPLCwith UV detection

(210 nm) with a mobile phase of 3% acetonitrile and 0.1% TFA

and a flow rate of 0.8 mL/min. Creatine and creatinine peaks

were compared with known standards (Creatine Monohydrate,

99% and Anhydrous Creatinine, 98% from Sigma-Aldrich, St.

Louis, MO).

Statistical analysis

Concentrations of plasma creatine and creatinine were

analyzed as repeated measures using the PROC GLIMMIX

procedure in SAS (SAS version 9.4, SAS Inst., Inc., Cary,

NC). Dietary treatment and time were treated as fixed

effects and period and dog were treated as random effects.

In the statistical model, the effect of dietary treatment,

time, and their interaction was evaluated. For each variable,

model assumptions were assessed through residual analysis.

Residuals for creatine were not normally distributed and

as such, data were log-transformed for analysis. Means

were separated using the Tukey–Kramer adjustment, and

results were deemed significant at P ≤ 0.05 and trends at

0.05 < P ≤ 0.10.

Results

Residuals for creatine were not homogenous after log-

transformation of the data but they were normally distributed.

Although the homogeneity assumption of the model was not

met, this is likely due to the much larger variation in plasma

creatine concentrations in dogs fed CCC compared to the other

treatment groups, which was expected since these dogs were

supplemented with creatine.

There was a significant time by treatment interaction effect

for both plasma creatine (P < 0.0001) and creatinine (P

< 0.0001; Figures 1, 2, respectively). Fasted plasma creatine

concentrations were higher in dogs fed CCC (103± 10 µmol/L)

compared to dogs fed MET (72 ± 7 µmol/L; P = 0.0347),

but similar to dogs fed CON and TAU. In addition, plasma

creatine concentrations were higher in dogs fed CCC compared

to all other treatments from 15 to 360min post-meal (P <

0.05). Plasma creatinine concentrations were higher in dogs fed

CCC compared to dogs fed CON (P = 0.0117) and MET (P =

0.0285) at 30min post-meal and higher in dogs fed CCC from

60 to 180min post-meal compared to all other treatments (P

< 0.05). In addition, plasma creatinine was higher in dogs fed

CCC compared to CON (P = 0.0458) and tended to be higher

compared to dogs fed MET (P = 0.0861) at 240min post-meal.

Plasma creatinine concentrations tended to be higher in dogs fed

CCC compared to dogs fed CON (P = 0.0779) and MET (P =

0.0994) at 300 min post-meal.

As dogs on MET, TAU and CON did not differ in their

plasma creatine or creatinine concentrations at time 0 (fasted),

a reference range for this population of dogs was calculated

using pooled data across these three treatments (n = 24).

Fasted plasma creatine ranged from 45.8 to 137.0 µmol/L with

an average concentration of 83.0 ± 24.7 µmol/L, therefore

the reference range was determined to be 33.6–132.4 µmol/L

(mean ± 2 SDs). Fasted plasma creatinine ranged from 62.7 to

182.3 µmol/L with an average concentration of 139.4 ± 28.1

µmol/L, therefore the reference range was determined to be

83.3–195.5 µmol/L.

Discussion

As hypothesized, creatine concentrations increased

following the meal proving effective dosing in the CCC

treatment and agreeing with previous reports. Harris et al.

(19) reported peak creatine concentrations that were 4 times

higher than fasted at 3 h post-meal in Beagles supplemented

FIGURE 1

Mean plasma creatine concentrations (µmol/L) in dogs from

fasted (0min) to 360min post-meal on either creatine, carnitine

and choline (CCC), control (CON), methionine (MET), or taurine

(TAU) supplementation. Values are presented as least squares

means (lsmeans) ± SEM. The asterisk indicates a significant time

by treatment interaction e�ect (P < 0.05) at each time point.
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FIGURE 2

Mean plasma creatinine concentrations (µmol/L) in dogs from fasted (0min) to 360min post-meal on either creatine, carnitine and choline

(CCC), control (CON), methionine (MET), or taurine (TAU) supplementation. Values are presented as least squares means (lsmeans) ± SEM. The

asterisk indicates a significant time by treatment interaction e�ect (P < 0.05) at each time point.

with creatine monohydrate at ∼167 mg/kg after only 1 day.

Lowe et al. (20) reported peak creatine concentrations that

were 4.5 or 5.7 times higher than fasted at 1 and 2 h post-meal

in Beagles supplemented with creatine monohydrate at either

200 or 400 mg/kg BW/day, respectively for 28 days. In the

present study where we supplied creatine at 200 mg/kg BW/d,

creatine reached peak concentrations that were seven times

higher than the control diet after 90min and remained elevated

in plasma until at least 6 h post-meal. Therefore, when creatine

monohydrate is top-dressed, it is rapidly absorbed and remains

elevated in circulating plasma for up to 6 h.

Although an established healthy reference range for plasma

creatine does not exist in dogs, we attempted to define one, 33.6–

132.4 µmol/L, noting that this is limited to only eight dogs of

the same age and breed. Different serum creatinine reference

ranges have been defined for different breeds of dogs; 70–150

µmol/L in healthy mixed breed dogs and 106–168 µmol/L

in greyhounds (10). Dogs supplemented with creatine in this

trial had plasma creatinine concentrations above both reference

ranges from 30 to 300min following the meal. Furthermore, at

certain time points following the meal, dogs fed CON, TAU, and

MET also had concentrations that exceeded the mixed breed

reference range. Although this reference range is in serum and

we measured plasma, this should be considered when using

creatinine as a diagnostic tool for kidney disease in dogs. In fact,

in several case reports in human medicine, people consuming

large amounts of protein and creatine supplements have been

misdiagnosed with kidney disease due to elevated levels of serum

creatinine (21). Based on the data from the present study, it

is recommended that fasted blood samples be collected when

assessing creatinine concentrations in dogs in a clinical setting,

especially if the dog is consuming supplementary creatine,

as these values could be elevated and additional diagnostics

are required.

In the only study to investigate a source of creatine

(guanidinoacetic acid, GAA) supplementation to Foxhound

mixed breed dogs undergoing a light exercise regimen,

Dobenecker and Braun (22) reported greater plasma creatine

concentrations up to 7 h post-meal, as well as a decrease in body

fat and an increase in muscle. This avenue of research remains

largely unexplored in dogs, but supplementing creatine to

human athletes has been well-studied and suggests that creatine

supplementation can improve both physical performance (23,

24) and recovery after short-term, high intensity exercise (25,

26). The meal response of creatine appearance in plasma

suggests that after only 7 days of supplementation, peak

concentrations of creatine can reach up to seven times that

of fasted concentrations. Although more research is needed,

this data provides insight into the application of creatine

supplementation in dogs and suggests that working breeds who

perform shorter bouts of high intensity exercise may benefit

from creatine supplementation, as has been shown to be the case

in exercising humans (23–26).

Several studies in both humans (27) and rats (5, 6)

suggest that creatine supplementation decreases homocysteine

concentrations. Homocysteine has long been suggested as a

risk factor for the development of coronary heart disease

in humans [reviewed in (28)] and more recently, in dogs

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2022.1063169
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Banton et al. 10.3389/fvets.2022.1063169

(29, 30). In previously published findings from this study,

we reported similar plasma homocysteine and methionine

concentrations in the CCC supplemented group compared to

CON and TAU, despite high levels of supplemental creatine,

whereas dogs supplemented with methionine had elevated

plasma homocysteine andmethionine concentrations from 60 to

360min following the meal (12). There are several explanations

for the lack of change in methionine and homocysteine

concentrations in the CCC group. First, the control diet was

formulated for dogs of all life stages and far exceeded amino acid

requirements at maintenance. Brosnan et al. (31) highlight that

the demand for de novo creatine synthesis in growing piglets

is far greater than at maintenance and presents a considerable

burden on methionine metabolism and this demand may not be

present in the dogs on the current study. Second, the dogs used

in the current study were healthy adult dogs not undergoing

any exercise or immune challenge and therefore there was no

additional demand for amino acids or downstream metabolites.

Deminice and Jordao (32) also highlight the ability of creatine to

reduce oxidative stress markers induced by exercise, suggesting

a demand for creatine during exercise. We also did not see

any treatment differences in plasma arginine or glycine in the

previous report (12), which may be explained by this reasoning

as well. Likely the oversupply of amino acids in the control

diet circumvented the need for any sparing effect of creatine

supplementation. Future studies may attempt to investigate

the sparing effect of creatine with either growing or exercise-

challenged dogs or perhaps a diet limited in methionine.

Recent work in human medicine has begun exploring

creatine’s role in disease. For example, patients with rheumatoid

arthritis supplemented with creatine for 12 weeks had increased

appendicular and total lean mass, improving muscle wasting

caused by the disease (33). A study done in healthy elderly

men and women reported that those supplemented with

creatine for 2 weeks had improved upper body grip strength

and delayed neuromuscular fatigue (34). Some work in

rats suggests an anti-inflammatory effect of supplemental

creatine in models of both acute and chronic induced

inflammation (35, 36). However, studies done in humans

remain contradictory. Although creatine supplementation

in healthy athletes has led to decreases in several pro-

inflammatory cytokines after exercise (37, 38), supplemental

creatine in patients with osteoarthritis had no effect on

pro-inflammatory compounds compared to unsupplemented

patients (39). Together, this work suggests a possible application

for creatine supplementation in aging dogs, but research is yet to

be done in this area.

In conclusion, 7 days of creatine monohydrate

supplementation at 9.6 g/kg DM (200 mg/kg BW/day) fed

to healthy adult beagles led to elevated plasma creatine

concentrations up to at least 6 h post-meal and elevated plasma

creatinine concentrations up to 4 h post-meal. Although our

previous findings suggest no differences in plasma methionine,

arginine or glycine in the CCC group, rat and human studies

indicate that this may be a possibility and may be relevant for

future investigations. For instance, exercising dogs or puppies

may be favorable populations of dogs to benefit from elevated

energy stores or spare precursor amino acids necessary for

growth. These populations should be considered when thinking

about supplementing creatine in dogs and when conducting

future research.
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