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Healthy mammary gland is essential for milk performance in dairy cows. MicroRNAs

(miRNAs) are the key molecules to regulate the steady state of mammary gland in dairy

cows. This study investigated the potential role of miR-29c in bovine mammary epithelial

cells (bMECs). RNA sequencing (RNA-seq) was used to measure the transcriptome

profile of bovine mammary epithelial cells line (MAC-T) transfected with miR-29c inhibitor

or negative control (NC) inhibitor, and then differentially expressed genes (DEGs) were

screened. The results showed that a total of 42 up-regulated and 27 down-regulated

genes were found in the miR-29c inhibitor group compared with the NC inhibitor group.

The functional enrichment of the above DEGs indicates that miR-29c is a potential

regulator of oxidative stress and inflammatory response in bMECs through multiple

genes, such as forkhead box O1 (FOXO1), tumor necrosis factor-alpha (TNF-α), and

major histocompatibility complex, class II, DQ alpha 5 (BoLA-DQA5) in the various

biological process and signaling pathways of stress-activated mitogen-activated protein

kinase (MAPK) cascade, Epstein-Barr virus infection, inflammatory bowel disease, etc.

The results imply that miR-29c plays an important role in a steady state of bMECs or cow

mammary gland and may be a potential therapeutic target for mastitis in dairy cows.

Keywords: dairy cow, mastitis, immune, oxidative stress, RNA-seq

INTRODUCTION

The bovine mammary epithelial cells (bMECs) are the most important cell group of mammary
tissues, which act in milk synthesis and innate immunity (1). When the cow mammary gland
is exposed to exogenous pathogenic bacteria, bMECs are stimulated to produce reactive oxygen
species (ROS), nitric oxide (NO), and pro-inflammatory cytokines, thereby initiating oxidative
stress and inflammatory response (2, 3). In the process of dairy farming, the high incidence of
mastitis affects the health and economic benefits of dairy cows (4).

MicroRNAs (miRNAs) are small non-coding RNA with a length of about 22 nt that can inhibit
the expression levels of genes by targeting the 3’ untranslated region (3’ UTR) of the messenger
RNAs (mRNAs), thereby regulating the biological processes of humans and other animals (5, 6).
Previous studies observed that miRNAs could regulate the immunity, proliferation and apoptosis
of bMECs. miR-21-3p promotes triglyceride synthesis of bMECs through direct and targeted
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regulation of elongation-of-very-long-chain (ELOVL) fatty
acid elongase 5 (ELOVL5) expression (7). miR-24-3p targets
multiple endocrine neoplasia type 1 (MEN1)/menin in bovine
mammary epithelial cells line (MAC-T) and regulates cell
proliferation and milk protein synthesis in the form of
negative feedback (8). miR-146a targets the toll-like receptor
4 (TLR4)/tumor necrosis factor receptor (TNFR)-associated
factor 6 (TRAF6)/nuclear factor kappa B (NF-κB) pathway
and regulates lipopolysaccharide (LPS)-induced inflammatory
response in bMECs by a negative feedback mechanism (9).
miR-29 family regulates the synthesis and secretion of milk
components, cell proliferation, and apoptosis by targeting DNA-
methyltransferase 3A/3B (DNMT-3A/-3B) in bMECs (10). In
mice and humans, the miR-29 family is a series of small RNA
molecules closely related to inflammation or apoptosis (11–
13), and miR-29c can target leukemia inhibitory factor (LIF)
in primary intestinal epithelial cells (ICEs) and is involved in
the regulation of proliferation, apoptosis, and immune function,
thereby regulating Ulcerative colitis (UC) (14). Previous study
found that the expression of miR-29c was down-regulated in
mammary tissues samples of cows with Escherichia coli-induced
mastitis (15) and cows with clinical mastitis (16). However, there
is no report on the involvement of miR-29c in bMECs immune
response regulation.

In this study, RNA sequencing (RNA-seq), Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
annotations were used to analyze the effects ofmiR-29c inhibition
on the transcriptome profile of bMECs to explore the role of
miR-29c in bMECs.

MATERIALS AND METHODS

Cell Culture and Identification
The previously stored MAC-T cells (17) in liquid nitrogen
were resuscitated and cultured with 10mL Dulbecco’s Modified
Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) medium
(Hyclone, UT, USA) containing 10% fetal bovine serum
(System Biosciences, Mountain View, CA, USA) in a 5%
CO2 humidified incubator at 37◦C and then passaged every
2 days.

MAC-T cells were identified by immunofluorescence analysis
with epithelial marker cytokeratin 18 (18). The cells were
inoculated in a six-well plate (NEST, Wuxi, Jiangsu, China).
When the cell confluence was 80%, the medium was discarded.
The cells were rinsed three times with PBS, and fixed at room
temperature for 20min with pre-cooled 4% paraformaldehyde
(Sigma-Aldrich, St. Louis, MO, USA), then added 0.5%
Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA), and
incubated at room temperature for 5min. After blocking
for 1 h at room temperature in 2% BSA. the cells were
incubated with primary antibody for cytokeratin 18 (1:500,
Santa Cruz, Dallas, TX, USA) overnight at 4◦C. The cells
was incubated with Cy3-labeled goat anti-mouse IgG (1:200,
Beyotime, Shanghai, China) for 1 h at room temperature, then
incubated with DAPI (Beyotime, Shanghai, China) for 10min at
room temperature, followed by seal the coverslip and imaging
under fluorescence inverted microscope (Olympus, Shinjuku-ku,
Tokyo, Japan).

Cell Transfection
The miR-29c inhibitor and NC (negative control) inhibitor
were designed and synthesized by Guangzhou RiboBio Co.,
Ltd. (Guangzhou, China). MAC-T cells were inoculated into
a six-well cell culture plate (NEST, Wuxi, Jiangsu, China),
a fresh medium was added before transfection when the
cell confluence was 60∼70%. X-treme GENETM HP DNA
Transfection Reagent (Roche, Basel, Switzerland) was used for
instantaneous transfection of miR-29c inhibitor (100 nM) or NC
inhibitor (100 nM) according to the manufacturer’s instructions.
The transfection efficiency was observed under fluorescence
inverted microscope (Olympus, Shinjuku-ku, Tokyo, Japan) and
detected by quantitative real-time polymerase chain reaction
(qRT-PCR) of miR-29c in the transfected cells. The MAC-T cells
were harvested at 48 h after transfection for RNA extraction.

Construction of Transcriptome Libraries
and Sequencing
Total RNA of 6 MAC-T cells samples, including 3 replicates
of miR-29c inhibitor transfected cells and 3 replicates of NC
inhibitor transfected cells, were extracted by TRIzol reagent
(Takara, Beijing, China) for constructing transcriptome libraries.
The integrity of the RNA samples were detected by agarose
gel electrophoresis, and the purity was detected by Nanodrop
(Thermo Fisher Scientific, Waltham, MA, USA). The optical
density (OD260/OD280) of all RNA samples ranged from 1.8 to
2.0, indicating that the RNA samples were qualified. Then, 1
µg total RNA was used to construct transcriptome library by
ABclonal mRNA-seq Lib Prep Kit (ABclonal, Wuhan, Hubei,
China), and mRNA was enriched with magnetic beads with oligo
(dT). mRNA was broken into short fragments by fragmentation
buffer and used as a template. First-strand of complementary
DNA (cDNA) was synthesized by random hexamers, and then
the second-strand of cDNA was synthesized by adding buffer,
deoxynucleotide triphosphate (dNTPs), DNA polymerase I,
and RNase H. Then, AMPure XP beads were used to purify
double-stranded cDNA. Purified double-stranded cDNA ends
were repaired. A-tails were added, and sequencing adapters
were connected. Then, AMPure XP beads were used to select
segment sizes. Polymerase chain reaction (PCR) amplification
was performed, and AMPure XP beads were used to purify
the PCR products to get the final library. After the library’s
construction, the insert size and effective concentration of the
library were detected to ensure the quality of the library. After
the quality inspection, the 6 libraries were sequenced on Illumina
Novaseq 6000 (Illumina, Inc., San Diego, CA, USA) high-
throughput platform in shanghai applied protein technology co.
ltd. (Shanghai, China).

Quality Control and Mapping of
Sequencing Data
After high-throughput sequencing, raw data were stored in
FASTQ file format. Clean reads were obtained after the quality
control of raw reads by Perl, such as removal of adapters
sequence, filtering out low-quality reads and filtering out reads
with N ratio >5%. Clean reads were compared to mapped reads
in the Bos taurus reference genome UMD3.1 (http://oct2018.
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archive.ensembl.org/Bos_taurus/Info/Index) using HiSAT2
software (http://daehwankimlab.github.io/hisat2/).

Differential Expression Analysis of Genes
The expression level of each gene in each sample was calculated
using FeatureCounts software (http://subread.sourceforge.net/).
The gene expression level was expressed as FPKM (number of
bases per million compared segments to transcript per thousand)
(19). DESeq2 (http://bioconductor.org/packages/release/bioc/
html/DESeq2.html) was used to compare the genes expression
levels of miR-29c inhibitor and NC-inhibitor groups, with P <

0.05 & | log
fold change
2 | > 1 as the standard significance of the

difference between the groups.

Reverse Transcription and qRT-PCR
The reverse transcription reactions of miR-29c and mRNAs
were carried out by stem-loop structure primer (20)
(Supplementary Table S1) and the mixture of Oligo (dT)
primers and random 6 mers, respectively. All reverse
transcription reactions were performed using 1 µg total

RNA as the template and using PrimeScriptTM RT Reagent Kit
with gDNA Eraser (Takara Biomedical Technology Co., Ltd.,
Beijing, China) according to the manufacturer’s instructions.

qRT-PCR was used to detect the transfection efficiency of
miR-29c and validate the differentially expressed genes (DEGs)
obtained by RNA-seq. qRT-PCR was performed using 2×M5
HiPer SYBR Premix EsTaq plus kit (Mei5 Biotechnology Co.,
Ltd., Beijing, China) on a CFX96 assay system (Bio-Rad
Laboratories, Inc., CA, USA) in a 20 µL reaction system,
including 10 µL 2 × M5 HiPer SYBR Premix Es Taq (with
Til RNaseH), 0.8 µL 10 µmol/L of each of forward and
reverse primers, 2.0 µL cDNA (100 ng/µL) and 6.4 µL RNase-
free ddH2O. The amplification conditions were as follows:
pre-denaturation at 95◦C for 30 s, followed by 40 cycles of
denaturation at 95◦C for 5 s and annealing/extension at 60◦C for
30 s. The primers designed with Primer Premier 5 (PREMIER
Biosoft International, Palo Alto, CA, USA) are presented in
Supplementary Table S1.

The relative expression levels of miR-29c and DEGs
were normalized by glyceraldehyde 3-phosphate dehydrogenase

FIGURE 1 | Transfection efficiency detection of bovine miR-29c in MAC-T cells. (A) Transfection efficiency of NC inhibitor in MAC-T cells observed by fluorescence

microscopy. (B) The transfection efficiency of bovine miR-29c inhibitor in MAC-T cells were measured by qRT-PCR. Data are presented as mean ± SEM. **P < 0.01.
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TABLE 1 | Summary of RNA-seq data.

Sample Raw reads Clean reads Clean bases Error (%) Q20 (%) Q30 (%) GC (%)

NC inhibitor-1 41433410 41141648 5.7G 0.03 97.59 93.02 47.07

NC inhibitor-2 46829314 46481256 6.42G 0.03 97.38 92.6 47.08

NC inhibitor-3 46103512 45797992 6.33G 0.03 97.69 93.28 47.05

miR-29c inhibitor-1 41238106 40934936 5.67G 0.03 97.43 92.73 47.29

miR-29c inhibitor-2 44529582 44186794 6.12G 0.03 97.5 92.89 47.34

miR-29c inhibitor-3 48910762 48539344 6.72G 0.03 97.7 93.33 47.57

TABLE 2 | Overview of reads mapped to reference genome.

Sample Clean reads Total mapped Multiple mapped Unique mapped Non-splice reads Splice reads

NC inhibitor-1 41141648 39472120 (95.94%) 974286 (2.37%) 38497834 (93.57%) 24104014 (58.59%) 14393820 (34.99%)

NC inhibitor-2 46481256 44516188 (95.77%) 1120799 (2.41%) 43395389 (93.36%) 27311222 (58.76%) 16084167 (34.60%)

NC inhibitor-3 45797992 44030956 (96.14%) 1099954 (2.40%) 42931002 (93.74%) 26878587 (58.69%) 16052415 (35.05%)

miR-29c inhibitor-1 40934936 39185061 (95.73%) 984702 (2.41%) 38200359 (93.32%) 23783716 (58.10%) 14416643 (35.22%)

miR-29c inhibitor-2 44186794 42275231 (95.67%) 1077856 (2.44%) 41197375 (93.23%) 25608388 (57.95%) 15588987 (35.28%)

miR-29c inhibitor-3 48539344 46546820 (95.90%) 1216390 (2.51%) 45330430 (93.39%) 28118316 (57.93%) 17212114 (35.46%)

FIGURE 2 | The boxplot of expression abundance (FPKM) of genes in each sample.
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FIGURE 3 | Heat map of the correlation coefficient between samples.

(GAPDH) and ribosomal protein S18 (RPS18) (21), and the data
were calculated using the 2−11CT method (22). A significant
difference was performed using SPSS 25.0 Student’s t-tests to
determine the statistical significance of the two groups, and P
< 0.05 indicated significant difference, and P < 0.01 indicated
extremely significant difference. All data were expressed as mean
± standard error of the mean (SEM).

Functional Annotation of DEGs
The R package of clusterProfiler (version: 4.0.5) (23) was used for
GO and KEGG enrichment analysis of DEGs, and terms with a P
< 0.05 were considered significantly enriched.

RESULTS

Detection of miR-29c Silencing Effect in
MAC-T Cells
The identification of MAC-T cells was performed
by detecting the expression of epithelial cell-specific
cytokeratin 18. The results showed that cytokeratin 18

was expressed in all cells (Supplementary Figure S1),
suggested that the MAC-T cells used in this study
were reliable.

After MAC-T cells were transfected with a Cy3-labeled NC
inhibitor and incubated for 24 h, red fluorescence inMAC-T cells
were clearly observed (Figure 1A). The qRT-PCR results showed
that the expression of miR-29c was significantly down-regulated
in miR-29c inhibitor group compared with the NC inhibitor
group (P < 0.01, Figure 1B). The above results indicated that
the inhibitor successfully inhibited the expression of miR-29c in
MAC-T cells.

RNA-Seq Summary Statistics
Total RNA was extracted from each sample of NC inhibitor
and miR-29c inhibitor groups. Transcriptome libraries were
established, and RNA-seq was performed. A total of 267 million
clean reads were obtained by filtering the original data, and at
least 5.67G of the clean base was obtained from each sample,
which could be further used for subsequent analysis. The Q30
of all samples were >92.6%, and the GC content ranged from
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FIGURE 4 | Analysis of DEGs in miR-29c inhibitor and NC inhibitor groups. (A) Volcano map of genes expression between the miR-29c inhibitor and NC inhibitor

groups. The red points represent up-regulated genes, and the blue points represent down-regulated genes with statistical significance. (B) Cluster heat map of DEGs

between the miR-29c inhibitor and NC inhibitor groups.

47.05 to 47.57% (Table 1). Clean reads were mapped to the
bovine reference genome, and the total mapping rate reached
95.67–96.14%, among which 93.23–93.74% of clean reads had
unique mapped positions on the reference sequence (Table 2).
The boxplot of expression abundance (FPKM) of genes in
each sample showed the overall gene expression abundance
of different samples (Figure 2). Correlation analysis between
samples showed that R2-values were >0.8 for each group of
biological replicates (Figure 3). The above results indicated that
our sequencing data met the requirements for the analysis
of DEGs.

Differential Expression Analysis of Genes
With P < 0.05 and |log

fold change
2 |>1, a total of 42 genes were

significantly up-regulated and 27 genes were significantly down-
regulated in the miR-29c inhibitor group compared with the
NC inhibitor group (Figures 4A,B, Supplementary Table S2).

Three immune-related DEGs, namely forkhead box O1
(FOXO1), tumor necrosis factor-alpha (TNF-α), and major
histocompatibility complex, class II, DQ alpha 5 (BoLA-DQA5)
(24–26), were significantly down-regulated in the miR-29c

inhibitor group (the values of log
fold change
2 of FOXO1, TNF-

α, and BoLA-DQA5 were −1.0581, −4.1784, and −1.394,
respectively). The above results suggested that miR-29c might
regulate the immune response in MAC-T by regulating
these genes.

Validation of RNA-Seq Results by qRT-PCR
To verify the results of the deep sequencing and the DEGs
obtained by RNA-seq analysis, a total of 8 DEGs were randomly
selected for qRT-PCR. Comparing the qRT-PCR results with the
RNA-seq results, the expression trends of 8 DEGs obtained by
two methods were similar (Figure 5), indicating that the results
of RNA-seq and the screening of DEGs were reliable.
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FIGURE 5 | qRT-PCR validation of DEGs.

GO and KEGG Analysis of DEGs
Total DEGs were annotated to cellular components (CC),
molecular function (MF), and biological process (BP) through
GO enrichment analysis. Figure 6, Supplementary Table S3

shows the top 10 entries in each group. The results showed
that DEGs were significantly enriched in CC entries, such as
anaphase-promoting complex, nuclear ubiquitin ligase complex,
and proteasome accessory complex. MF annotation indicated
that the DEGs might play a role in SNARE binding, protein
phosphatase binding and protease binding. BP annotation
showed that the DEGs might be involved in regulating stress-
activated mitogen-activated protein kinase (MAPK) cascade,
stress-activated protein kinase signaling cascade, and cellular
response to ROS. KEGG enrichment was used to analyze the
possible key signaling pathways involved in DEGs (Figure 7,
Supplementary Table S4). DEGs were significantly enriched in
immune-related signaling pathways, such as asthma, allograft
rejection, Epstein-Barr virus infection, and inflammatory bowel
disease. The analysis showed that most of these results were
related to FOXO1, TNF-α, and BOLA-DQA5, which were
significantly down-regulated in the miR-29c inhibitor group
and were previously tested to be involved in the regulation
of oxidative stress and immune response. The above results
suggested that miR-29c might be involved in the regulation of
oxidative stress and the immune response of MAC-T through the
above-mentioned genes.

DISCUSSION

When endogenous or exogenous ROS and stimulation factors,

such as LPS, stimulate bMECs, the oxidative stress and

inflammatory response generated by bMECs reduce vitality
and affect the health of the mammary gland, resulting
in lactation dysfunction, which is the main cause of cow
mastitis (27–30). The occurrence of mastitis leads to extensive
changes in transcriptome profiles, including miRNA. Some
important differentially expressed miRNAs (DEmiRNAs) have
been screened out in bovine mammary tissues infected with
pathogenic bacteria or in LPS-induced bMECs, such as miR-
145 (31), miR-146a (9), and miR-223 (32, 33), which affect the
inflammatory response of bMECs by regulating the activation
of immune-related signaling pathways, such as TLRs signaling
pathway, NF-κB signaling pathway and Janus kinase/signal
transducer and activator of transcription (JAK/STAT) signaling
pathway (9, 34–36). In addition, the study have shown that
miR-141 and miR-200a are closely related to the regulation of
oxidative stress in bMECs (37).Thus, miR-29c, as a significant
DEmiRNA related to cowmastitis, should determine its potential
role in bMECs. In this study, we interfered with the expression
of miR-29c in MAC-T cells using a specific inhibitor and
detected its transcriptome changes relative to the NC inhibitor
group by RNA-seq. A total of 69 DEGs were detected, and
the result of qRT-PCR verified that result of RNA-seq were
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FIGURE 6 | GO annotation of DEGs, and the significance level of enrichment was set at P < 0.05 (top10).

reliable. These DEGs are involved in immune-related biological
processes and signaling pathways, such as stress-activated
MAPK cascade, Epstein-Barr virus infection and inflammatory
bowel disease signaling pathways. It is suggested that the
inhibition of miR-29c can regulate the immune and stress
responses of bMECs.

The MAPK cascade mainly consists of three kinases: MAPK
kinase kinase, MAPK kinase, and MAPK, which are activated
and phosphorylated downstream in turn and participate in
regulating a variety of life processes, including cellular immunity,
proliferation, and apoptosis (38–41). Similarly, oxidative stress
is an important part of the cellular immune response (42, 43).
Inhibition of the MAPK signaling pathway and the expression
of genes related to oxidative stress can effectively reduce the
inflammatory injury of bMECs induced by LPS (44, 45). Our
results found that FOXO1 and TNF-α were significantly enriched
in the above biological processes in bMECs. FOXO1 is an
important regulator of the cellular oxidative stress response (46),
it was reported that FOXO1 was significantly up-regulated in
H2O2-induced H9C2 cells, while inhibition of FOXO1 could up-
regulate superoxide dismutase (SOD) levels and down-regulate
malondialdehyde (MDA) and lactate dehydrogenase (LDH)

levels, thus reducing oxidative stress and cell apoptosis induced
by H2O2 (47). Furthermore, inhibition expression of FOXO1
in the RAW264.7 cell line resulted in the down-regulation of
pro-inflammatory genes, such as interleukin 1-beta (IL-1β),
interleukin 6 (IL-6), and monocyte chemoattractant protein-
1 (MCP-1) (48). Previous reports found that knockdown of
miR-29c in breast cancer cells inhibited FOXO1 expression
but promoted the proliferation, migration, and invasion of
breast cancer cells (49). TNF-α is an important regulator of
the immune response in mammals under physiological or
pathological conditions and can regulate the signaling pathways
related to immune cell proliferation and apoptosis (50, 51).
The expression of the TNF-α gene is positively correlated with
the severity of dairy cow mastitis. Studies have found that
miR-142-5p regulates LPS-induced bMECs inflammation by
targeting Bcl-2-associated athanogene (BAG5), and it is positively
correlated with TNF-α, IL-1β , IL-6, and interleukin 8 (IL-8)
(52). Therefore, FOXO1 and TNF-α were significantly down-
regulated in the miR-29c inhibitor group, suggesting that down-
regulation of miR-29c may reduce inflammation and oxidative
stress, which was of great significance to the maintenance of
bMECs steady state.
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FIGURE 7 | KEGG annotation of DEGs, and the significance level of enrichment was set at P < 0.05 (top10).

As a cell surface protein, soluble major histocompatibility
complex (MHC) class II molecules (e.g., BoLA-DQA family)
play an important role in maintaining immune homeostasis
with the intracellular transport process (53).In this study,
BoLA-DQA5 was significantly enriched in inflammatory and
immune-related signal pathways, such as Epstein-Barr virus
infection and inflammatory bowel disease. Hou et al. (54)
reported that cow mastitis might be regulated by BoLA-
DQA2 splice variants. In addition, studies have shown that
the copy number variation of BoLA-DQA5 may be related to
various infection-related phenotypes in Holstein cows (55).
And in the inflammatory diseases of cows, the expression
of the BoLA-DQA5 gene was significantly down-regulated

in subclinical endometritis samples of cows on the 7th day
of the estrus cycle compared with that of healthy cows,
which may be involved in regulating antigen processing
and presentation pathway (56). However, the potential
effect of BoLA-DQA5 on bMECs immune response needs
further study.

It is widely known that miRNAs don’t encode proteins,
but they can directly or indirectly regulate the expressions of
many genes (57). In previous reports, miR-29c was proved
to target specific protein-1 (SP1) (11) and nuclear factor of
activated T cells 5 (NFAT5) (58) to inhibit the inflammatory
response in Parkinson’s disease. However, miR-29c promotes
the inflammatory response by targeting LIF in UC (14).

Frontiers in Veterinary Science | www.frontiersin.org 9 April 2022 | Volume 9 | Article 865415

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Yang et al. The Role of miR-29c in bMECs

Interestingly, the pathway for the above diseases were also
enriched in our KEGG annotated results. In addition, a study
was shown that inhibition of expression of miR-29c can help
to reduce inflammation caused by sepsis (59). The above
studies have shown that the role of miR-29c is different in
different inflammation, which further highlights the importance
of studying its role in bMECs. In this study, we identified the
effect of miR-29c inhibition on the gene expression of MAC-T
cells from a global perspective using RNA-seq technology, and
the results indicated that miR-29c may regulate inflammatory
responses and oxidative stress in bMECs. Meanwhile, considered
the similarities of genes among different species, the target gene
of miR-29c in other species still needs to be verified in dairy
cow. Consequently, we predicted the potential target genes of
miR-29c using the TargetScan database (http://www.targetscan.
org/vert_80/) (Supplementary Table S5), and compared them
with DEGs. What’s surprising to us, though, is the fact that
the predicted target genes did not include in the list of the

up-regulated genes (log
fold change
2 > 1) in the miR-29c inhibitor

group, the reason of which is that, the predicted target genes
of miR-29c might not be identified under the criteria of DEGs
screening adopted in this study. As we know, the roles of
miRNA are extensive, sensitive and rapid, and the inhibition
of miRNAs on target genes may be more significant at the
protein level, rather than mRNA level (60, 61). In addition,
the expressions of target genes of miRNAs may be affected by
negative feedback and cascade regulation (62). In short, this
study provides valuable evidence for the potential role of miR-
29c in regulating inflammation and oxidative stress in bMECs,
but its specific molecular mechanism, including target gene
identification, remains to be further studied.

CONCLUSION

In conclusion, RNA-seq revealed that the inhibition of miR-
29c in MAC-T cells could lead to the up-regulation of 42
genes and the down-regulation of 27 genes. The functional
enrichment of the DEGs indicated that miR-29c might be a
potential regulator of oxidative stress and inflammatory response
in bMECs through multiple genes, such as FOXO1, TNF-α, and
BoLA-DQA5, which enriched in stress-activated MAPK cascade,
Epstein-Barr virus infection and inflammatory bowel disease
signaling pathways. The above results imply that miR-29c plays
an important role in the steady state of bMECs or cow mammary
gland and may be a potential therapeutic target for mastitis in
dairy cows.
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