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The dairy farming industry is facing massive economic losses as heat stress continues to

rise. The purpose of this study was to see how feeding Saccharomyces cerevisiae culture

(SC) influences productive performance, lactation performance, serum biochemical

indexes, hormonal level, antioxidant capacity, and immune function in mid-lactating cows

during heat stress. Forty-five healthy mid-lactation dairy cows with comparable milk yield,

lactation days, and parity were randomly divided into 3 groups (15 cows in each group).

The control group (CON) was fed the basal diet, while the treatment groups were fed

the basal diet + first Saccharomyces cerevisiae culture 100 g/d (SC-1) and the basal

diet + second Saccharomyces cerevisiae culture 30 g/d (SC-2), respectively. The SC-1

and SC-2 groups with SC added in the treatment groups reduced rectal temperature

and respiratory rate in heat-stressed cows (P < 0.05). The milk yield of SC-1 and

SC-2 treatment groups was significantly higher than that of CON (P < 0.05). Except

for somatic cell count, which was significantly lower in SC-1 and SC-2 than in CON (P

< 0.05), there were no significant differences in the milk components. The addition of

SC: (i) increased serum urea levels (P < 0.05), but there was no significant difference

in glucose, total cholesterol, alanine transaminase, aspartate aminotransferase, total

protein, albumin and alkaline phosphatase levels (P > 0.05); (ii) increased serum levels of

immunoglobulin-A, immunoglobulin-G, immunoglobulin M, interleukin-4, interleukin-10

and heat shock protein-70 (P < 0.05), while decreasing serum levels of interleukin-1β,

interleukin-6, interleukin-2, interferon-γ and tumor necrosis factor-α (P < 0.05); (iii)

increased total antioxidant capacity, glutathione peroxidase and superoxide dismutase

in serum (P < 0.05), while decreasing malondialdehyde; (iv) increased serum levels

of glucocorticoids, insulin, cortisol and prolactin (P < 0.05), while decreasing the

serum levels of triiodothyronine and thyroxine (P < 0.05). In conclusion, under the

current experimental conditions, the addition of SC can reduce rectal temperature and

respiratory rate in heat-stressed mid-lactation cows, reduce the number of somatic cells
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in milk and improve the mid-lactation cow performance. In addition, SC addition to

the diet can raise serum urea levels, regulate serum hormone levels, boost antioxidant

capacity in mid-lactation cows, and boost overall immunity.

Keywords: heat stress, Saccharomyces cerevisiae culture, mid-lactation dairy cows, milk yield, immunological

performance, antioxidant capacity

INTRODUCTION

Temperatures are rising in every region of the world as a result
of global warming (1). According to NASA’s Goddard Institute
for Space Studies (GISS), global temperatures have risen at a rate
of 0.15 to 0.20◦C per decade since 1975 (2). As a result, extreme
temperature events are becoming more common and severe (3).
China has suffered from the effects of global warming in recent
decades, which has exacerbated the occurrence of heat stress (4).
Some data indicate that the temperature in China rose by an
average of 1.4◦C between 1951 and 2009 (5). China appears to
be one of the regions most affected by high temperatures and one
of the most severely heat-stressed (6).

Continued high heat stress can result in significant economic
losses for the farming industry, particularly dairy farming (7).
The temperature and humidity index (THI) is the sum of the
effect of two variables, ambient temperature and humidity, is
commonly used to assess the degree of heat stress in cows (8).
The Holstein cow, which is known for its high productivity, is
the most common breed of dairy cattle raised in China. However,
it is extremely sensitive to temperature changes and will suffer
heat stress if the ambient temperature exceeds 25◦C and the
THI exceeds 72 (9). Heat stress can cause a 35–40% reduction
in milk production in cows (West, 2003), as well as affect
the general health of the cow by reducing normal physiology,
metabolism, hormones, antioxidant capacity and immune system
(10). Furthermore, the increased incidence of mastitis in dairy
cows during the summer poses a significant challenge to dairy
farming enterprises (11).

Saccharomyces cerevisiae culture (SC) is a concentrated and
dried product obtained by high-density liquid fermentation and
deep solid fermentation with Saccharomyces cerevisiae as the
strain; its composition includes yeast metabolites, yeast cells and
denatured medium, which can significantly improve immunity,
relieve stress and increase productivity (12). Supplementation
of Saccharomyces cerevisiae culture in feed has been shown to
improve milk production and reduce the inflammatory response
of the organism in lactating cows (13). Moreover, we had
demonstrated that Saccharomyces cerevisiae culture applied to
heat-stressed sows could improve their lactation performance
and antioxidant capacity (14). We discovered that the majority
of previous studies in heat-stressed cows supplemented with
Saccharomyces cerevisiae culture were concerned with effects on
cow performance, reproductive capacity, lactation performance,
and rumen fermentation parameters (15, 16). There was
consideration given to the cow’s immune system, antioxidant
capacity, or hormone levels. It was previously unknown how
Saccharomyces cerevisiae culture affects performance and cow
health in mid-lactation cows subjected to heat stress via

antioxidant capacity, immune capacity, and body hormone
levels. Therefore, this study systematically investigated the
effects of Saccharomyces cerevisiae culture on the production
performance, serum biochemical indexes, hormone levels,
antioxidant capacity, and immune indexes of dairy cows in the
middle lactation under heat stress, and provided some data for
the development and use of feed additives to mitigate heat stress
in dairy cows.

MATERIALS AND METHODS

Animals
The trial was conducted at the cattle farm of Xianghe Dairy
Co. in Zaozhuang City, Shandong Province from July 2, 2021
to August 20, 2021. Forty-five Holstein cows in mid-lactation
with similar milk yield (29.4 ± 3.7), parity (1.8 ± 0.6), days in
lactation (158 ± 14), and good health were selected for the trial
and divided into three groups of 15 cows each in a randomized
complete block design. The control group (CON) was fed a basal
diet, while the treatment groups were fed a basal diet + the first
Saccharomyces cerevisiae culture at a rate of 100 g/d (SC-1) and
a basal diet + the second Saccharomyces cerevisiae culture at a
rate of 30 g/d (SC-2), respectively. Cows in the treatment groups
were fed SC separately at morning feeding. The trial lasted 60 d,
with a 10-d adaptation period and a 50-d formal trial period. The
base ration is a Total Mixed Ration (TMR) formulated following
the Dairy Cattle Feeding Standard (NY/T34-2004). Table 1 lists
the ingredients and nutritional levels. The test cows were kept
in loose pens with sprinklers and fans on to keep them during
the test period, allowing them to feed and drink freely. The
cows were fed three times a day (7:00, 13:00, 18:30) and milked
three times a day (5:30, 12:30, 8:30). The Ethical Commission
of Shandong Agricultural University reviewed and approved the
animal study.

Material
The first Saccharomyces cerevisiae culture “Baihuibang” and the
second Saccharomyces cerevisiae culture “Baihuibang 4C” were
provided by Beijing Enhalor International Tech Co., Ltd.

Determination of Temperature and
Humidity Index (THI)
An electronic temperature and humidity meter (purchased from
Shandong Renke Measurement & Control Technology Co., Ltd.
Model: COS-04) was used to record Temperature (◦C) and
relative humidity (%) at the same height as the cow’s head during
the experiment. Temperature (◦C) and relative humidity (%) data
were collected daily in the Dairy barn at 07:00, 14:00, and 22:00,
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TABLE 1 | Ration composition and nutrient levels (dry matter basis, %).

Ingredients Content Nutrient levels Contents

Alfalfa hay 11.8 DM 95.9

Corn silage 47.0 CP 15.6

Syrup 3.1 EE 4.2

Mixed concentratesa 23.5 NDF 32

Fat powder 0.3 ADF 20.6

Flaked corn 7.8 Ca 0.64

Sugar beet pulp 2.6 P 0.44

Cottonseed 3.1

Soybean meal 0.8

Total 100.0

aThe mixed concentrate contains self-contained concentrate from Xianghe Dairy

Company and lactating cow concentrate supplement [8862], each kg of self-contained

ingredients contains 0.55 kg of corn, 0.11 kg of DDGS, 0.07 kg of bran, 0.19 kg of soybean

meal, 0.045 kg of Rovimix, 0.027 kg of baking soda, 0.01 kg of magnesium oxide and

0.0027 kg of calcium; The raw material composition of 8,862 includes corn, corn by-

product, wheat by-product, cotton meal, soybean meal, soybean peel, sodium chloride,

rock flour, feed grade calcium hydrogen phosphate, vitamin and mineral premix, etc.

and converted to temperature-humidity index (THI) (17). THI is
calculated as follows:

THI = (0.8× T)+ [(RH/100)× (T− 14.3)]+ 46.4

where T denotes the cowshed temperature (◦C); RH denoted the
relative humidity of the cowshed (%).

Collection and Determination of Forage
Samples
On day 50 of the formal experimental period using the quartering
technique, forage samples were collected, dried in an oven at
65◦C for 72 h, returned to moisture for 12 h, and then crushed to
test the following: dry matter (DM) [GB 6435-86], crude protein
(CP) [GB/T 6432-94], crude fat (EE) [GB/T 6433-1994], neutral
detergent fiber (NDF), acid detergent fiber (ADF), calcium
(Ca) [GB/T 6436-2002], phosphorus (P) [GB/T 6437-2002]. The
content of neutral detergent fiber (NDF) and acid detergent fiber
(ADF) was determined using the Van Soest method (18).

Determination of Milk Yield and Milk
Samples
The milk yield of each test cow was recorded on 2 consecutive
days every 10 days during the formal experimental period. Data
on milk production data were collected at 05:30, 12:30, and 20:00
each day, and then summarized into daily milk production. On
day 50 of the official test period, milk samples were collected
from three milking periods, mixed (50mL) in a 4:3:3 ratio. Next,
a potassium dichromate preservative was added, and the milk
was sent to the Dairy Research Center of Shandong Academy
of Agricultural Sciences for examination of milk fat percentage,
milk protein percentage, somatic cell count, and urea nitrogen.

Measurement of Blood Indicators
On the 50th day of the formal experimental period, blood
was drawn from each cow at the caudal root vein before

the morning feeding. After that, 20mL of blood was drawn
with a disposable syringe, coagulated with a procoagulation
tube, and left for 30min. Next, the blood was centrifuged
for 5min at 3,000 r/min, and the supernatant was divided
into 1.5mL centrifuge tubes and immediately stored in liquid
nitrogen. Ten cows in each group were randomly selected to test
blood parameters, including T3, T4, GC, IgA, IgG, IgM, PRL,
HSP70, INS, COR, IL-1β, IL-6, IL-2, IL-4, IL-10, TNF-α, IFN-
γ through enzyme-linked immunosorbent assay (ELISA) and
ELISA kits with Angle gene products. Malondialdehyde (MDA)
was determined using the MDA test kit, purchased from the
Angle gene. The superoxide dismutase (SOD) kit, purchased
from the Angle gene, was used to measure (SOD). Glutathione
peroxidase (GSH-PX) was determined using the GSH-PX test
kit, purchased from the Angle gene. Total antioxidant capacity
(T-AOC) was determined using an Angle gene total antioxidant
capacity (T-AOC) kit. A fully automated biochemical analyzer
(Beckman Coulter Model: AU680) was used to determine serum
biochemical parameters.

Data Statistics
The test data were compiled using Excel 2010 software; the test
data were subjected to Shapiro-Wilk normal distribution test
using the shapiro.test() function of R software (version 4.1.1),
chi-square test using the bartlett.test() function, and the ANOVA
one-way ANOVA using the aov() function analysis of variance
(ANOVA). The lsmeans package was used to compute SE values,
and Duncan’s method from the agricolae package was used for
multiple comparisons. 0<P<0.001 represents a highly significant
difference; 0.001<P<0.01 represents a very significant difference;
0.01<P<0.05 represents a significant difference; 0.05<P<0.1
represents a significant trend of difference. The images in the
paper were created with the ggplot2 package of R software.

RESULTS

Changes in Average Temperature and
Humidity and Average Temperature and
Humidity Index (THI) of the Dairy Barn
During the Formal Experimental Period of
50 Days
The THI was >72 for almost all periods during the formal trial
period (Figure 1). The average temperature of the Dairy barn
during the formal trial period was a minimum of 26.9◦C, higher
than the temperature threshold of 25.8◦C for the appropriate
feeding environment for lactating cows (Table 2).

Effect of Different Saccharomyces
Cerevisiae Cultures on Rectal Temperature
and Respiratory Rate in Dairy Cows
Rectal temperature and respiratory rate were significantly lower
(P < 0.05) in the SC-1 and SC-2 groups of cows fed with
Saccharomyces cerevisiae cultures than in the CON group;
however, there was no significant difference between the SC-1
and SC-2 groups (Table 3).
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FIGURE 1 | Trend graph of temperature and humidity index (THI) of Dairy barn.

TABLE 2 | Average temperature and humidity and average temperature and

humidity index of the barn during the official test period (50 days).

Time Average Average relative Average THI

temperature (◦C) humidity (%)

7:00 27.1 82.8 78.47

14:00 33.6 67.2 86.18

22:00 26.9 83.2 78.37

Effect of Different Saccharomyces
Cerevisiae Cultures on the Productive
Performance of Dairy Cows
As shown in Table 4, the milk yield of SC-1 and SC-2 in the
treatment group was significantly higher than that of CON (P
< 0.05), and there was no significant difference between SC-1
and SC-2 (P > 0.05), but SC-1 had a higher milk yield than SC-
2. The three groups did not differ significantly in terms of milk
fat rate, milk protein rate, or urea nitrogen content (P > 0.05).
The content of somatic cell count (SCC) was significantly lower
in SC-1 and SC-2 than in CON (P < 0.05).

Effect of Different Saccharomyces
Cerevisiae Cultures on Serum Biochemical
Indices of Dairy Cows
As depicted in Table 5, the urea content was significantly higher
in the SC-1 and SC-2 groups than in the CON group (P < 0.05),
but there was no significant difference in the content of glucose,
cholesterol, Alanine transaminase, Aspartate aminotransferase,
total protein, albumin, and alkaline phosphatase (P > 0.05).

Effect of Different Saccharomyces
Cerevisiae Cultures on Serum Hormone
Indices in Dairy Cows
As shown in Table 6, the levels of glucocorticoids, insulin,
cortisol, and prolactin were significantly higher in the SC-1
and SC-2 groups than in the CON group (P < 0.05), while
the levels of triiodothyronine and thyroxine were significantly
lower in the SC-1 and SC-2 groups (P < 0.05). The levels of
glucocorticoids, insulin, and cortisol were significantly higher
in the SC-1 group than in the SC-2 group, while the levels of
triiodothyronine and thyroxine content in the SC-1 group were
significantly lower.

Effect of Different Saccharomyces
Cerevisiae Cultures on Serum Antioxidant
Indices in Dairy Cows
Table 7 shows that the total antioxidant capacity, glutathione
peroxidase, and superoxide dismutase contents were significantly
higher in the SC-1 and SC-2 groups than in the CON group
(P < 0.05), with the total antioxidant capacity and superoxide
dismutase contents in the SC-1 group significantly higher than
in the SC-2 group. Malondialdehyde levels were significantly
lower in the SC-1 and SC-2 groups than in the CON group
(P < 0.05), with the SC-1 group having a significantly lower
malondialdehyde level than the SC-2 group.

Effect of Different Saccharomyces
Cerevisiae Cultures on Serum Immune
Indices in Dairy Cows
The levels of IgA, IgG, IgM, IL-1β, IL-6, IL-2, IL-4, IL-10, TNF-
α, IFN-γ, and HSP70 in serum were significantly different in the
SC-1 and SC-2 groups compared to the CON group (P < 0.05),
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TABLE 3 | Effect of different Saccharomyces cerevisiae cultures on rectal temperature and respiratory rate in dairy cows.

Items Groups SEM P-value

CON SC-1 SC-2

Rectal temperature/◦C 38.89 ± 0.45a 38.58 ± 0.48b 38.69 ± 0.49b 0.06 0.0003

Respiratory rate/(bpm) 65.19 ± 10.05a 60.58 ± 13.1b 60.36 ± 12.44b 1.39 0.0216

Data marked with the same lowercase letter indicate no significant difference (P > 0.05), different lowercase letters indicate significant difference (P < 0.05). 0 < P < 0.001 represents

a highly significant difference; 0.001 < P < 0.01 represents a very significant difference; 0.01 < P < 0.05 represents a significant difference; 0.05 < P < 0.1 represents a significant

trend of difference. The same holds for the tables below.

TABLE 4 | Effect of different Saccharomyces cerevisiae cultures on the productive performance of dairy cows.

Items Groups SEM P-value

CON SC-1 SC-2

Milk yield (kg/d) 26.35 ± 4.88b 28.87 ± 4.99a 28.72 ± 4.79a 0.40 <0.0001

Milk fat percentage/% 3.33 ± 1.57a 3.23 ± 1.37a 3.08 ± 1.41a 0.38 0.8940

Milk protein percentage/% 3.17 ± 0.15a 3.24 ± 0.27a 3.15 ± 0.15a 0.06 0.5000

Milk Urea Nitrogen (ng/dL) 10.9 ± 3.01a 10.90 ± 3.40a 10.40 ± 3.95a 0.99 0.9260

SCC/(10 k/mL) 8.14 ± 9.40a 2.86 ± 2.07b 3.29 ± 3.99b 1.61 0.0461

Different letters (a, b) represent significant differences.

TABLE 5 | Effect of different Saccharomyces cerevisiae cultures on serum biochemical indices of dairy cows.

Items Groups SEM P-value

CON SC-1 SC-2

GLU (mmol/L) 1.99 ± 0.59a 1.71 ± 0.48a 1.74 ± 0.57a 0.18 0.4970

TC (mmol/L) 5.71 ± 0.75a 6.14 ± 1.73a 5.39 ± 0.81a 0.37 0.3850

ALT (U/L) 34.6 ± 6.35a 39.9 ± 8.51a 36.6 ± 7.14a 2.34 0.3740

AST (U/L) 84.6 ± 21.02a 87.4 ± 16.39a 91.6 ± 20.13a 6.40 0.7540

TP (g/L) 83.43 ± 7.43a 83.94 ± 6.53a 82.23 ± 4.78a 2.01 0.8270

ALB (g/L) 25 ± 1.58a 26.7 ± 2.51a 26.4 ± 1.65a 0.62 0.1410

UREA (mmol/L) 5.29 ± 0.51a 5.46 ± 0.51b 6.08 ± 0.84b 0.20 0.0 248

AKP (U/L) 53.2 ± 18.43a 60.9 ± 14.31a 50.4 ± 11.84a 4.88 0.3180

Different letters (a, b) represent significant differences.

TABLE 6 | Effect of different Saccharomyces cerevisiae cultures on serum hormone indices in dairy cows.

Items Groups SEM P-value

CON TestA TestB

GC (ng/mL) 23.91 ± 0.75c 33.07 ± 0.89a 28.06 ± 0.81b 0.26 <0.0001

INS (mU/mL) 8.91 ± 0.43c 12.45 ± 0.53a 10.82 ± 0.52b 0.16 <0.0001

COR (ng/mL) 70.57 ± 3.41c 100.58 ± 5.43a 85.28 ± 5.56b 1.55 <0.0001

T3 (ng/mL) 1.94 ± 0.07a 1.19 ± 0.04c 1.52 ± 0.05b 0.02 <0.0001

T4 (ng/mL) 90.09 ± 3.49a 66.08 ± 3.74c 78.12 ± 2.77b 1.06 <0.0001

PRL (µIU/mL) 2,684.84 ± 158.45b 2,999.43 ± 153.59a 2,900.27 ± 129.5a 46.70 0.0002

Different letters (a–c) represent significant differences.

as shown in Table 8. The contents of IL-10 and HSP70 were
significantly higher in SC-1 and SC-2 groups than in the CON
group, while the contents of IL-1β, IL-6, IL-2, IFN-γ, and TNF-
α were significantly lower in the CON group. The contents of

IgA, IgM, IL-10, and HSP70 in the SC-1 group were significantly
higher than those in the SC-2 group, while the contents of IL-
1β, IL-6, IFN-γ, and TNF-α in the SC-2 group were significantly
were lower.
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TABLE 7 | Effect of different Saccharomyces cerevisiae cultures on serum antioxidant indices in dairy cows.

Items Groups SEM P-value

CON SC-1 SC-2

T-AOC (mmol/L) 0.16 ± 0.01c 0.23 ± 0.01a 0.19 ± 0.01b 0.00 <0.0001

GSH-PX (U/mL) 12.01 ± 1.08b 13.53 ± 0.63a 12.83 ± 0.81a 0.27 0.0020

MDA (nmol/mL) 6.63 ± 0.31a 4.44 ± 0.22c 5.32 ± 0.28b 0.09 <0.0001

SOD (U/mL) 69.38 ± 1.73c 77.84 ± 1.79a 73.89 ± 2.17b 0.60 <0.0001

Different letters (a–c) represent significant differences.

TABLE 8 | Effect of different Saccharomyces cerevisiae cultures on serum immune indices in dairy cows.

Items Groups SEM P-value

CON SC-1 SC-2

IgA (µg/mL) 20.02 ± 0.71c 25.75 ± 0.98a 22.87 ± 0.81b 0.27 <0.0001

IgG (µg/mL) 232.59 ± 13.78b 255.24 ± 11.59a 246.84 ± 12.74a 4.03 0.0028

IgM (µg/mL) 16.09 ± 0.99c 20.06 ± 0.97a 18.24 ± 1.15b 0.33 <0.0001

IL-1β (pg/mL) 191.73 ± 8.16a 151.52 ± 7.87c 171.31 ± 7.14b 2.45 <0.0001

IL-6 (pg/mL) 255.71 ± 7.22a 221.54 ± 6.76c 236.15 ± 6.11b 2.12 <0.0001

IL-2 (pg/mL) 21.11 ± 0.67a 17.04 ± 0.56c 19.08 ± 0.54b 0.19 <0.0001

IL-4 (pg/mL) 412.39 ± 25.17b 446.26 ± 20.40a 433.77 ± 20.21a 6.97 0.0068

IL-10 (pg/mL) 359.46 ± 17.1c 401.21 ± 19.95a 378.06 ± 18.71b 5.89 0.0001

TNF-α (ng/L) 155.67 ± 7.36a 130.11 ± 6.61c 143.11 ± 6.78b 2.19 <0.0001

IFN-γ (pg/mL) 701.96 ± 34.36a 593.17 ± 27.01c 641.29 ± 32.08b 9.90 <0.0001

HSP70 (ng/mL) 7.8 ± 0.37c 10.34 ± 0.45a 9.13 ± 0.51b 0.14 <0.0001

Different letters (a–c) represent significant differences.

DISCUSSION

Effect of Adding Different Types of
Saccharomyces Cerevisiae Cultures on
Rectal Temperature and Respiratory Rate
in Heat-Stressed Cows
Heat stress can have a significant impact on the development
of our dairy industry. THI=72 has been widely adopted as
the threshold value for the occurrence of heat stress in dairy
cows over the last decade of heat stress research (19). In
this trial, the THI was above 72 for almost all periods, and
the times when it was below 72 were due to a brief cooling
in the Zaozhuang area of Shandong Province because of the
impact of Typhoon No. 6 “Fireworks” in China in 2021.
So we believe the cattle were in a heat stress environment.
During heat stress, the most common physiological indicators
used to assess heat stress in cows are respiratory rate (RR)
and rectal temperature (RT) (20). Animals dissipate excess
heat from their bodies by increasing their respiratory rate
(RR) and allowing it to evaporate in the environment (21).
Some researchers, on the other hand, proposed that rectal
temperature (RT) is a sensitive indicator of heat stress (22)
and that small changes in RT can profoundly influence the
function of tissues, organs, and endocrine and that such
changes may reduce lactation and causing a variety of growth

problems (23). Other studies suggest that as THI increases,
so do RT and RR (24). In the present study, the addition of
Saccharomyces cerevisiae cultures decreased ectal temperature
and respiratory rate in cows during heat stress, possibly
improving the adaptation of cows to heat stress. Also, we found
the results of the same trial in a previous report by Shan and
colleagues, where feeding chromium-rich yeast reduced rectal
temperature and respiratory rate in lactating cows during heat
stress (25).

Effect of Adding Different Types of
Saccharomyces Cerevisiae Cultures on the
Performance of Heat-Stressed Cows
Heat stress causes a decrease in milk production as well as
changes in milk composition (26, 27). In a previous study,
lactating cows showed a linear decrease in milk production as
THI increased from 60 to 80, with milk production decreasing
by 0.13 kg/d for every 1 unit increase in THI (28), and
this situation was more prevalent in high yielding cows (29).
Additional evidence shows that the number and secretory activity
of mammary epithelial cells in cows determine milk production
(30). The presence of an intact mammary epithelial barrier, which
is an indicator of good mammary gland function, is a major
prerequisite for maintaining a high level of milk production (31).
According to a study by Collier and colleagues, in vitro culture of
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bovine mammary epithelial cells at high ambient temperatures
impaired cell proliferation and induced apoptosis (32), which
could reduce milk production. In the present study, the addition
of yeast additive improved milk production in cows during heat
stress, possibly improving the adaptation of mammary epithelial
cells to heat stress. This finding is consistent with the results
of many other researchers, including Bruno and the team, who
found that adding Saccharomyces cerevisiae cultures to the
ration improved lactation performance of heat-stressed cows,
increasing milk production from 42.2 to 43.4 kg/d. One study
found an increase in somatic cell count (SCC) in milk from
heat-stressed cows (33). This could be due to the phenomenon
that heat stress reduces productive performance and immunity
in cows via biochemical and biological pathways, increasing the
incidence of intra-mammary infection (IMI), which leads to
higher somatic cell counts (SCC) (34). In the present research,
the addition of Saccharomyces cerevisiae cultures could reduce
the level of SCC in milk. Furthermore, SCC is a predictor of
IMI and also an indicator of milk quality and assessment of the
degree of mastitis (35); as such, adding SCmay reduce intra-dairy
infection in cows during heat stress, improve milk quality, reduce
the prevalence of mastitis, and play a positive role cow health
during heat stress.

Effect of Adding Different Types of
Saccharomyces Cerevisiae Cultures on
Serum Biochemical Indices of
Heat-Stressed Cows
Urea is the end product of ammonia and amino acid metabolism
in animals; some urea will re-enter the metabolic process
if the amount synthesized by the liver exceeds the amount
of urea excreted in the urine (36). Cows can suffer from
loss of appetite and reduced food intake during heat stress,
which potentially results in a negative energy balance (37, 38).
Evidence shows that this phenomenon can cause high lipid
mobilization from body fat reserves, lipid deposition in the liver,
ketogenesis, and hypoglycemia (39). It has been demonstrated
that serum urea concentrations are lower in cows with high
lipidation and ketogenesis in early lactation when compared
to healthy cows, which may be ascribed to a reduction in
dry matter intake in relation to hepatic metabolism (40). In
the present trial, the addition of Saccharomyces cerevisiae
cultures potentially increased urea levels, which may have
improved the negative energy balance of cows and increased
liver metabolism. There were no significant differences in
other serum biochemical indicators. Niacin (NA), an important
vitamin in vitamin B that elicits a vasodilatory response,
is beneficial for heat-stressed cows. In a study by Khan
and colleagues, the addition of NA increased plasma urea
concentrations in crossbred cows under heat stress (41), which
is consistent with our trials. Previously, it was demonstrated
that Saccharomyces cerevisiae culture strains are pro-nutrients
of all group B vitamins and have high levels of vitamin
B (42). Therefore, the elevated urea in the present trial
following the addition of Saccharomyces cerevisiae cultures
may be linked to group B vitamins and positively influence
liver metabolism.

Effect of Adding Different Types of
Saccharomyces Cerevisiae Cultures on
Serum Hormones, Antioxidants, and
Immune Indices in Heat-Stressed Cows
Heat stress can cause a variety of physiological and hormonal
responses via various molecular mechanisms (43). According
to one study, cortisol concentrations in cow blood increased

after prolonged heat stress exposure (44), which is thought
to be one of the main adaptive mechanisms by which

the organism is negatively influenced (45). Munksgaard and
colleagues also noted that increased cortisol levels ensured
nutrient mobilization and availability in response to the stressor
(46). In the present trial, cortisol levels were significantly

higher in cows fed Saccharomyces cerevisiae cultures, which
could mobilize nutrients and ensure the supply of substances
in the body. Compelling evidence shows that increased milk

production necessitates higher levels of glucocorticoids to
provide enough energy for galactose production. Cortisol, the
main glucocorticoid in galactose production, not only enhances

the role of prolactin (PRL) in stimulatingmammary epithelial cell
differentiation but also increases the expression of milk protein
genes during lactation (47). These data imply that prolactin and

cortisol can promote increased milk production in cows. Herein,
we found that as the concentration of cortisol in the test group

increased, so did the level of prolactin, which, when combined
with the fact that the combined milk yield increased, suggests
that adding Saccharomyces cerevisiae cultures can cause cortisol
and prolactin to act synergistically in cows to improve their
productivity. Heat stress is well known to cause an increase in
insulin concentrations (48). Multiple pieces of evidence indicate
that insulin action enables the body to respond effectively to heat
stress and minimizes heat stress-induced injury (49, 50), and the
increased serum insulin concentrations in cows supplemented
with SC in our experiment may be because the addition of SC
promotes insulin production in the body, successively reducing
heat stress-induced damage in cows.

HSP70 is a key gene in the heat shock protein (HSP) family
that has been linked to heat stress response (51). The structure
of HSP70 is highly conserved, and it may be involved in protein
folding, assembly, and degradation. HSP70 synthesis in cells is
low under normal conditions. Under stress, however, they are
rapidly synthesized and transferred to the nucleus, nucleolus,
and other regions to improve the heat resistance of the organism
and play a protective role (52). This heat resistance is positively
correlated with the level of HSP70 expression (53). This allows
the organism to adapt to heat stress earlier, and this protects
tissues and organs from heat stress damage faster and more
effectively, as well as improves the organism’s resistance to
stress (54). Herein, there was a significant increase in HSP70
levels in the treatment group, most likely because the addition
of Saccharomyces cerevisiae cultures could stimulate the rapid
HSP70 synthesis in cows. Notably, Rhoads et al. (50) revealed
that HSP70 may improve insulin function and that modulating
the insulin-HSP axis during heat stress can improve animal
health and productivity, and the treatment group did show
a significant increase in insulin metrics as well as a positive
correlation between insulin levels and HSP70 levels, which was
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consistent with previous findings. However, we saw the opposite
conclusion in a study where the addition of Saccharomyces
cerevisiae cultures to periparturient cows under heat stress
reduced plasma levels of HSP70 (55), and we speculate that
this may be due to the different periods of the herd. Thyroid
hormone (T3) is the primary hormone secreted by the thyroid
gland, and triiodothyronine (T4) is a deiodination product of T3
and is only biologically active when deiodinated (56). Because the
thyroid gland regulates basal metabolic rate in lactating cows,
increased release of T4 and T3 increases basal metabolic rate
and body heat production (57). Under hot climatic conditions,
the decrease in thyroid hormone concentration can be viewed
as an adaptive mechanism to reduce metabolic heat production
(58). Reduced food intake during heat stress has been linked
to thyroid activity suppression, which consequently decreases
thyroid hormone levels (59). According to our findings, the
addition of yeast additive reduced serum levels of T3 and T4 in
heat-stressed cows as well as the metabolic heat production of the
organism for better adaptation to the hot environment. The same
findings were reported previously (60).

The immune system is one of the mechanisms for resisting
stress caused by environmental changes. Heat stress can reduce
dry matter intake in cattle, thereby negatively influencing
nutrient absorption, and, as a result, the immune system
and inflammatory response (61). Serum immunoglobulin is
a marker of humoral immunity that promotes monocyte
and macrophage phagocytosis and can bind to antigens to
produce multiple biological effects. Immunoglobulin-G (IgG)
is the major immunoglobulin that promotes the phagocytosis
of pathogens and neutralizes bacterial toxins by immune cells.
High IgG concentrations in dairy cow blood are thought to
boost immunity. Immunoglobulin-A (IgA) is found in low
concentrations in serum but provides significant defense against
invading pathogens. Immunoglobulin-M(IgM) lyses bacteria and
blood cells and neutralizes viruses, but its retention time is
shorter (62, 63). Some studies have demonstrated that heat
stress suppresses biological immune functions. One of these
effects is a decrease in serum immunoglobulin levels (64).
In the present experiment, feeding Saccharomyces cerevisiae
cultures significantly increased serum levels of IgG, IgA, and
IgM in heat-stressed cows, which improved the immunity of the
cow organism and reduced heat stress-induced damage to the
immune system. As a result, the ability of the organism to resist
heat stress is improved.

CD4+ T cells are immune cells that are classified as T
helper cells in the lymphocyte classification. CD4+ T cells are
classified as either helper T cell 1 (Th1) or helper T cell 2
(Th2) cells. Their presence or activation is thought to have
a regulatory effect on immune behavior. Recent studies have
shown that the main mechanism for maintaining or restoring
homeostasis in the diseased immune system is the relative
increase in Th2 cell activity to the relative suppression of Th1
cells (65). Th1 cells mainly secrete IL-2 and IFN-γ, whereas th2
cells mainly secrete IL-4 and IL-10 (66). Th1 and Th2 cells,
respectively, regulate cellular and humoral immunity. Th1 cells
promote the inflammatory response, while Th2 cells promote
the anti-inflammatory response (67). Researchers have suggested
that high temperature is associated with the downregulation

of Th1 cytokines and upregulation of Th2 cytokines, thereby
suppressing cellular immunity (68, 69). In our study, we found
that the levels of IL-2 and IFN-γ decreased, while the levels
of IL-4 and IL-10 increased, which is consistent with previous
findings; these data imply that yeast additions potentially reduced
inflammation in heat-stressed cows and improved the anti-
inflammatory response of the organism. Intriguingly, it has been
proposed that glucocorticoids may suppress cellular immunity,
resulting in a preferential shift toward th2-mediated humoral
immunity (70), which is consistent with our findings. Heat
stress has also been shown to increase cortisol concentration in
the blood and to inhibit the production of cytokines such as
interleukin-4 (IL-4), IL-6, interferon (IFN), and tumor necrosis
factor- (TNF-) (71). Elsewhere, a study demonstrated that TNF-
α and IL-1β directly promote inflammatory responses in cows,
while IL-10 mediates anti-inflammatory responses in cows (72),
and that interleukin (IL-6) is a known inflammatory cytokine that
promotes inflammation in the organism (73). Herein, elevated
serum cortisol concentrations were reported in the treatment
group, whereas the levels of inflammatory factors such as TNF-α,
IL-6, and IL-1β decreased. These results suggest that the addition
of Saccharomyces cerevisiae cultures may regulate the immune
system by influencing cortisol levels in vivo, and this would result
in less inflammation in heat-stressed cows.

Heat stress disrupts the normal regulation of
oxidants/antioxidants, causing severe cell damage via enzymatic
and non-enzymatic activities (74). High temperatures can
promote the occurrence of oxidative stress, which may be
attributed to the excessive production of oxygen radicals by
the organism and reduced antioxidant defenses (75). Increased
oxygen free radicals result in the formation of malondialdehyde
(MDA), which potentially induces cell death by damaging
the DNA (76). Superoxide dismutase (SOD) is an enzyme
that protects the organism and cells from damage caused by
superoxide anion radicals and their active products. Glutathione
peroxidase (GSH-PX) is a key enzyme in the antioxidant defense
system of organisms, thought to protect various organisms from
oxidative stress (77). Total antioxidant capacity (T-AOC), which
represents total antioxidants in blood and body fluids, reflects
the body’s compensatory capacity to resist external stimuli
(78). Malondialdehyde, a by-product of lipid peroxidation,
is the most common indicator of lipid peroxidation and is
regarded as a reliable method for determining the extent of
lipid oxidative damage in cell membranes (79). In general, cows
with relatively high levels of T-AOC, SOD, and GSH-Px and
relatively low MDA values have good antioxidant capacity.
In the present investigation, the levels of total antioxidant
power, glutathione peroxidase, and superoxide dismutase
increased in the experimental group, while malondialdehyde
decreased, indicating that brewer’s yeast culture can increase
the antioxidant capacity of the cow organism under heat
stress, reduce cell damage, and decrease the production of
oxygen radicals. Harmon and colleagues reported a decrease
in plasma antioxidant activity in heat-stressed Holstein cows
in mid-lactation, which can indirectly verify our findings (80).
In another investigation, researchers reported a 2-fold increase
in malondialdehyde in skeletal muscle of acutely heat-stressed
broiler chickens (81).
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CONCLUSION

The addition of Saccharomyces cerevisiae cultures to heat-
stressed mid-lactation cows increases milk production and
reduces the incidence of mastitis, but exerts no significant effect
on milk composition. Moreover, the addition of Saccharomyces
cerevisiae cultures improves the antioxidant capacity of the cows
and can reduce inflammatory factors in the body, improve
immunity, and synergize hormones in the body to alleviate the
negative effects of heat stress. Thus, supplementing mid-lactation
cows with Saccharomyces cerevisiae cultures can improve the
antioxidant capacity and immunity level of the body under
heat stress, as well as improve milk yield and cow performance
to ensure healthy cow production. The experimental results
demonstrated that the effect of Saccharomyces cerevisiae cultures
in the SC-1 group is superior to that in the SC-2 group.
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