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Pharmacokinetic/pharmacodynamic (PK/PD) integration models are used to investigate

the antimicrobial activity characteristics of drugs targeting pathogenic bacteria through

comprehensive analysis of the interactions between PK and PD parameters. PK/PD

models have been widely applied in the development of new drugs, optimization of

the dosage regimen, and prevention and treatment of drug-resistant bacteria. In PK/PD

analysis, minimal inhibitory concentration (MIC) is the most commonly applied PD

parameter. However, accurately determining MIC is challenging and this can influence

the therapeutic effect. Therefore, it is necessary to optimize PD indices to generate more

rational results. Researchers have attempted to optimize PD parameters using mutant

prevention concentration (MPC)-based PK/PD models, multiple PD parameter-based

PK/PD models, kill rate-based PK/PD models, and others. In this review, we discuss

progress on PD parameters for PK/PD models to provide a valuable reference for drug

development, determining the dosage regimen, and preventing drug-resistant mutations.

Keywords: kill rate, mutant prevention concentration, PK/PD integration model, PD parameter, time-kill curve,
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INTRODUCTION

The excessive use of antibiotics has promoted the emergence and selection of multi-drug-resistant
(MDR) pathogenic bacteria. MDR cause infections that threaten the health of humans, livestock,
and wild animals. Some Gram-negative (G−) bacteria harboring the mobilized colistin resistance
(mcr) gene are resistant to colistin, and this is leading to fewer and fewer antibiotics available for
clinical treatment of MDR infections (1, 2). Indeed, in the future there may be no drugs available
to treat bacterial infections caused by MDR pathogens. The main approaches to address this
include the development of new drugs, optimization of dosage regimen, revision of susceptible
breakpoints, and drug combinations. Pharmacokinetic/pharmacodynamic (PK/PD) models can
comprehensively investigate interactions between hosts, pathogens, and drugs, and the obtained
PK/PD parameters can predict the clinical antibacterial efficacy (3, 4). Thus, PK/PD integration
is an effective and practical method for addressing MDR bacterial infections, and it has been
widely applied to optimize the dosage regimen and reset the bacterial susceptible breakpoints.
Theoretically, the appropriate application of PK/PD integration has potential to improve the
outcomes on recovering antimicrobial activity, extending the usage life of an antimicrobial, and
preventing the emergence and spread of resistant bacteria (5–9).
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In PK/PD integration models, the most commonly
applied PK/PD parameters are based on minimal inhibitory
concentration (MIC). MIC is a standard in vitro value for a
given antibacterial against a specific microorganism after a
fixed time period (16–18 h). In other words, MIC is a net result
when the growth rate of microorganisms (the population of
inoculum) equal to the kill rate of a given drug at the fixed
concentration which different from the dynamic character of
drug concentrations in vivo. So, MIC is a hybrid and contextual
PD variable due to its nature and the conditions for obtaining
it (10, 11). The test medium play an important influence on the
numerical value of a MIC because of a possible large matrix
effect. In standard test, the Mueller Hinton Broth (MHB) was
chosen because it ensures the rapid growth of bacteria. But the
growth rate can be much slower in vivo which will inevitably
change the value of the MIC because the difference of the
growth rate, the duration of the incubations, and the size of the
starting inoculum. For example, the macrolides have a large
difference between in vitro MIC and effective in vivo plasma
concentrations because of a very significant matrix effect which
has been demonstrated for all veterinary macrolides and well
explained by the fact that the MHB promotes the overexpression
of efflux pump (12). The test method of MIC may also result
in treatment failure and emergence of resistant mutations in
bacterial infections (13–15). (a) The determination of MIC
is an all-or-nothing result; a drug will exhibit antibacterial
activity when its concentration is above the MIC, and have no
antibacterial effect when its concentration is below the MIC.
This does not reflect the real antibacterial activity of low drug
concentrations against pathogens because different types of
drugs have different antibacterial characteristics based on their
antibacterial mechanisms. (b) MIC is typically determined using
the double dilution method, which may result in estimated
values that are higher than real values. Administration of a
dosage regimen based on MIC may result in drug residues and
ecological damage after a long time. (c) MIC is determined
using static drug concentrations, which does not reflect the
dynamic antibacterial activities of drugs against pathogens, such
as changes in kill rate and growth rate in the presence of different
drug concentrations over different time periods. (d) The bacterial
cell density is typically ∼105 CFU/mL for MIC determination.
Although this density not representative of in vivo infectious
situations (the bacterial number may exceed 108 CFU/mL in
serious infection), the mutant frequency (the natural mutant
occurrence frequency is ∼10−6) may largely increase when
amount of bacteria is exposed to antibacterial drugs, such as
fluoroquinolones. These limitations may result in the emergence
of MDR bacteria. Thus, developing new drugs and designing
dosage regimens based only on MIC for PK/PD simulation is not
sufficient. Therefore, it is necessary to explore PD parameters to
more accurately investigate the antibacterial activities of drugs
against pathogens.

In order to overcome the limitations of MIC-based PK/PD
integration in clinical treatment, researchers have conducted
numerous studies to optimize PD parameters, including mutant
prevention concentration (MPC)-based PK/PD models, multiple
PD parameter-based PK/PD models, and kill rate-based PK/PD

models. Therefore, this review firstly covers the basic methods,
concepts, and mathematical models of MIC-based PK/PD
integration. And then introduces other PD parameter-based
PK/PD integration approaches. This work provides a valuable
guidance for optimizing the dosage regimen, developing new
drugs, and preventing the emergence of MDR bacteria.

BASIC METHODS OF PK/PD INTEGRATION

PK/PD integration models include in vitro, ex vivo, and in vivo
PK/PD models. For in vitro PK/PD studies, peristaltic pump
and hollow fiber models are the most commonly used methods
for simulating PK processes of drugs in hosts. The peristaltic
pump model was applied to simulate one-compartment,
two-compartment model, and multiple-compartment models.
The simplest peristaltic pump model consists of a storage
compartment (blank medium), a central compartment (drug,
bacteria, and medium), and an elimination compartment (waste
medium) connected by rubber pipe, and the PK characteristics
(elimination rate) of drugs in hosts are simulated by a peristaltic
pump. A magnetic bar is applied to mix the medium, and a
thermostat is used to ensure the optimal growth temperature for
pathogens. After measuring the drug concentration and bacterial
cell density, the antibacterial effect and PK/PD parameters are
calculated and simulated to guide the design of the dosage
regimen (16–21). The hollow fiber model consists of thousands
of hollow fiber tubes that simulate multiple compartments (22–
29). The in vitro PK/PD model is simple, economical, and easy
to operate, and it can directly describe the dynamic interaction
between drugs and pathogens.

The ex vivo PK/PD model is used to investigate the
antibacterial activities of hosts, drugs, and bacteria in drug-
containing body fluids rather than artificial medium. The most
commonly applied body fluids are plasma, serum, and tissue cage
fluid (TCF). After collecting these samples at different timepoints
following drug administration, drug concentrations and time-
kill curves are determined, and a mathematical equation is
applied to analyze the relationships between PK/PD parameters
and antibacterial effect. TCF is a type of extracellular fluid that
is typically targeted during bacterial infection. Thus, TCF is
an ideal medium for ex vivo PK/PD integration studies. TCF
can be acquired through surgery by implanting a tissue cage
between muscle and skin. After ∼4 weeks, granulation tissue
surrounds the tissue cage and produces TCF. The TCF model
has been widely applied in pig, rabbit, cattle, camel, goat, and
other animals (30–39). Uterine fluid (40) and intestinal juice
(41) have also been used for ex vivo PK/PD studies. However,
although drug concentrations are still static when study ex vivo
kill curves, this model can enable sampling of the extracellular
fluid at different times after dosing which allow collection of
samples as the concentration changes and partially consider the
influence of the host.

Previous in vivo PK/PD models have been used to study
interactions between hosts, drugs, and pathogens. The most
commonly used are the tissue cage infection model (TCIM)
and the target organ infection model (TOIM). The TCIM
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was established by adding pathogens to the tissue cage model,
a series of dosage regimens were subsequently administrated
for treatment, and TCF samples were collected for drug
concentration measurement and bacterial population counting
at different timepoints. After calculating the PK/PD parameters
and antibacterial effect (the change in bacterial population), the
relationship between PK/PD parameters and antibacterial effect
was fitted and the dosage was predicted (42–49). The TOIM
approach can simulate clinical infection by directly inoculating
bacteria into target organs, then administering drugs at different
dosages and intervals. Finally, animals are killed at different
timepoints for bacterial population counting and antibacterial
concentration determination at infected sites. The obtained
PK/PD parameters and antibacterial effect are then analyzed and
evaluated. These in vivo PK/PD models can comprehensively
study the interactions between hosts, drugs, and pathogenic
bacteria, and the results are typically consistent with clinical
treatment (50–62).

BASIC PK/PD PARAMETERS AND
MATHEMATICAL MODELS

For PK/PD integration, MIC is the most commonly applied PD
variable used to calculate PK/PD indices such as AUC/MIC (area
under the curve of concentration divided by MIC), Cmax/MIC
(maximum concentration divided by MIC), and %T >MIC
(percentage of time that drug concentrations exceed MIC
during the dosage interval) (50, 63–67) (Figure 1). Actually,
all PK/PD indices must be calculated with free concentrations
and not with total plasma concentrations because MIC is a
free concentration. Based on the closeness of the relationship
between PK/PD parameters and antibacterial effect, antibacterial
drugs can generally be divided into time-dependent drugs,
concentration-dependent, and co-dependent drugs (3, 68–70).
The represented PK/PD parameter for time-dependent drugs
is %T >MIC. This reflects an antibacterial effect that is closely
related to the duration of the drug concentration above MIC;
the longer the duration of the drug concentration above MIC,
the better the antibacterial activity. Time-dependent drugs
include β-lactam antibiotics and macrolides. However, different
members of macrolides have different PK/PD dependencies
(71), so, the antibacterial activity should be evaluated prudently.
For concentration-dependent drugs, representative PK/PD
parameters are AUC/MIC and Cmax/MIC. These reflect
antibacterial effects that are closely related to drug concentrations
above MIC; the higher of drug concentration, the better of the
antibacterial activity. Well-known concentration-dependent
drugs are aminoglycosides and fluoroquinolones. However,
for aminoglycosides, the more appropriate PK/PD parameter
is AUC/MIC rather than Cmax/MIC, because the Cmax/MIC
criterion was historically proposed for rodents and can not
reflect the over time process (72, 73). For co-dependent drugs,
the PK/PD parameter were AUC/MIC or %T >MIC against
different bacteria, such as tetracycline and glycopeptides.

To confirm the most appropriate PK/PD parameters and
predict the values of PK/PD parameters for designing the dosage

FIGURE 1 | Antimicrobial PK, PD, and PK/PD parameters based on MIC

(minimum inhibitory concentration) and MPC (mutant prevention

concentration). The most commonly applied PK/PD parameters are AUC/MIC

(area under the curve of antibacterial concentration divide MIC) or AUC/MPC,

Cmax/MIC (maximum drug concentration divide MIC) or Cmax/MPC, and T >

MIC (the time of the drug concentration above MIC during the dosage interval)

or T > MPC (the time of the drug concentration above MPC during the dosage

interval). MSW (mutant selection window) is the drug concentration between

MIC and MPC. TMSW (dash area) is the time that the antibacterial

concentration inside MSW during the dosage interval.

regimen, a mathematical model is needed. A commonly applied
model for this purpose is the Sigmoid Emax model (Equation
1). This sigmoid concentration-response model is a strongly
empirical model. This model is a useful tool to formalize
our understanding of experimental data, but it has no clear
relationship to real physical characteristics of the actual system
being studied.

E =
Emax × CN

EC50 + CN
(1)

where Emax is the maximum antibacterial effect of a drug, EC50

is the value of PK/PD parameters or drug concentrations at 50%
Emax, C is the antibacterial concentration or PK/PD parameter,
and N (Hill coefficient) is the slope of the fitted curves between
PK/PD parameters or drug concentrations and antibacterial
effect. The correlation coefficient (R2) is applied to evaluate the
relationship between PK/PD parameters and antibacterial effect;
the higher of the value of R2, the closer the PK/PD parameters are
related to effect.

MPC-BASED PK/PD INTEGRATION

To cope with the low bacterial cell density in MIC tests, some
researchers have explored other PD parameters for serious
infections (>1010 CFU/mL) for PK/PD integration. In serious
infections, susceptible bacteria may produce a natural gene
mutation (first-step mutant bacteria) that are resistant to drugs.
At low drug concentrations, susceptible bacteria will gradually
be killed and first step mutant bacteria may reproduce rapidly,
which may result in recurrence of infection and further resistant
mutations. Therefore, a new PD variable was proposed for high
bacterial cell densities. MPC is theMIC of drugs for high bacterial
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cell densities (1010 CFU/mL) that can inhibit the growth of first
step mutant bacteria (74, 75). In clinical infections, the bacterial
cell density generally cannot exceed 1012 CFU/mL, hence two-
step mutations rarely occur under natural conditions, but they
may easily arise under low drug concentrations. Therefore, it is
of great significance to prevent the emergence of drug-resistant
bacteria when designing the dosage regimen based on MPC.
Meanwhile, a mutant selection window (MSW) theory was
proposed based on MIC and MPC (the corresponding PK/PD
parameters are listed in Figure 1). This theory considers that
drug-resistant bacteria are easily induced in the middle part of
the MSW (the upper part cannot produce effect because the
size of the bacterial population is large, and the lower part
may have no effects because of the smaller bacterial population
densities which have just been greatly reduced by previous
concentrations; Figure 2). Therefore, a rational dosage regimen
should be carefully designed that is not only an effective bacterial
treatment, but that also prevents the emergence and spread of
resistant bacteria.

Various studies have applied MPC as a PD variable (76–
81). MPC-based PK/PD integration has mainly been applied for
fluoroquinolones, because the mechanism of resistant mutations
in the MSW theory is consistent with the mutant resistance
mechanism of fluoroquinolones that usually occurs gradually
through gene point mutations. Cui et al. (79) applied a rabbit
TCIM to study the antibacterial activity of levofloxacin against
Staphylococcus aureus, and analyzed the relationship between
AUC24h/MPC and the generation of drug-resistant bacteria.
The results showed that the emergence of resistant mutants
could be inhibited when AUC24h/MPC >25 h. Liang et al. (81)
applied three kinds of levofloxacin-resistant S. aureus strains
(with the sameMIC but differentMPC) to compare the difference
between AUC24/MIC and AUC24/MPC as PK/PD parameters
for inhibiting the generation of drug-resistant bacteria. The
results showed that generation of drug-resistant mutants could
be inhibited when AUC24/MPC values were between 22 and 25
(even for strains with different MPC values). When applying
AUC24/MIC as the target PK/PD parameter, the values were
8-fold different despite having the same MIC. Therefore,
AUC24/MPC was more suitable than AUC24/MIC as the target
PK/PD parameter to inhibit the generation of drug-resistant
mutations. Zhang et al. (46) carried out a mutation window study
on danofloxacin against Actinobacillus pleuoniae using a porcine
TCIM, and analyzed the relationship between AUC24h/MPC and
the generation of drug-resistant bacteria. The results showed that
the generation of drug-resistant bacteria could be significantly
inhibited when AUC24h/MPC >18.58 h. These studies shown
that the susceptible or resistant mutant bacteria could be
inhibited when the value of AUC/MIC or AUC/ MPC were 24 h
which just means that the average plasma concentration over 24 h
is equal to the MIC or the MPC.

In order to expand the application of the MSW approach,
various types of antibacterials have been studied. For time-
dependent drugs, %T> MIC is the PK/PD parameter that best
reflects antibacterial activity. For MPC-based PK/PD parameters,
%T >MPC was applied to prevent mutations, which reflects
the time percentage of the drug concentration within the MSW

during the interval of dosage administration. Alieva et al. (82)
applied an in vitro dynamic model to study the relationship
between the residence time (TMSW) of linezolone concentration
within the MSW and the emergence of drug-resistant bacteria.
The results showed that the correlation between TMSW and T
>MPC and area under the bacterial curve of mutation (AUBCM)
was 0.99. Thus, TMSW was an important indicator for predicting
the emergence and enrichment of drug-resistant bacteria. Xiong
et al. (48) applied a rabbit TCIM to study resistance mutations
for cefquinome in S. aureus, and the results showed that drug-
resistant bacteria appeared and accumulated when T >MIC99

>70% or T >MPC <58%. Zhang et al. (49) applied a pig TCIM
to study the MSW of cefquinome against Escherichia coli, and the
results showed that the emergence and enrichment of resistant
bacteria occurred when T >MIC99 >25% or T >MPC <50%. In
these studies, TCIM was used for dose regimens testing because
this model do not allow extrapolation to dose regimens for
clinical use, and the concentration time profiles within tissue
cages do not mirror those of extracellular fluid because of the
perfusion barriers.

Therefore, there was an optimal value to prevent the
emergence and spread of drug-resistant bacteria when applying
MPC-based PK/PD integration studies (83–87). However, the
mechanism of drug-resistant bacterial resistance have a variety
of ways. Such as except for genetic mutations, the emergence of
resistant bacteria may be due to the spread of exogenous plasmid,
especially for drugs other than fluoroquinolones. Therefore, the
use of MSW theory is dispute which need more exploration.

MULTIPLE PD PARAMETER-BASED PK/PD
INTEGRATION

To investigate antibacterial activity in more detail, time-kill
curves with multiple endpoints can be applied for PK/PD
integration. Compared with PK/PD integration based on MIC
alone, this multi-parameter-based time-kill curve model can
provide detailed and accurate descriptions of dynamic changes
in bacterial growth and death rates under different drug
concentrations. Depending on whether drug concentrations
change, this model can be divided into static and dynamic
models. Static models are mainly conducted by comparing
changes in the number of bacteria to obtain the bacterial
growth rate constant and the death rate under different drug
concentrations, and the corresponding equation is applied
to analyze the relationship between drug concentration and
antibacterial effect. However, in static models, the drug
concentration is constant, whereas dynamic changes in drug
concentration occur in the host. Dynamic models can be
conducted by peristaltic pump and hollow fiber models to
simulate dynamic changes in drugs and antibacterial effects
in the clinic, and they may more accurately reflect clinical
therapeutic effects.

Nolting et al. (88) studied the in vitro bactericidal effect
of piperacillin against E. coli and applied a modified multi-
parameter Emax model (Equation 2) to describe the bactericidal
effect (dN/dt, change in bacteria over time). This model was used
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FIGURE 2 | The possible changes of bacterial population and sensitivity under different antibacterial concentrations in low (105 CFU/mL) and high (1010 CFU/mL)

inoculums based on MSW theory. ◦, susceptible bacteria. •, natural mutant bacteria. ♦, first step mutant bacteria. �, multiple step mutant bacteria. MIC, minimum

inhibitory concentration. MPC, mutant prevention concentration. MSW, mutant selection window, is the drug concentration between MIC and MPC. In low inoculum,

the bacterial population will be gradually reduced with the drug concentrations added from MIC to MPC, and the bacterial sensitivity may be decreased because of

the emergence of first step resistant mutation during MSW. In high inoculum, a natural mutant bacteria may exist in the initial population. The total population will be

decreased but the mutant subpopulations may be increased when the drug concentrations below MPC. The sensitivity may be obviously decreased because of the

emergence of first step and multiple step mutant bacteria during MSW.

to investigate themaximumbactericidal effect (Kmax), the normal
growth rate of bacteria (Kgrowth), drug concentration (Ct),
the concentration that achieves a 50% maximum bactericidal
effect (EC50), the delayed growth constant (Z), and the initial
bacterial population (N). This model can dynamically describe
changes in bacterial population over time under different drug
concentrations. The results showed that the bactericidal effect of
piperacillin was closely related to the time of drug administration;
the more frequent the administration, the better the antibacterial
effect. Compared with models base onMIC alone, this model can
provide more detailed and accurate guidance for designing the
dosage regimen.

dN

dt
=

(

kgowth − Kmax × Ct

EC50 + Ct

)

× (1− e−zt)×N (2)

Regoes et al. (89) established a multiple PD parameter
mathematical model (Equation 3) to study the PK/PD integration
of five antibacterials against E. coli. In this model, ψ(a) is the
net bacterial growth rate under different drug concentrations
(a), ψmax is the maximum bacterial growth rate in drug-free
medium,ψmin is the minimum bacterial net growth rate in drug-
containing medium, N is the Hill coefficient (the slope of the
graph of drug concentrations against bacterial net growth rate),
and zMIC represent the MIC values of different bacteria. The
results showed that when MIC was the same, the larger the value
of k, the better the bactericidal effect, and the smaller the value
of ψmin, the better the bactericidal effect. In this model, four
PD parameters were employed, which can more precisely reflect
the antibacterial characteristics of drugs to help design a more
accurate and rational dosage regimen. Foerster et al. (90) also
applied this model to study the antibacterial activities of several

types of drugs against five strains of Neisseria gonorrhoeae.

ψ(a) = ψmax −
ψmax − ψmin ×

( a
zMIC

)N

( a
zMIC

)N
−

ψmin
ψmax

(3)

This model also have been applied to classify bacteria as
susceptible or resistant. Chauzy et al. (91) studied the
antibacterial activity of polymyxin B against susceptible and
drug-resistant Klebsiella pneumoniae using two consecutive
bactericidal kill curve experiments and multiple PD parameter-
based PK/PD integration. The results showed that after two
consecutive bactericidal experiments, the bacteria whether
appeared induced mutations could be determined by analyzing
changes in growth and death rates.

In conclusion, compared PK/PD integration based on MIC
alone, multiple PD parameter-based PK/PD models can more
accurately reflect the antibacterial effects of drugs against
pathogens, which has important implications for designing a
rational dosage regimen to prevent the emergence of resistant
mutant pathogens.

PK/PD INTEGRATION BASED ON KILL
RATE

Kill rate is a PD reference that can be obtained from time-
kill curves (92–98). It is the slope of time-kill curves, which
reflects the interaction between bacterial growth and death
rates under different drug concentrations. Compared with
multiple PD parameter-based PK/PD integration, this model
can directly analyze the relationship between kill rate and
drug concentrations at different time periods. This method
can dynamically analyze changes in antibacterial activity
over time, and it has been used to classify antibacterial
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FIGURE 3 | The relationship curves between kill rate and concentration of

concentration-dependent (dotted line) and time-dependent (solid line) drugs.

For concentration-dependent drugs, the kill rate will gradually increase with the

concentration added. For time-dependent drugs, the kill rate was smaller

compared to concentration-dependent drugs and rapidly reach a plateau that

the value have little change with the concentration increased.

characteristics (concentration-dependent or time-dependent
drugs). Two classical curves are depicted in Figure 3 to describe
the relationship between kill rate and drug concentration. For
time-dependent drugs, the value of kill rate increases with
increasing drug concentration, but it is relatively small compared
with concentration-dependent drugs at low concentrations.
Furthermore, a maximum value is reached and it no longer
increases with increasing drug concentration after this point.
For concentration-dependent antibacterials, the value of kill
rate increases quickly with increasing drug concentration.
This antibacterial characteristic can be directly applied for
drug classification.

Ferro et al. (99) analyzed the antibacterial activities of a
variety of antibacterial drugs against two types of fast-growing
Mycobacterium strains. For M. abscess, the maximum kill rate
occurred between 24 and 72 h, and the maximum kill rate
was 0.0427 h−1, 0.0231 h−1, and 0.0142 h−1 for amikacin,
clarithromycin, and cefoxitin, respectively. For M. fortuitum,
the maximum kill rate occurred between 3 and 24 h, and
amikacin had the strongest antibacterial activity with amaximum
bactericidal rate of 0.1933 h−1. Zhang et al. (100) analyzed
the relationship between kill rate and drug concentration for
doxycycline against Mycoplasma gallisepticum at different time
periods, and the results showed that the optimal time period
was 0-48 h (R2

= 0.986) and the maximum kill rate was
0.11−1 h. Zhang et al. (101) studied the kill rate of cefquinome
against A. pleuropneumoniae and analyzed the relationship
between kill rate and drug concentrations at different time
periods. The results showed that cefquinome exerted time-
dependent antibacterial activity, the optimal time period was

0-9 h (R2 = 0.9955), and the maximum kill rate was 0.48
log10 CFU/mL/h. Maneke et al. (102) compared the difference
in kill rate between cephalexin and kanamycin alone and in
combination against E. coli, S. aureus, Streptococcus agalactiae,
Streptococcus dysgalactiae, and Streptococcus uberis. The results
showed that the drug combination could increase the kill rate
more than either drug alone, which can shorten the time required
to achieve a bactericidal effect, and the antibacterial activity
was concentration-dependent.

Compared with MIC-based PK/PD integration,
the kill rate for based PK/PD integration can reflect
dynamic changes in antibacterial activity, which can
be widely used in the selection of new drugs, design
of the dosage regimen, and monitoring changes in
bacterial sensitivity.

CONCLUSION

In conclusion, MIC based PK/PD is the most commonly
applied method for evaluating antibacterial activities.
However, with the emergence and spreading of resistant
mutant bacteria, MIC-only-based PK/PD integration
cannot meet the needs of clinical medicine due to the
limitations of MIC. Therefore, it is necessary to optimize
PD parameters for detailed analysis of antibacterial activity.
Further research on MPC, multiple PD parameters, and
kill rate-based PK/PD integration will gradually overcome
the limitations of MIC, and these could assist optimizing
the dosage regimen and prevent or slow the emergence of
resistant mutations.
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