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Obesity is a common problem in dogs and overconsumption of energy-rich foods is a

key factor. This study compared the inflammatory response and fecal metabolome of

dogs fed a high-fat vs. a high-starch diet. Ten healthy lean adult beagles were equally

allocated into two groups in a cross-over design. Each group received two diets in which

fat (horse fat) and starch (pregelatinized corn starch) were exchanged in an isocaloric

way to compare high fat vs. high starch. There was a tendency to increase the glucose

and glycine concentrations and the glucose/insulin ratio in the blood in dogs fed with the

high-fat diet, whereas there was a decrease in the level of Non-esterified fatty acids and a

tendency to decrease the alanine level in dogs fed with the high-starch diet. Untargeted

analysis of the fecal metabolome revealed 10 annotated metabolites of interest, including

L-methionine, which showed a higher abundance in dogs fed the high-starch diet.

Five other metabolites were upregulated in dogs fed the high-fat diet, but could not

be annotated. The obtained results indicate that a high-starch diet, compared to a

high-fat diet, may promote lipid metabolism, anti-oxidative effects, protein biosynthesis

and catabolism, mucosal barrier function, and immunomodulation in healthy lean dogs.

Keywords: starch, fat, fecal metabolome, obesity, dogs

INTRODUCTION

Obesity is one of the largest health challenges nowadays in dogs. Studies report a prevalence of
canine overweight and obesity ranging from 34 to 60% (1–3). Obesity in dogs has been linked to
not only a decreased vitality, emotional wellbeing, and longevity but also an increased risk of certain
health issues such as insulin resistance, hypertension, cardiovascular disease, and osteoarthritis
(4, 5). While multiple molecular mechanisms might link obesity to its complications, inflammation
is a common feature that has been implicated in the pathophysiology of many obesity-associated
disorders (6). Similarly to these findings in humans, it has been revealed that obese and overweight
dogs showed a higher inflammatory state (7), as indicated by increased concentrations of serum
interleukin-6 (IL-6) (7), C-reactive protein (CRP), and tumor necrosis factor alpha (TNF-α) (8).
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The increase in adiposity is often attributed to high dietary
fat intake (9). Many studies have shown that high-fat diets
(>30% of energy from fat) can easily induce obesity in
humans (10, 11), mice (12, 13), and dogs (14, 15). When the
average amount of fat in the diet increases, the incidence of
obesity also rises (11, 12). Furthermore, in mice and humans,
consumption of high-fat diets leads to alterations in the
composition and function of the gut microbiota, promoting
metabolic endotoxemia and triggering an inflammatory response
(13, 16). In dogs, feeding a high-fat diet is associated with
insulin resistance (17), reduced brain insulin transport (14),
decreased microbiota α-diversity (15), and reduced abundance
of Prevotella, Solobacterium, and Coprobacillus (18). However,
the majority of studies on the intake and possible adverse
health effects of a high-fat diet in dogs focused on increased
inflammation and alterations in the gut microbiome, but no
study so far has investigated the effect of a high-fat diet on the
gut metabolome.

Starch is the most abundant dietary nutrient globally, and
provides energy to a rapidly growing human population (19),
and is also a main nutritional source for pet dogs (20).
However, this highly digestible energy source could also lead
to nutrition-related health problems. Studies have suggested
that typical starch-rich diets can also contribute to obesity
(19, 21), hyperglycaemia (21), pathogenesis and difficulty of
managing type 2 diabetes mellitus (22), as well as cardiovascular
disease (23). In dogs, nutritional research on dietary starch
mainly concerns its digestibility and fermentation, but not
the effect of high-starch diets on metabolic changes and
inflammatory responses.

Metabolomics is the study of all small molecules detectable
in a biological sample. It provides information on subclinical
metabolic alterations associated with (patho)physiological
changes and disease outcomes (24). Metabolome analysis has
revealed previously unknown alterations in amino acid, lipid,
and carbohydrate metabolism across species, with underlying
links to several conditions like obesity, inflammation, and
oxidative stress (25). Metabolomics is rather emerging in canine
nutrition, with current research being limited to study the
metabolomic profile in the healthy vs. obese or overweight
dogs (26), and in dogs fed with different protein levels (27),
with far more pending to be explored. The present study aimed
to compare the inflammatory status and fecal metabolome of
lean dogs fed a high-fat vs. a high-starch diet, providing new
insights and basis for a theoretical framework for high-fat vs.
high-starch induced metabolic and inflammatory effects in
relation to obesity.

MATERIALS AND METHODS

Animals and Experimental Design
Ten healthy adult research beagles of ideal body weight (BW)
and condition (4 intact females, 3 intact males and 3 neutered
males; 4.2 ± 2.6 y; 10.5 ± 1.2 kg; body condition score (BCS)
4–5/9) were equally allocated into two groups in a cross-over
study design with two periods of 6 weeks each. All dogs were
housed individually and under a 12-h light and 12-dark cycle with

TABLE 1 | Formulation of the diets (g/kg).

Item High Starch diet (HS) High Fat diet (HF)

Horse hearts 701.5 827.6

Corn starch (pregelatinized) 287.6 0.0

Corn oil 3.9 4.6

Horse fat 1.4 161.4

Premix 5.6 6.4

KJ/100g Dry matter 1,811 2,579

a room temperature of 17◦C. Prior to the study, a commercial
standard diet (Hill’s Science Plan Advanced Fitness; Hill’s Pet
Nutrition, Inc., Topeka, KS, USA) mixed with experimental diets
was fed to the dogs for 1 week adaption−75% standard with 25%
experimental diets for 3 days, 50% of each for 2 days, and 75%
experimental with 25% standard diets for 2 days. During the first
period of the study (P1), five dogs in group A were fed a high-
starch (HS; pregelatinized corn starch;∼63.5% carbohydrate and
9.4% fat) diet and five dogs in group B were fed a high-fat (HF;
horse fat; ∼12.9% carbohydrate and 46.9% fat) diet. After P1, a
mixture of two experimental diets was fed to the dogs for one-
week transition–group A: 75% HS with 25% HF diet for 3 days,
50% of each for 2 days, and 25% HS with 75% HF for 2 days;
same proportion but reverse diets for group B. Experimental diets
were then completely switched during the second period of the
study (P2).

Diets were formulated to be isonitrogenous on energy basis, so
that for a given energy allocation the protein intake was similar
regardless of the diet. The formulation of both diets is presented
in Table 1. The HF and HS diet contained 18.2 g crude fat, 13.9 g
crude protein, and 5.0 g nitrogen-free extract per MJ, and 5.2 g
crude fat, 13.1 g crude protein, and 35.0 g nitrogen-free extract
per MJ, respectively. Dogs were fed once a day at 10:00 a.m., and
had free access to water. Body weight and BCS were assessed
weekly. Food intake was recorded daily, and the amount was
adjusted weekly to maintain a stable body weight, if needed.

All samples were collected at the end of each study period.
Fasting blood samples (∼30mL) were drawn from the jugular
vein. An aliquot of ∼4mL was collected in PAXgene Blood RNA
tubes (PreAnalytiX GmbH, Erembodegem, Belgium) to analyse
mRNA expression of TLR-4, CD14, IL-10, IL-18, IL-1B, IL-
1RA, IL-8, and TNF-α. Serum and plasma for assessing mRNA
expression, acylcarnitine and amino acid profiles were obtained
by centrifuging blood at 2000 x g for 15min at 4◦C, which
was stored at −20◦C until analysis. Fresh fecal samples (∼10 g)
were collected within 10min after spontaneous defaecation. The
samples were scored for fecal consistency (1 = watery liquid
feces that can be poured; 2 = soft, unformed stool that assumes
the shape of the recipient; 3 = soft, formed, moist stool; 4 =

hard, formed, dry stool; 5 = hard, dry stool), and fecal pH was
measured with a portable pH meter (Hanna Instruments Ltd.,
Temse, Belgium). An aliquot of ± 2 g was placed into a sterile
plastic tube, frozen immediately on dry ice, lyophilized as soon
as possible, and stored at −80◦C in preparation of metabolomic
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analysis. The remainder of the fecal sample was stored at −20◦C
for chemical analyses.

Analytical Methods
Body composition was determined by the deuterium dilution
method using Fourier-transform infrared spectroscopy as
described by (28).

Proximate analysis was performed on the diets using standard
methods, ISO 1442:1997 for dry matter, ISO 936:1998 for crude
ash, Kjeldahl nitrogen (6.25 × N, ISO 5983–1, 2005) for dietary
crude protein, and ISO 5498:1981 for crude fiber. Nitrogen-free
extract was calculated by subtracting crude ash, crude protein,
crude fat, and crude fiber from the dry matter content. A Total
Dietary Fiber Assay Kit (Sigma–Aldrich Co., Overijse, Belgium)
was used to determine total dietary fiber and insoluble dietary
fiber using procedures based on a combination of enzymatic and
gravimetric methods (29). Soluble dietary fiber was calculated by
subtracting insoluble dietary fiber from total dietary fiber.

Serum concentrations of glucose, triglyceride, cholesterol,
and total protein were determined using the Architect C16000
analyser (Abbott Max-Planck-Ring, Wiesbaden, Germany).
Fibrinogen concentration was determined using the Sysmex CS-
5100 analyser (Siemens Healthcare Diagnostics Products GmbH,
Marburg, Germany), insulin concentration was determined by a
commercially available kit (INS-Irma, DIAsource ImmunoAssays
S.A., Louvain-la-Neuve, Belgium), and the insulin-to-glucose
ratio was calculated as described in German et al., (30)
to assess insulin sensitivity. Serum leptin concentration was
measured using a validated, commercially available canine
ELISA kit (Millipore Corp., Billerica, MA, USA) following the
manufacturer’s instructions. Serum Non-esterified fatty acids
(NEFA) concentrations were analyzed by spectrophotometry
(EZ Read 400 Microplate Reader, Biochrom Ltd., Cambridge,
United Kingdom). Free carnitine, acylcarnitine and amino
acid profiles were determined on lithium-heparin plasma
by quantitative electrospray tandem mass spectrometry as
previously described (31, 32). Blood lipopolysaccharides (LPS)
concentrations were determined using a kinetic turbidimetric
Limulus amoebocyte lysate (LAL) assay.

S100A12 concentration in serum and feces was determined by
a species-specific ELISA (33). Fecal short-chain fatty acid [SCFA;
i.e., acetate, propionate, butyrate, iso-butyrate, iso-valerate], and
NH3 concentrations were determined first by extracting samples
with 10% formic acid, containing 1 mg/ml 2-ethyl butyric
acid as internal standard (3 g sample + 15ml extraction fluid;
shake for 5min, centrifugate, and filtrate). The determination of
respectively the volatile fatty acids and ammonia was carried out
using gas chromatography as previously described (34, 35).

mRNA Expression
Total RNA was isolated from the PAXgene tubes using
the PAXgene blood RNA kit (Qiagen, Manchester,
UK) according to the manufacturer’s instructions. RNA
concentration was measured using the Qubit RNA
Assay Kit (Invitrogen, Paisley, Scotland). Primers and
probes for the assay were designed using Primer 3
(www.genome.wi.mit.edu/cgibin/primer/primer3_www.cgi.) and

M-Fold using the canine specific GenBank sequence for IL-1β
(EU249360) and IL-1α (AF216526) as described previously (36).
The assays for the 3 housekeeper genes (succinate dehydrogenase
complex, subunit A [SDHA], TATA box binding protein [TBP],
and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein zeta polypeptide [YWAZ]) and the remaining
genes (Supplementary Table 1) were the same as those used
previously (37).

Synthesis of cDNA was carried out using the ImProm II
Reverse Transcription System (Promega Corporation) with 500
ng of total RNA in a final volume of 20 µL. Quantitative
PCR (qPCR) was performed using GoTaq Colorless Master
Mix (Promega). Gene specific amplification was performed
using 0.2µM of each primer, 0.1µM of the probe, ROX
(1:5000, Invitrogen) and 5 µl of diluted cDNA in a final
volume of 25 µl. Sample incubations were performed in an
MxPro 3005P (Agilent) at 95◦C for 2min and then 45 cycles
of 95◦C for 10 sec and 60◦C for 30 sec during which the
fluorescence data were collected. Threshold values (Ct) for the
samples were calculated using the MxPro qPCR software 4.1
(Agilent Technologies Co., Santa Clara, CA, USA). Relative copy
number expression values were calculated for each sample and
normalized against the housekeeper gene results using the qBase
applet for Microsoft Excel (http://medgen.ugent.be/qbase/) as
described by Vandesompele et al. (38).

Untargeted Metabolomics Analysis
Freeze-dried fecal samples were subjected to generic extraction
as optimized and described previously (39). Analysis of extracted
fecal samples was performed using a Dionex UltiMate 3000
XRS UHPLC system (Thermo Fisher Scientific, San José, CA,
USA) coupled to aQ-ExactiveTM bench topQuadrupole-Orbitrap
HRMS (Thermo Fisher Scientific, San José, CA, USA) (39, 40).
Calibration of the Q-Exactive HRMS system was performed
according to the instructions of the manufacturer. Internal (each
10 samples) and external QC (quality control) samples (pool of
samples made from aliquots of the study samples) were analyzed
prior to and after analysis of the samples to stabilize the system
and monitor (and if needed, correct for) instrumental drift.
Samples were analyzed in 1 batch, in a randomized order.

Raw data was Pre-processed using SieveTM 2.1 (Thermo
Fisher Scientific, San José, USA), as described by De Paepe
et al., (40). SimcaTM 13 (Umetrics AB, Umeå, Sweden) was
used for multivariate statistical data processing. PCA-X and
OPLS-DA modeling were performed following logarithmic data
transformation and Pareto scaling, with further validation
assessed by assessment of R2 and Q2 goodness (>0.5),
permutation testing (n = 100) and cross-validated analysis
of variance (CV-ANOVA, p < 0.05). Discriminative/predictive
ions were selected based on their eccentric position in the
S-plot [p (corrected) > |0.5|] and a Variable Importance in
Projection-score (VIP score) >2. Prediction of chemical formula
was based on accurate mass and the full scan spectrum using
XcaliburTM; i.e., obtained through calculation and evaluation of
isotopic signature (carbon and sulfur) and allowing a max mass
deviation of 5 ppm. Putative identification was achieved using the
Human Metabolome Database (HMDB), PubChem and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) databases (freely
available online). A heatmap with dendrogram was generated
using TBtools software (https://github.com/CJ-Chen/TBtools) to
illustrate metabolite abundances and sample clustering.

Statistical Analyses
The metabolomic data were processed as described above. The
effect of diets, periods and their interaction were analyzed by
two-way ANOVA using MetaboAnalyst 3.0 software (McGill
University, Canada).

To evaluate the effect of both the diet and the two-period
dietary exchange, the remainder of the data was analyzed by
Wilcoxon-Mann–Whitney test with diet, period and diet∗period
as factors and dog as random effect. These analyses were
processed by R version 3.1.0 (The R Foundation for Statistical
Computing) using the Coin package (version 1.0–23). Summary
statistics were expressed as mean values ± SD. A p-value of <

0.05 was considered statistically significant and a p-value < 0.10
was considered as a significant trend. All p-values were corrected
by the false discovery rate.

RESULTS

Food Intake and Body Composition
All dogs remained healthy throughout the study. All diets
were well tolerated and did not affect the dogs’ food intake.
Daily energy intakes did not differ between diets. There was
no significant diet and period effect on BW and BCS at the
end of each study period. Furthermore, neither diet nor period
significantly affected the dogs’ absolute and relative body fatmass.

Fecal Parameters
There was no significant effect of diet and period on the
fecal concentration of NH3, acetate, propionate, butyrate, iso-
butyrate, and iso-valerate. The diets also did not affect the fecal
S100A12 concentrations, and no significant effect was observed
on the fecal score and pH. These results are summarized in
Supplementary Table 2.

Blood Parameters
Significant findings in blood parameters are presented in Table 2,
while blood parameters which did not significantly differ between
diets or periods are available in Supplementary Table 3. A
significant diet effect (p = 0.041) was observed for the Pre-
prandial NEFA concentration, with dogs being fed the high-
starch diet showing a higher level of NEFA than dogs being
fed the high-fat diet. Diet × period trends were observed for
the plasma concentration of glycine (p = 0.077) and tyrosine
(p = 0.058). Additionally, significant trends according to diet
were observed for the plasma concentration of glucose (GLU;
p = 0.054), glycine (Gly; p = 0.094), alanine (Ala; p =

0.089), and the ratio of glucose to insulin (GLU/INS; p =

0.063). More specifically, dogs on the high-fat diet displayed a
trend for a decreased Ala concentration and an increased GLU

concentration and GLU/INS ratio compared to dogs on the high-
starch diet. Significant effects of period were also observed for the
GLU/INS ratio (p= 0.036) and NEFA concentration (p= 0.042).

No significant dietary effect or trend was observed for LPS
concentration, acylcarnitine profiles andmRNA expression levels
in the blood (Supplementary Table 3).

Fecal Metabolome
A total of 4391 and 1934 ions were obtained in the
positive and negative ionization mode, respectively. PCA-
X score plots revealed good clustering of fecal samples
according to diet in both positive and negative ionization
mode (Supplementary Figure 1), as well as good clustering
of QC samples. The characteristics of the OPLS-DA model
(Supplementary Figure 2) were good to excellent: R2Y = 0.884
and Q2 = 0.661 for the “positive” model and R2Y = 0.861
and Q2 = 0.670 for the “negative” model, also obtaining
successful cross-validation (CV-ANOVA with p < 0.01), as well
as a valid permutation test. A total of 15 fat/starch associated
metabolites could be retained (Supplementary Figure 3), with 5
unidentified metabolites and 9 putatively annotated metabolites.
The identity of one metabolite marker; i.e., L-methionine, was
confirmed by means of an analytical standard. An overview of
the (characteristics of the) retrieved discriminative metabolites is
presented in Table 3.

The results obtained for investigating the interaction
among diet, period and their interaction are summarized in
Supplementary Table 4. All 15 metabolites were significantly
influenced by the two diets, while none of them was significantly
influenced by the study periods. One unidentified metabolite
(Unidentified_1) was subject to the interaction between diet
and period.

Normalized abundances of metabolites discriminating for
the high-fat vs. high-starch diet are presented in a heatmap in
Figure 1. Clear clustering of the samples according to diets was
observed (except for one sample HF(P1)3). Moreover, dogs fed
the high-fat diet displayed a significantly higher abundance of
5 Non-annotated molecules, whereas dogs fed the high-starch
diet displayed a significantly higher abundance of L-methionine,
6 molecules tentatively identified as (iso)leucyl-threoninyl-
valine; (iso)leucyl-(iso)valine or (iso)valyl-(iso)leucine;
L-lysopine or (iso)leucyl-serine/seryl-(iso)leucine or valyl-
threonine or threoninyl-valine; glycyl-valine or valyl-glycine
or gly-norvaline or L-theanine or N-acetylornithine; valyl-
valine; and (iso)leucyl-(iso)leucine, as well as 3 molecules
putatively identified as spermic acid 2 or (iso)leucyl-threonine
or threoninyl-(iso)leucine.

DISCUSSION

Most nutritional studies on the inflammatory response and
metabolism in dogs have focused on the effects of protein (27,
42, 43). However, there is less information concerning dietary
fat and nonfibrous carbohydrates, which are the main energy-
delivering nutrients in traditional dog food (44). Health issues,
particularly obesity-related problems, associated with diets rich
in fat and starch, have received increasing attention in recent

Frontiers in Veterinary Science | www.frontiersin.org 4 February 2022 | Volume 9 | Article 801863

https://github.com/CJ-Chen/TBtools
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Lyu et al. HF vs. HS Canine Diet

TABLE 2 | Blood parameters (significant findings; n = 5).

Item HS HF Period 1 Period 2 p value

Diet Period Diet*Period

GLU (µM) 78.40 ± 6.28 85.70 ± 5.21 83.10 ± 5.99 81.00 ± 7.60 0.054 0.324 0.134

GLU/INS 16.25 ± 5.54 46.46 ± 59.15 45.24 ± 59.59 17.48 ± 7.53 0.063 0.036 0.145

Gly (µM) 190.1 ± 24.12 186.9 ± 37.32 201.0 ± 33.47 176.0 ± 22.61 0.094 0.220 0.077

Ala (µM) 358.6 ± 118.5 239.5 ± 44.27 335.4 ± 129.1 262.8 ± 65.54 0.089 0.159 0.347

NEFA (µM) 1.13 ± 0.25 0.94 ± 0.23 1.13 ± 0.31 0.95 ± 0.15 0.041 0.042 0.108

Phe (µM) 85.11 ± 18.94 84.04 ± 16.98 80.64 ± 11.61 88.51 ± 21.88 0.139 0.077 0.120

Tyr (µM) 54.87 ± 8.93 51.45 ± 10.59 53.82 ± 8.63 52.49 ± 11.09 0.113 0.085 0.058

GLU, glucose; INS, insulin; Gly, glycine; Ala, alanine; NEFA, Non-esterified fatty acid; Phe, phenylalanine; Tyr, tyrosine.

TABLE 3 | Overview of characteristics of L-methionine, putatively annotated and unidentified metabolite markers.

Compound n◦ Putative identification* ID level Formula m/z ppm RT Ionization

mode

VIP

score

Reference

1 Unidentified_1 – – 223.1234 / 0.91 H+ 2.485 –

2 Unidentified_2 – – 415.2172 / 0.97 H+ 2.373 –

3 L-Methionine 1 C5H11NO2S 150.0580 2.04 1.57 H+ 2.996 HMDB

4 Glycyl-Valine/Glycyl-Norvaline/Valyl-Glycine/L-Theanine/N-

acetylornithine

4 C7H14N2O3 173.0931 0.44 1.65 H− 3.816 HMDB

5 Unidentified_3 – – 356.1478 / 1.75 H− 2.481 –

6 Spermic acid 2/(Iso)leucyl-threonine/ Threoninyl-(Iso)leucine 4 C10H20N2O4 231.1357 2.72 2.22 H− 2.321 HMDB

7 L-Lysopine/(Iso)leucyl-serine/seryl-(Iso)leucine/Valyl-

Threonine/Threoninyl-Valine

4 C9H18N2O4 219.1333 2.89 2.32 H+ 3.379 HMDB

8 Valyl-valine 4 C10H20N2O3 217.1542 2.34 4.24 H+ 3.160 HMDB

9 Spermic acid 2/(Iso)leucyl-threonine/ Threoninyl-(Iso)leucine 4 C10H20N2O4 231.1358 3.33 4.88 H− 3.526 HMDB

10 Spermic acid 2/(Iso)leucyl-threonine/ Threoninyl-(Iso)leucine 4 C10H20N2O4 231.1357 3.03 5.16 H− 4.124 HMDB

11 (Iso)leucyl-valine/Valyl-(Iso)leucine 4 C11H22N2O3 229.1566 3.47 5.54 H− 3.426 HMDB

12 (Iso)leucyl-Threoninyl-Valine 4 C15H29N3O5 332.2173 2.01 6.88 H+ 3.430 PubChem

13 (Iso)leucyl-(Iso)leucine 4 C12H24N2O3 243.1722 3.39 6.98 H− 3.553 HMDB

14 Unidentified_4 – – 283.1200 / 7.12 H− 3.096 –

15 Unidentified_5 – – 263.0809 / 9.17 H+ 2.466 –

ID level, metabolite identification level according to Sumner et al. (41); ppm, absolute difference theoretical vs. detected m/z; RT, retention time (min.); VIP, variable importance

in projection-score.

*IUPAC names are provided in Supplementary Table 5.

canine studies (14, 18, 45). For the first time, the present study
investigated the inflammatory response and fecal metabolome in
healthy lean dogs fed a high-fat or a high-starch diet.

No Effect on Inflammatory Related mRNA
Expression
Obesity is characterized as a state of low-grade systemic
inflammation, in which many inflammatory cytokines appear to
play a role. They might also be linked to co-morbidities of obesity
(46). Recent evidence suggests that a high-fat diet (60% fat) can
induce obesity and exacerbate obesity-related inflammation and
metabolic disorders inmice (47, 48). Moreover, gut inflammation
is more severe in obesity-prone rats compared to obesity-
resistant rats when both were fed a high-fat diet (45.3% fat) (49).
Inflammation was also selectively more marked in the short-
term high-fat-fed mice (60% fat) (50), which might depend on

the level of weight gain. However, no significant changes were
noted in the inflammatory related mRNA expression in this
study. Overall, this result is not surprising as the dogs were fed
to keep an ideal body condition and body weight. In fact, in our
study, the two diets were isoenergetically exchanged, with the
high-fat diet not exceeding the safe upper limit for dogs (70%
for adult maintenance) (51). Next to this, except for the species

differences and susceptibility to obesity, as genetically modified

mice are more prone to developing morbid obesity (52), the

discrepancy may be ascribed to the study’s limited experimental
duration, tested parameters or sample types. The study was
not designed to investigate potential long-term effects. Tissue
samples could not be collected, or more invasive parameters
tested (e.g., inflammatory markers in fat or intestinal mucosal) in
the dogs due to ethical reasons. Also, differences in the fat source
and different levels of dietary fat intake between dogs and mice

Frontiers in Veterinary Science | www.frontiersin.org 5 February 2022 | Volume 9 | Article 801863

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Lyu et al. HF vs. HS Canine Diet

FIGURE 1 | Heatmap with cluster dendrogram of retrieved discriminative metabolites. Colors represent log-transformed peak intensity of metabolites. HF = high-fat

diet, HS = high-starch diet, P1 = study period 1 and P2 = study period 2 for 5 dogs per group.

studies might also influence the experimental results. Therefore,
future research investigations need to evaluate an extended set
of inflammatory parameters under a variety of experimental
conditions to unravel the inflammatory response of dogs fed a
high-fat vs. a high-starch diet.

Observed Metabolic Effects in Blood
Vast differences were found in the metabolic profiles in blood
our study. When dogs were fed with the high-fat diet, there
is a tendency to increase glucose concentration and the ratio
of glucose to insulin in the blood. This result suggests that
the high-fat diet can affect glucose metabolism in healthy dogs.
Previously, a high-starch diet (43% energy from starch and 26%
from fat) has also been shown to increase glucose and insulin
concentrations in healthy dogs compared to isoenergetic low-
(12% energy from starch and 40% from fat) and moderate-starch
diets (30% energy from starch and 34% from fat) (53). However,
both fat and protein contents were adjusted to formulate the
low- and moderate-starch diets, making it difficult to evaluate
the effect of only fat in this study (53). Another study did not
find any significantly changes in plasma glucose and insulin
concentrations in dogs fed with a high-fat diet (63% energy from
fat and 12% from starch) at two energetic intake levels (100%
and 150% of maintenance energy requirements [MER]). Insulin
sensitivity, however, was lower in the dogs of 150% MER group,
which also had higher BW and BCS (15). The present study
was not designed to analyse the effect on insulin sensitivity as
only Pre-prandial samples were drawn. Thus, future research
is needed to explore the possibility of such an effect. In the
present study, the high-starch diet was associated with different
metabolic effects compared to the high-fat diet in healthy lean
dogs, as indicated by the increased NEFA concentration and a
trend for increased Ala concentrations in the blood. Previous
studies have reported that the increased Ala and NEFA levels are
associated with increased glucose and lipid metabolism. Alanine

is the key protein-derived gluconeogenic precursor, and plasma
NEFA arise mainly from hydrolysis of triacylglycerol within the
adipocyte (54, 55). This result suggests that compared to a high-
fat diet, a high-starch intake could influence host glucose and
lipid metabolism in healthy dogs. Future studies are needed
to further investigate the metabolic effects of high-starch in
exchange for high-fat diets.

Observed Metabolic Effects in Feces
Metabolomic research in dogs is still at a preliminary stage, with
a limited number of published studies. Most of those studies
focus on studying the metabolome in the context of disease
or following dietary supplementation (56–59). However, the
current study investigated shifts in the fecal metabolome of
dogs on a high-starch vs. high-fat diet for the very first time.
Polar metabolomics revealed a distinctively different fecal
metabolomic profile in dogs fed a high starch vs. high fat diet.
Specifically, the high-starch diet increased the abundance of
L-methionine, and several molecules that were tentatively
annotated as (iso)leucyl-threoninyl-valine, (Iso)leucyl-
(Iso)valine/(Iso)valyl-(Iso)leucine, L-lysopine/(iso)leucyl-
serine/seryl-(iso)leucine/ valyl-threonine/threoninyl-valine,
valyl-valine, (iso)leucyl-(iso)leucine, glycyl-valine/valyl-
glycine/gly-norvaline/L-theanine/N-acetylornithine, and
spermic acid 2/(iso)leucyl-threonine/threoninyl-(iso)leucine.

Of the (putatively) annotated fecal metabolites, several are
known to exert anti-oxidative and immunomodulatory effects.
Methionine for example plays a critical role in the metabolism
and health of many species, including dogs (60), as it is an
essential amino acid involved in protein as well as aminoacyl-
tRNA biosynthesis. Interestingly, there is accumulating evidence
for aminoacyl-tRNA synthetases being involved in a wide range
of physiological and pathological processes, including different
types of immune responses (61). Recent research has furthermore
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demonstrated that methionine intervenes in lipid metabolism
and anti-oxidation (61, 62).

Based on accurate mass, we assume compound n◦4 may
either be a dipeptide, L-theanine or N-acetylornithine, although
confident identification could not be achieved. L-theanine is an
L-glutamate and L-glutamine analog. Interestingly, glutamine
analogs are known to improve intestinal mucosal repair
function (63), whilst recent studies furthermore reported that
L-theanine supplement affects intestinal mucosal immunity by
regulating SCFA metabolism in rats (64) and broilers (65).
These studies implied that increased abundance of L-theanine
in this study may have beneficial effects on intestinal reparation
and immune. N-Acetylornithine is an intermediate in the
enzymatic biosynthesis of the amino acid L-arginine from L-
glutamate (66), which involves protein synthesis, anti-oxidative
and immunomodulatory effects as well as e.g., improved mucosal
barrier function (67).

Besides compound n◦ 4, eight other marker molecules (n◦

6–13) were also putatively identified as di- or tripeptides. Di-
or tripeptides are incomplete breakdown products of protein
digestion or intermediates in protein catabolism (68).

For compounds n◦ 6, 9 and 10, alternative tentative
annotations include spermic acid 2, and for compound n◦ 7,
putative identification as L-lysopine is a possibility besides being
a dipeptide. Spermic acid 2 is an metabolite of putrescine
and spermine (https://contaminantdb.ca/contaminants/
CHEM041097, ContaminantDB, McGill University, Canada),
which are produced by the collectivemicrobiome (69). Putrescine
and spermine are required for several physiological functions
including protein synthesis, cell growth and differentiation (70),
and spermine is furthermore known to supress inflammation
(71). Increased spermic acid levels in this study thus implied the
improvement of these roles by the high-starch diet. Regarding
L-lysopine, a marker molecule with the same accurate mass
was previously detected and putatively annotated in healthy
suckling piglets (72). More specifically, the tentatively annotated
L-lysopine was downregulated (p > 0.05) in piglet plasma
following supplementation with an additional 0.12% methionine
in the basal diet of sows during late gestation and lactation.
Methionine supplementation showed a positive effect on
piglet growth performance, which was hypothesized to be
due to an increased antioxidant capacity of the piglets. This
does not align with the proposed anti-oxidative effects of the
high-starch vs. high-fat diet in this study since the putatively
annotated L-lysopine molecule was higher following the intake
of the high-starch vs. high-fat diet. According to HMDB,
L-lysopine originates from food (or feed) (73), but there is very
limited knowledge on spermic acid 2 and L-lysopine either
dogs or any other species. Therefore, these findings warrant
further investigation.

Fivemetabolitemarkers were upregulated following feeding of
the high-fat diet compared to the high-starch diet. For compound
n◦ 14 (“Unidentified_4”), a potential match with karalicin was
retrieved in the PubChem database. There is however no existing
prior knowledge about this compound either in any species,
although it has been observed that it can produced by certain
bacteria (74). Another potential HMDB match for compound n◦

14 is 2-Phenylethyl beta-D-glucopyranoside (C14H20O6). This
compound has previously been detected in caraway and citrus
(73), but it is unclear whether this compound could therefore also
present in the dog feed. Due to these uncertainties, compound
n◦ 14 was not annotated as either karalicin or 2-Phenylethyl
beta-D-glucopyranoside. Overall, metabolite identification is a
major bottleneck in metabolomics research (75), and even
more so for studies in dogs since there is no existing dog
metabolome database.

General Discussion
In summary, no difference was found in the inflammatory
response in dogs fed with a high-starch vs. a high-fat diet, whereas
different metabolic profiles were observed for the two diets. The
high-starch diet in this study might be associated with several
effects that indicated by the altered metabolic profiles, including
protein biosynthesis, lipid metabolism, as well as exert anti-
oxidation and/or immunomodulation. Future studies should
encompass investigation of both short and long-term effects of
high-starch in exchange for high-fat diets furthermore taking into
account the source and level of fat intake. Moreover, in order to
better understand the link between fecal metabolome and host
metabolism, the analysis of microbiome is warranted in future
studies, as well asmultiple-omics analyses such as proteomics and
lipidomics, which would enable studying the formation and/or
degradation of proteins and the more a polar fraction of the
metabolome. Lastly, it should be noted that Beagles in breeds
are more prone to developing obesity (76) and therefore, follow-
up studies should furthermore explore the effect of a high-fat vs.
high-starch diet in relation to obesity and related problems, not
only in Beagles, but also in other dog breeds, and in different
age stages.

CONCLUSION

Inflammatory and metabolic responses of dogs fed a high-fat
and high-starch diet were evaluated in the present study. The
inflammatory response did not differ between the two diets. The
high-starch diet was associated with increased blood NEFA level,
a tendance for increased blood Ala level and showed a profound
impact on the fecal metabolomic profile with alterations of the
abundance of 15 fecal metabolites including methionine, the
high-fat dietary intake was associated with a trend to for increase
the glucose concentration, and the glucose/insulin ratio in the
blood and significantly increase in the abundance of 5 other
metabolites. These alterations might be linked to promotion of
lipid metabolism, anti-oxidative effects, protein biosynthesis and
catabolism, mucosal barrier function and immunomodulation in
healthy dogs.
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