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Antimicrobial resistance (AMR) is a global problem facing human, animal, plant,

and environmental health by threatening our ability to e�ectively treat bacterial

infections with antimicrobials. In the United States, robust surveillance e�orts

exist to collect, analyze, and disseminate AMR data in human health care

settings. These tools enable the development of e�ective infection control

methods, the detection of trends, and provide the evidence needed to guide

stewardship e�orts to reduce the potential for emergence and further spread

of AMR. However, in veterinary medicine, there are currently no known

equivalent tools. This paper reviews e�orts in the United States related to

surveillance of AMR in veterinary medicine and discusses the challenges and

opportunities of using data from veterinary diagnostic laboratories to build a

comprehensive AMR surveillance program that will support stewardship e�orts

and help control AMR in both humans and animals.
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1. Introduction

It is estimated that globally in 2019, almost 5 million human deaths were associated

with bacterial antimicrobial resistance (AMR), including over 1.25million deaths directly

attributable to bacterial AMR (1). This places the global health impacts of AMR on par

with HIV/AIDS and malaria (1). In the United States, conservative estimates indicate
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that annually more than 2.8 million people develop antibiotic-

resistant infections and over 35,000 of those infected die (2).

Furthermore, the American Veterinary Medical Association

Committee on Antimicrobials has identified increasing numbers

of infections associated with bacteria resistant to first-line

antimicrobials in selected animal species in the United States,

representing a challenge for veterinarians (3). From the One

Health perspective, water, soil, and wildlife represent important

AMR reservoirs contributing to the spread of resistance (4).

Although AMR found in bacteria may occur naturally, the

overuse of antimicrobials in humans, animals, and plants is

accelerating the rapid spread of resistant bacteria and their genes

between people, animals, and the environment (2, 5). Further,

the COVID-19 pandemic slowed progress in addressing AMR

and the incidence of some types of resistant bacteria significantly

increased (6).

To address AMR, the United Nations Quadripartite (a

collaborative framework of the Food and Agriculture

Organization of the United Nations, United Nations

Environment Programme, World Organization for Animal

Health, and World Health Organization), the U.S. National

Academies of Science, and the U.S. Centers for Disease Control

and Prevention (CDC) promote a One Health approach of

collaboration across human, animal, and environmental health

sectors (2, 7–9). Surveillance and antimicrobial stewardship are

among the core activities in this effort (2, 7, 8).

In the United States, centralized platforms regularly

aggregate, analyze, monitor, and share AMR data collected

from human healthcare facilities (10, 11). This enables the

development of prevention and control measures and informs

prescribing practices in health care settings. In animal health,

there are currently no known equivalent tools. This paper

presents the existing efforts in the United States that gather AMR

data in animals and discusses the challenges and opportunities

to build a comprehensive surveillance program for AMR

in veterinary medicine using existing data from veterinary

diagnostic laboratories (VDLs).

2. Current e�orts

As a result of the two consecutive National Action Plans for

Combating Antibiotic-Resistant Bacteria (CARB) (12, 13), the

U.S. Food and Drug Administration (FDA), the U.S Department

of Agriculture (USDA), and the CDC have made significant

progress to improve the collection, analysis, and dissemination

of AMR data from livestock and companion animals.

The National Antimicrobial Resistance Monitoring System

(NARMS) is a collaboration between CDC, FDA, and USDA

to monitor AMR among commensal bacteria (Escherichia

coli and Enterococcus) and select pathogens (Campylobacter,

Salmonella, E. coli O157) isolated from human patients, retail

meats, cecal contents, and meat/poultry products collected

at inspected slaughter and processing establishments (14).

In partnership with NARMS, FDA’s Veterinary Laboratory

Investigation and Response Network (Vet-LIRN) and USDA’s

National Animal Health Laboratory Network (NAHLN) have

additional monitoring programs for select pathogens from sick

animals. As part of this, data for companion animals are

combined and reported jointly through FDA’s NARMS website

(15). Standard methodology is used to obtain samples, conduct

and interpret antimicrobial susceptibility testing (AST), and

sequence the genomes (16). NARMS’s strength is the ability

to serve as a One Health platform for AMR and integrate

data (phenotype and genotype) from several sources within the

program. The data are shared in several ways, including through

“NARMS Now: Integrated Data” (17), which is likely the most

relevant tool for veterinary medicine as it allows users to access

susceptibility results via an interactive format. However, to

compare the different sources, NARMS uses human breakpoints

to interpret the minimum inhibitory concentration (MIC) of all

isolates to determine resistance (18, 19); this approach meets

NARMS’s goals but limits the immediate use of these data to

support antimicrobial decision making in veterinary medicine

as human clinical breakpoints often differ substantially from

those in animal species (19, 20). The MICs and source data can

be downloaded but are not readily available via the dashboard.

NARMS Now provides genotypic resistance results for the

present year, but phenotypicMIC data lag and the latest available

is from 2019 (21).

For isolates sequenced by NARMS, the whole genome

sequences (WGS) are frequently uploaded along with

selected metadata into the National Center for Biotechnology

Information (NCBI) database. NARMS has also developed

Resistome Tracker (22), a global tool to explore resistance and

other microbial features from a wide range of bacteria submitted

to the NCBI (23). Resistome Tracker has current data and lets

users explore and compare the distribution of different AMR

genes by source (animals, environmental, etc.), country, and

antimicrobial drug. There are no phenotype data on Resistome

Tracker, thus its relevance in directly assisting veterinarians

with stewardship efforts is unclear.

The National Database of Antibiotic Resistant Organisms

(NDARO) is a cross-agency centralized database curated by

NCBI. It provides access to AMR data to facilitate real-time

surveillance of pathogenic organisms (23, 24). It is currently

published as a beta version, but the Pathogen Detection Isolates

Browser contains over 50 bacterial species from several sources

including animals (24). Submissions come from across the

United States including governmental and non-governmental

institutions as well from around the world. NDARO’s strength

is the ability to aggregate and analyze WGS from a large

number of organisms across the world. However, the use of this

database in animal health is currently limited since the majority

of the data comes from humans. Further, the metadata lacks

the standardization necessary (e.g., isolate source, host terms,
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and geospatial data are not consistently used) to allow robust

searches to be conducted within and across animal species.

Phenotype data (i.e., AST) are only available for a small portion

of isolates (24). The user interface is geared toward researchers,

making it difficult for veterinarians to consult for aiding in

clinical decision making or surveillance use (24).

The Veterinary Laboratory Investigation and Response

Network (Vet-LIRN) is a collaboration between FDA and VDLs

to promote human and animal health. As a part of the CARB

plan, Vet-LIRN was tasked to develop, expand, and maintain

AST and WGS testing of selected veterinary pathogens (E. coli

and Staphylococcus pseudintermedius from dogs, and Salmonella

enterica from any animal species) isolated at VDLs (25). Vet-

LIRN’s strength is the ability to obtain both WGS and AST

results from selected isolates. Results from 2018 and 2019

isolates from sick dogs are available via a dashboard hosted

in combination with NARMS and NAHLN that allows users

to visualize the isolates by organism and state (15). For E.

coli and S. pseudintermedius, users can explore the percentage

resistance with both gene andMIC distributions (15).Whenever

available, veterinary breakpoints are used to interpret resistance,

and samples are classified as either urinary tract infections

(UTI) or non-UTI specimens to enable interpretation (15).

While grouping specimens into UTI and non-UTI categories

may be considered appropriate from a laboratory perspective

(19, 20), further categorization by specimen type could be

useful to veterinary practitioners to aid clinical decisions and

resistance interpretation.

The National Animal Health Laboratory Network (NAHLN)

started as a pilot in 2018. It was created by USDA Animal

and Plant Health Inspection Service (APHIS) to demonstrate

the viability of implementing a sampling stream for monitoring

AMR profiles in animal pathogens routinely isolated by U.S.

VDLs. The project collects and aggregates AMR profiles for

livestock and companion animals that are clinically ill, and

all VDLs that submit their data use standardized methods

and AST panels (26). VDLs submit AST data for a specific

number of isolates per year and only for E. coli from cattle,

swine, poultry, horses, dogs, and cats; Salmonella enterica from

cattle; Mannheimia haemolytica from cattle; Streptococcus suis

from swine, Pasteurella multocida from chicken and turkeys;

Streptococcus equi subsp. equi and S. equi subsp. zooepidemicus

from horses; and Staphylococcus pseudintermedius from dogs

and cats. The strength of NAHLN is the ability to use

existing VDL data and quickly disseminate information on

these pathogen-animal combinations. An online dashboard on

NAHLN’s website enables the visualization of MIC distributions

by selecting the pathogen, species, drug, and date under “MIC

Table” (26). When available, veterinary breakpoints are used for

interpretations (26, 27). For dogs and cats, data from UTIs are

displayed separately from all the other specimens. Additionally,

data from companion animals are combined with Vet-LIRN

data and reported jointly through FDA’s NARMS website (15).

With the increased breadth of organisms, the use of veterinary

breakpoints and the up-to-date information, NAHLN provides

the type of data needed to improve stewardship in veterinary

medicine, however, results are presented only at the national

level and at this time the number of pathogens and isolates

remains limited.

The National Animal Health Monitoring System (NAHMS),

administered by USDA APHIS, performs national studies

on health and management practices of domestic livestock,

including poultry, populations on a rotating schedule (28).

Participation by producers is voluntary, with participants

selected using a weighted statistical approach to provide

national estimates. Many studies involve the collection of

biological samples that are examined for a range of issues

depending on the goal of the study (29–31). The recent

NAHMS Health Management study on U.S. Feedlots 2021

included questions about antimicrobial stewardship (32). The

Swine 2021 study also included AST on fecal cultures from

grower/finisher pigs for Salmonella, E. coli, Campylobacter,

and Enterococcus (33). NAHMS’s strength is the ability to

collect data from healthy animals via a systematic approach.

Results can be found in reports and dashboards publicly

available on APHIS’s website (34). The NAHMS reports provide

country-level AMR results (e.g., number and percentage of

isolates resistant by antimicrobial agent), but more details

(e.g., MIC distribution) can be found in specific peer-reviewed

publications (35–38). While data are not collected annually

from each commodity group, AMR results can be compared

with those from previous years to assess trends over time in

healthy animals.

Other efforts, including additional regional and national

pilots, exist to collect AMR data from animals. The main

strength of these additional efforts is the ability to explore

new formats of data collection, aggregation, and dissemination,

but to date results of these efforts have not been made

public (39–42).

3. Challenges and opportunities

Despite the growth and expansion of the existing AMR

surveillance systems to collect relevant data for veterinary

medicine, the currently available programs remain heavily

focused on zoonotic pathogens and are limited to few organisms

of animal health relevance. The animal data available are often

aggregated at the national (e.g., NAHMS, NAHLN) or state level

(i.e., NARMS/Vet-LIRN). Except for WGS that are frequently

uploaded to NCBI, NAHLN, and NARMS genotype resistance

results, data availability is often delayed by several years.

These factors make the current systems insufficient to provide

researchers, commodity groups, and veterinary practitioners

with current and relevant evidence needed to develop control

measures and guide stewardship practices, highlighting the need
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for a comprehensive, real-time surveillance program for AMR in

veterinary medicine.

Central to the development of such efforts is the ongoing

and timely collection of AMR data. However, surveillance

activities designed to generate these types of information

are complex, expensive, and time consuming to implement;

therefore, leveraging and combining existing datasets can be

valuable. Unlike human medicine where collection of these data

is incentivized by requirements for Medicare reimbursement,

state regulations, or other health system subsidies, veterinary

medicine has few mechanisms to incentivize generating or

sharing this type of data (43).

The model piloted by NAHLN to aggregate VDL data

represents a unique opportunity. VDLs routinely receive and test

an array of clinical samples from diverse animal species for AST.

Many perform MALDI-TOF mass spectrometry for bacterial

identification, and some may perform WGS for a limited

number of pathogens. Although biased against healthy animals,

VDLs provide a rich source of data for AMR surveillance

in diseased animals. The ability to aggregate, analyze, and

share this type of information in a manner that is region

specific and timely would allow for (i) developing cumulative

susceptibility information to guide prescribing practices, (ii)

monitoring resistance trends, (iii) detecting emerging diseases,

and (iv) potentially improving clinical decision making [i.e.,

generation of new breakpoints and epidemiological cut-off

values (ECVs or ECOFFs)]. However, using VDL data to build

a centralized surveillance system has many challenges which we

have summarized below:

1. Harmonization of AST methods. Many VDLs rely

on AST methodology and quality standards control

recommended by the Clinical and Laboratory Standards

Institute (CLSI) (44). However, many techniques,

including disc diffusion assays, broth microdilution,

and epsilometer testing (E test) are available. This can

lead to inconsistent results between labs, impacting data

quality and limiting comparisons. While many VDLs

conduct their own quality control and method validation,

NAHLN has recently incorporated annual proficiency

testing as part of their procedures to help improve future

methods harmonization.

2. Standardized nomenclature and ontology. Currently,

veterinarians submitting data and VDLs use a range

of terms and abbreviations that are not consistent

across institutions. Harmonization of terminology

is critical for aggregating and analyzing data across

different sources and for developing a data ecosystem

based on the FAIR principles of research (i.e., findable,

accessible, interoperable, and reusable) (45). While

ontology platforms such as the Systematized Nomenclature

of Medicine (SNOMED) exist, the need for further

refinement of these platforms related to veterinary AST

remains, and the ontology must be more widely adopted

across labs to be effective.

3. Standardized data interpretation of resistance. In veterinary

medicine, there is a severe paucity of established clinical

breakpoints. Furthermore, human and veterinary CLSI

standards used to interpret AST results are frequently

updated. Therefore, reporting interpretative criteria (i.e.,

susceptible, intermediate, or resistant) may differ across

laboratories over time. While diagnostic interpretations are

often easier to collect and summarize in the short term, this

approach compromises long-term accuracy of the dataset.

To ensure resistance is being determined consistently

across the years using the latest CLSI standards, VDLs need

to provide raw AST data such as MICs or zone diameters

to surveillance programs rather than interpretations. Any

reliable analysis of temporal trends will need consistency

in the interpretation of MIC or zone diameter data. MIC

data also allow for the use of both human and veterinary

breakpoints and for the determination of ECVs, which are

helpful in the absence of clinical breakpoints and for One

Health comparisons (46).

4. Standardized data reporting. VDLs produce large volumes

of data and their IT infrastructure is typically lab-specific

and designed to produce reports back to their clients rather

than to surveillance programs. Further, AST results are not

always automatically linked to the laboratory information

management systems (LIMS) that contain the metadata

needed to interpret it. LIMS are also not set up to easily

format, standardize, export, and transfer this information

on an ongoing basis. Data sharing thus represents a

significant burden to VDLs and might prevent their

participation in surveillance programs that require specific

formats and metadata. Data submitted to NAHLN and

Vet-LIRN, for instance, must use standardized diagnostic

methods and be in a certain format. This requires

significant human labor and data manipulation, in addition

to specialized equipment and vendors. Ongoing advances

in IT and programming are assisting in making the

automatization of such tasks possible, but this remains

a significant hurdle for many smaller labs. Thus, the

development of a robust IT infrastructure that can handle

high volumes of data in a continuous manner and remove

the burden from VDLs by accepting multiple formats is

critical for the development of a national centralized AMR

surveillance program.

5. Representativeness. Most VDL samples come from sick

animals and often represent themost severe cases and those

that failed treatment, and thus may not be representative

of the general population. While this is also the case

in human medicine surveillance (10, 11), the difference

is that ASTs are performed less frequently in veterinary

medicine due to associated costs (47). AST test design for

clinical samples is also focused around known breakpoints,
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and thus the MIC data range that is generated may be

very limited leading to challenges in interpretations and

comparisons across a One Health spectrum. Thus, VDL

AST data are not ideal for all applications (i.e., development

of antibiograms for first-line empirical therapy). These

limitations, however, do not discredit the value of utilizing

VDL AST data in a centralized national surveillance

program. For example, several European countries have

developed AMR surveillance systems for diseased animals

(47), and the European Union has an ongoing effort to

develop a standardized and continuous program at the EU

level modeled after the European Antimicrobial Resistance

Surveillance Network in humans (48, 49).

6. Data accuracy. Much of the metadata associated with

VDL data are self-reported by veterinarians, owners, or

producers. Thus, there is an inherent risk for inaccuracy

of the data as it relies upon the effort applied by the

submitter to include all relevant and accurate information.

In addition, many livestock production systems in the U.S.

are large, multi-site and/or state operations. Therefore, if

geographic localization of the source of bacterial isolates

is the goal, it is important to ensure that the actual site

of isolation (not billing address) is utilized. Some VDLs

incentivize inclusion of premise identification numbers,

which could assist in this process; however, use of these

data would require balancing the data protection needs

of stakeholders.

7. Data confidentiality and security. Accredited VDLs have

a requirement to protect their clients’ data, many of

whom might be concerned by Freedom of Information Act

(FOIA) requests, potential misuse and misinterpretation of

information, and the risk of reidentification. To develop an

effective AMR surveillance system in veterinary medicine,

the needs and concerns of the different data users and

those providing data must be balanced. For example,

the appropriate geospatial level of definition that can

protect confidentiality while providing useful information

needs to be carefully defined, so no individual operation

or animal population can be identified. Models for

data security and confidentiality are well-described and

widely used in dealing with sensitive information such as

personal identifiable information and should be explored

and adapted to protect AMR data from animal sources.

Without these protections, stakeholders may be unwilling

to participate in surveillance efforts.

8. Relationship between AMR and antimicrobial use (AMU).

AMU data from animals in the United States are often not

connected with AMR data (50–55), however it is critical

to evaluate their relationship with the development of

resistance. While most VDLs request AMU information as

part of the clinical history, the provision of these data are

intermittent at best and not systematically collected to allow

for associations with AMR results. Models for improving

the collection of AMU in the VDL submission process

should be explored in the future.

4. Conclusion

Challenges and limitations exist, but there is a unique

opportunity to learn from existing initiatives and leverage the

rich dataset from VDLs using state-of-the art technology to

build an ongoing, real-time, and geo-specific AMR surveillance

system for animal health in theUnited States. The data generated

could be used to provide evidence-based clinical practices

that can support and monitor successful prevention, control,

and stewardship initiatives in veterinary medicine. Further, if

enough high-quality data and extended dilution AST results

become available, it could inform the development of new

breakpoints in veterinary medicine and ECVs for One Health

comparisons, plus provide much needed data regarding less

common pathogens in major animal species and common

pathogens of minor animal species, such as sheep and goats.

The integration of veterinary AST data with human, plant,

water, and other environmental data, as well as with AMU data,

were not discussed here, but are also imperative. Any effort

to build a more comprehensive surveillance system to track

AMR in animals must prevent redundancy, and ensure data

integration across existing platforms. Also not discussed here

and critical for the success of any surveillance system is sustained

funding; prioritization of federal resources dedicated to AMR

surveillance in animals is critical for the development of the IT

framework, the standardization efforts, and to incentivize VDLs

to participate. Finally, AMR is a global One Health issue; efforts

developed in the United States should also consider the long-

term goal of providing the ability to track AMR globally in both

human and animal populations.
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