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The aim of the study was to describe the CT features of focal splenic lesions (FSLs)

in dogs in order to predict lesion histotype. Dogs that underwent a CT scan and

had a FSL diagnosis by cytology or histopathology were retrospectively included in

the study. For the statistical analysis the cases were divided into four groups, based

on the results of cytopatholoy or hystopathology, namely: nodular hyperplasia (NH),

other benign lesions (OBLs), sarcoma (SA), round cell tumour (RCT). Several qualitative

and quantitative CT features were described for each case. The relationship occurring

between each individual CT feature and the histopathological groups was explred by

means of c chi-square test for the count data and by means of Kruskal-Wallis or ANOVA

for the continuous data. Furthermore, the main features of each group were described

using factorial discriminant analysis, and a decision tree for lesion classification was then

developed. Sarcomas were characterised by large dimensions, a cystic appearance and

an overall low post contrast-enhancement. NH and OBLs were characterised by small

dimensions, a solid appearance and a high post-contrast enhancement. OBLs showed

higher post-contrast values than NH. Lastly, RCTs did not exhibit any distinctive CT

features. The proposed decision tree had a high accuracy for the classification of SA

(0.89) and a moderate accuracy for the classification of OBLs and NH (0.79), whereas

it was unable to classify RCTs. The results of the factorial analysis and the proposed

decision tree could help the clinician in classifying FSLs based on their CT features. A

definitive FSL diagnosis can only be obtained by microscopic examination of the spleen.

Keywords: spleen, computed tomography, focal lesion, sarcoma, decision tree, factorial discriminant analysis

INTRODUCTION

Focal splenic lesions (FSLs) are common in dogs, especially in elderly subjects. Most FSLs (51%) are
benign; the most common histotypes are haematoma, nodular hyperplasia, and myelolipoma (1–
3). Haemangiosarcoma is reported as the most common primary malignant tumour of the spleen,
accounting for almost 80% ofmalignant FSLs (1, 2), followed by fibrosarcoma and leiomyosarcoma.
Splenic metastases (from other primary sarcomas, carcinomas or neuroendocrine tumours in most
cases) are less common, accounting for 1–6% of the total of the FSLs (3).

Despite FSLs being a common finding in canine ultrasound (US) and computed tomography
(CT) (4) there is a general paucity of studies systematically describing their imaging features. No
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specific US features are reported as useful in distinguishing
between different FSL histotypes (5). Previous studies describing
the CT features of FSLs have reported conflicting results.
Fife et al. (6), reported that, in dual-phase CT imaging,
a FSL with a post-contrast Hounsfield Unit value lower
than 55 is most likely malignant. However, Jones et al. (7),
reported no dual-phase CT features as useful in the distinction
between benign and malignant lesions. Kutara et al. (2), using
triple-phase CT imaging, reported some CT features (lesion
volume and homogeneous contrast enhancement) as useful
in differentiating between haematoma, nodular hyperplasia,
haemangiosarcoma and undifferentiated sarcoma in dogs.
Lastly, Lee et al. (8) reported triple-phase CT, combined with
ultrasonography, as useful in the differentiation between benign
and malignant lesions.

In the last few years, an increasing number of research
papers exploring the possible applications of machine learning
in veterinary radiology have been published (9–15). Research in
this field has mostly been focused on the automatic classification
of radiographic images (14, 16, 17), the distinction between
benign and malignant brain lesions on MRI (10, 18), and the
classification of liver focal lesion types on CT images (19). To the
best of the authors’ knowledge, the approach of applyingmachine
learning to classify splenic lesions based on their CT appearance
has not yet been explored.

In such a scenario, the aims of this study are: (1) to describe
the CT features of FSLs in dogs; (2) to use machine learning
algorithms to describe the complex relationship existing between
different FSL histotypes and their CT features; and (3) to develop
an easy-to-use algorithm for classifying FSLs based on their
CT features.

MATERIALS AND METHODS

Study Population
The medical records of 62 dogs (32 males and 30 females –
mean age 10.4 ± 2.3 years) referred to the Pedrani Veterinary
Clinic (Via Caldierino 14, Zugliano, Vicenza, Italy) and to the
Veterinary Teaching Hospital of the University of Padua (Viale
Dell’Università 16, Legnaro, Padua, Italy) between June 2015
and November 2021 were prospectively collected. Criteria for
inclusion in the study were: (1) a CT scan was conducted,
(2) cytopathological and/or histopathological diagnosis of the
splenic lesion. Exclusion criteria were: (1) chemotherapy at the
time of the CT scan; (2) non-diagnostic cytopathological samples
or equivocal cytopathological diagnosis. Patient signalment
was recorded for each animal. The dogs belonged to several
different breeds (31 mixed breeds, four Labrador Retrievers,
three Golden Retrievers, two Boxers, two Bernese Mountain
dogs, two German Shepherds, two Cockers, two Cane Corso,
and one each of Fox Terrier, Yorkshire Terrier, English setter,
Whippet, Great Dane, Weimaraner, Pointer, Jack Russell Terrier,
Belgian Shepherd Dog, Australian Shepherd Dog, Shih Tzu,
Lakeland Terrier and Hovawart). Six dogs were excluded because
they were receiving chemotherapy at the time of the CT scan,
and four were excluded because the cytopathological samples
resulted as non-diagnostic. Of the remaining 52 dogs, 16 had

a final diagnosis of nodular hyperplasia, six of normal splenic
parenchyma, five of extramedullary haematopoiesis, three of
haematoma, two of lymphoma, two of histiocytic sarcoma, two
of mastocytoma, one of mesenchymal neoplasia, one of plasma-
cell neoplasia, and 14 of sarcoma (five sarcoma, four stromal
sarcoma, three hemangiosarcoma, one leiomyosarcoma, and
one myxoid liposarcoma). The cases were grouped into four
broader histological categories for the statistical analysis: nodular
hyperplasia NH, 16 cases; other benign lesions (OBLs), 14 cases;
round cell tumour (RCT), eight cases, sarcoma (SA), 14 cases.

All the methods were carried out in compliance with the
relevant guidelines and regulations. This study was conducted
respecting the Italian Legislative Decree N◦ 26/2014 (transposing
EU Directive 2010/63/EU). Nevertheless, since the data used
in this study were part of routine clinical activity, no ethical
committee approval was required. Informed consent for personal
data processing was obtained from the owners.

Cytopathological and Histopathological
Examination
Thirty-three splenic masses were sampled through ultrasound-
guided fine needle aspiration for cytological assessment. Twenty
one-gauge needles were always used. Cytological slides were
obtained by smearing the aspirates on glass slides, which
were subsequently air-dried, stained with May-Grünwald-
Giemsa stain and cover-slipped. All the cytological slides were
evaluated by the same cytologist (FB). Cytology was always
performed immediately after the CT scan. Histopathology was
not performed in any of these cases.

Twenty-one splenic masses were sampled through
ultrasound-guided Tru-cut biopsy for histological assessment.
Formalin-fixed tissue samples were dehydrated in a graded
ethanol series and embedded in paraffin. Four-µm-thick sections
were stained with haematoxylin and eosin and evaluated by
one pathologist.

Computed Tomography Examination
Three different scanners were used to perform the CT
examinations: Asteion super 4 (Toshiba Medical System
Corporation), at the Veterinary Teaching Hospital; Revolution
ACT, General Electric Medical System), and Optima CT
520 Series (General Electric Medical System) at the Pedrani
Veterinary Clinic. The scanning protocols were slightly different
for the different scanners. The protocols for the Asteion super 4
were: helical acquisition mode, exposure time of 0.725 s, voltage
of 120 kV, amperage of 150mA, and slice thickness of 1–
3mm. For the Revolution ACT, were: exposure time of 0.725 s,
voltage of 100 kV, amperage of 100mA, and slice thickness of
1–2.5mm. Lastly for the Optima CT 520 Series were: exposure
time of 0.725 s, voltage of 120 kV, amperage of 180mA, and slice
thickness of 1–3 mm.

All the dogs underwent a 12-h fasting period prior
to examination. All the examinations were performed on
anaesthetised subjects placed in ventral recumbency. Contrast
medium (Ioversol 350 mg/ml, Optiray 350, Liebel-Flarsheim
Company LLC, USA) was administered at the dosage of 660
mg/kg through two differentmodalities depending on the facility:
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(1) via an injector at the Pedrani Veterinary Clinic; (2) manually
injected intravenously as a bolus at the Veterinary Teaching
Hospital. Pre-contrast and delayed phase CT scans, the latter
starting 30–50 s after the end of the contrast medium injection,
were always performed.

All the images were stored as digital imaging and
communication in medicine (DICOM) files.

Image Analysis
All the scans were retrieved using a picture archiving and
communication system (PACS). All the images were reviewed
in a soft tissue window (WW: 400 HU - WL: 40HU) using a
commercially available software (Horos v3.3.6). In the case of
multiple lesions in the same dog, the largest sampled lesion
was described.

The following qualitative features were evaluated: (1) margins
(well- or ill-defined); (2) surface (regular or irregular); (3)
appearance (solid or cyst-like) - the lesion was classified as
“cyst-like” in the presence of at least one area with a measured
Hounsfield Unit (HU) value similar to that of the animal’s
gallbladder (representing possible necrosis or haemorrhage)
(20); (4) splenic lymph-nodes appearance (normal or abnormal)
– splenic lymph nodes were classified as abnormal if any
of the following changes were evident: a) lymphadenomegaly
(the dimensions of the splenic lymph nodes were subjectively
compared to the surrounding abdominal lymph nodes), b)
heterogeneous appearance c) round or irregular shape; (5)
homogeneity of contrast-medium distribution inside the lesion
(homogeneous or heterogeneous); (6) enhancement pattern
(prevalently central, rim enhancement, or diffuse distribution).

The following quantitative characteristics were evaluated: (1)
attenuation (measured as an HU value) of the tomographically
normal splenic parenchyma, in both the pre-contrast and
the delayed phase; (2) attenuation (mean HU value) of
the lesion in both the pre-contrast and the delayed phase;
(3) maximum transverse diameter; (4) volume - the shape
of the lesion was considered to be an ellipsoid and the
formula V =

4
3π (height/2∗width/2∗length/2) was

applied (21); (5) attenuation of the lesion compared to
that of the radiologically normal splenic parenchyma in
the pre-contrast images (hypoattenuating, isoattenuating
or hyperattenuating); (6) enhancement degree of the lesion
compared to that of the radiologically normal splenic
parenchyma in post-contrast images (hypoenhancing,
isoenhancing or hyperenhancing). The attenuation and the
enhancement degree of the lesion were determined based
on the difference between the mean HU value measured on
the lesion and the HU value measured on the radiologically
normal splenic parenchyma. The lesions were classified as: a)
isoattenuating/isoenhancing if the difference fell in the ±10 HU
range; b) hyperattenuating/hyperenhancing with a difference
greater than +10 HU; c) hypoattenuating/hypoenhancing if
the difference was lower than −10 HU (7, 22). The HU values
were measured in three circular regions of interest (ROIs), in
both the normal and in the pathological parenchyma, carefully
avoiding cystic regions and vascular structures. The same ROIs

were selected in pre- and post-contrast images. The size of the
ROI was manually adjusted for each case.

The CT features were evaluated separately by two of the
authors of this study (SB: with 4 years’ experience in diagnostic
imaging and AZ, with 20 years’ experience in diagnostic
imaging). The reviewers were blinded to the results of the
histopathological examination.

Statistical Analysis
To compare the differences between the four diagnostic
categories, the count data expressed as percentages were analysed
with a chi-square test (or Fisher’s exact test when there were fewer
than 5 units of data). The quantitative variables were assessed for
normality using Shapiro-Wilks test. Differences between the four
diagnostic categories were analysed with a one-way analysis of
variance (ANOVA) for normally distributed data, whereas the
non-parametric Kruskal-Wallis test was used for non-normally
distributed data. A Bonferroni post-hoc pairwise comparison
test was performed. A p < 0.05 was considered as statistically
significant. The analyses were conducted with SAS 9.4 (SAS
Institute Inc., Cary, NC, USA).

To describe the complex relationship existing between all
the different CT features and the histopathological groups,
two different supervised machine learning techniques were
applied. The first to be used was a dimensionality reduction
technique, known as factorial discriminant analysis (FDA). This
technique was chosen in order to identify which of the CT
features best discriminated between the four histopathological
categories. FDA aims to identify different linear combinations
of original features (components - F) that provide the best
possible separation of two or more classes of units. A coefficient
is assigned to each original variable based on its relative ability to
discriminate between different groups. Different components are
computed and, usually, the first two components explain most of
the variance in the dataset. The correlations between the original
variables and components were calculated in our study and
coefficient values of |r|>0.6 and>0.5 for the first component and
the second component, respectively were considered significant.
Classification of all the cases based on the first two components
is plotted on a Cartesian plane, where the position on the x-
axis is determined by the results of F1 and the position on
the y-axis is determined by the results of F2, and this enables
the discrimination ability of the analysis to be visually assessed.
Lastly, the centroids (i.e., the arithmetic mean positions of all the
points in a group) are plotted. The further away each centroid
is from the 0 of the Cartesian axes and from the centroids of
the other groups, the better is the discrimination ability of the
analysis is for that group. The factorial discriminant analysis was
performed using XLStat (Addinsoft 2022, XLSTAT statistical and
data analysis solution, New York, USA).

Decision tree analysis was then performed to detect the best
discriminating CT features (a recursive partitioning method was
adopted using the rpart package of R – https://cran.r-project.
org/web/packages/rpart/vignettes/longintro.pdf, and a three-step
procedure was applied to build the decision tree: (1) the features
that provided the best data splitting were selected; (2)10-fold
cross-validation was used to prune the decision tree having
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the lowest number of branches and the lowest misclassification
rate (19); (3) a confusion matrix was built by comparing the
values of actual vs predicted samples (obtained from the decision
tree classification), and some quality indices regarding model
performance were calculated (sensitivity, specificity, accuracy
and misclassification rate).

RESULTS

The results of the analysis of the qualitative and quantitative
features of the images, along with their p-values, are reported in
Tables 1, 2, respectively. Pre- and post- contrast example images

for each histopathological category are reported in Figures 1–
4. Among the qualitative features, only the surface (χ2 = 8.71;
p-value = 0.033) and the appearance (χ2 = 12.98; p-value
= 0.005) showed statistically significant differences between
histopathological groups. In particular, the main differences were
found between OBLs and SAs for both the surface and the
appearance. In fact, almost all (13/14) the SAs had an irregular
surface and a cyst-like appearance. Instead, OBLs showed mainly
a solid appearance (11/14) whereas surface was almost evenly
distributed between regular (8/14) and irregular (6/14). The
margins (χ2 = 5.12; p-value = 0.163), lymph nodes (p-value
= 0.169), post contrast homogeneity (χ2 = 4.37; p-value =

0.224), and enhancement pattern (χ2 = 1.10; p-value = 0.776)

TABLE 1 | Qualitative features, along with cytological or histological classification.

Category

Nodular

hyperplasia

(n = 16)

Other benign

lesions
†

(n = 14)

Round cells

tumors+

(n = 8)

Sarcoma++

(n = 14)

Total

(n = 52)

p-value

Margins* 0.163

Well-defined 9 (56%) 10 (71%) 6 (75%) 13 (93%) 38 (73%)

Ill-defined 7 (44%) 4 (29%) 2 (25%) 1 (7%) 14 (27%)

Surface* 0.033

Regular 7 (44%) 8 (57%) 2 (25%) 1 (7%) 18 (35%)

Irregular 9 (56%)ab 6 (43%)b 6 (75%)ab 13 (93%)a 34 (65%)

Appearance* 0.005

Solid 10 (62%) 11 (79%) 5 (62%) 2 (14%) 28 (54%)

Cyst-like 6 (38%)ab 3 (21%)b 3 (38%)ab 12 (86%)a 24 (46%)

Lymph-nodes** 0.169

Normal 13 (81%) 10 (71%) 5 (63%) 6 (43%) 34 (65%)

Abnormal 3 (19%) 4 (29%) 3 (38%) 8 (57%) 18 (35%)

Post-contrast

homogeneity*

0.224

Homogeneous 5 (31%) 5 (36%) 1 (14%) 1 (7%) 12 (23%)

Heterogeneous 11 (69%) 9 (64%) 7 (86%) 13 (93%) 40 (77%)

Enhacement pattern* 0.776

Diffuse enhancement 12 (75%) 11 (79%) 5 (63%) 9 (64%) 37 (71%)

Rim enhancement 4 3 3 5 15 (29%)

Central enhancement 0 0 0 0 0

Pre-contrast

attenuation**

0.171

Hypoattenuating 7 (44%) 6 (43%) 5 (63%) 11 (79%) 29 (56%)

Isoattenuating 9 (56%) 6 (43%) 3 (38%) 3 (21%) 21 (40%)

Hyperattenuating 0 2 (14%) 0 0 2 (4%)

Post-contrast

attenuation**

0.309

Hypoenhancing 8 (50%) 7 (50%) 5 (63%) 12 (86%) 32 (61%)

Isoenhancing 1 (6%) 1 (7%) 1 (13%) 0 3 (6%)

Hyperenhancing 7 (44%) 6 (43%) 2 (25%) 2 (14%) 17 (33%)

Different letters along columns mean significant different values for p < 0.05.

*k proportion test.

**Fisher’s exact test.
†
Other benign lesions = 6 normal parenchyma, 5 extramedullary haematopoiesis, 3 haematomas.

+Round cell tumour = 2 mastocytomas, 2 lymphomas, 2 histiocytic sarcomas, 1 mesenchymal neoplasia, 1 plasma-cell neoplasia.
++Sarcoma = 5 sarcomas, 4 stromal sarcomas, 3 hemangiosarcomas, 1 leiomyosarcoma, 1 myxoid liposarcoma.
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TABLE 2 | Quantitative features, along with cytological or histological classification.

Category

Nodular hyperplasia

(n = 16)

Other benign

lesions
†

(n = 14)

Round cell tumour+

(n = 8)

Sarcoma++

(n = 14)

Total

(n = 52)

p-value

Maximum dimension (cm)* 2.17 (1.65–2.97)b 5.09 (2.50–8.65)ab 5.47 (1.22–12.37)ab 10.67 (7.57–16.00)a 4.59 (1.96–10.28) 0.001

Ellipsoid volume (cm3)* 2.77 (1.45–8.32)b 23.45 (5.50–315.99)b 72.20 (0.62–538.71)b 375.24

(152.03–1387.69)a
23.45 (2.39–350.86) 0.001

HU value of pre-contrast

normal spleen**

61.03 ± 6.01 63.11 ± 11.59 55.11 ± 9.34 54.18 ± 7.06 58.83 ± 9.18 0.026

HU value of post-contrast

normal spleen**

106.29 ± 17.05 108.61 ± 24.31 116.65 ± 20.88 108.46 ± 14.74 109.09 ± 19.05 0.665

HU value of pre-contrast

lesion**

49.59 ± 12.67ab 60.75 ± 24.59a 42.49 ± 10.91ab 33.26 ± 11.29b 47.10 ± 18.95 0.001

HU value of post-contrast

lesion**

93.90 ± 29.19ab 106.77 ± 47.24a 88.85 ± 31.28ab 60.17 ± 32.23b 87.51 ± 39.22 0.010

Different letters along columns mean significant different values for p < 0.05.

*Kruskal-Wallis test.

**One-way ANOVA.
†
Other benign lesions = 6 normal parenchyma, 5 extramedullary haematopoiesis, 3 haematomas.

+Round cell tumour = 2 mastocytomas, 2 lymphomas, 2 histiocytic sarcomas, 1 mesenchymal neoplasia, 1 plasma-cell neoplasia.
++Sarcoma = 5 sarcomas, 4 stromal sarcomas, 3 haemangiosarcomas, 1 leiomyosarcoma, 1 myxoid liposarcoma.

HU = Hounsfield Unit.

did not show statistically significant differences between the
histopathological groups.

Maximum dimension and ellipsoid volume showed a non-
normal distribution and, therefore, differences between the
groups were calculated with the Kruskal-Wallis test. All the
remaining variables showed a normal distribution and, therefore,
differences were evaluated with the ANOVA. Most of the
quantitative features revealed significant differences between the
groups: HU value of pre-contrast normal spleen (F = 3.37; p-
value = 0.026), HU value of pre-contrast lesion (F = 6.97; p-
value = 0.001), HU value of post-contrast lesion (F = 4.20;
p-value = 0.01), maximum dimension (k = 16.13; p-value =

0.001), and ellipsoid volume (k = 16.94; p-value = 0.001). Only
the HU value of the post-contrast normal spleen showed no
statistically significant differences between groups (F = 0.53; p-
value = 0.665). Box-plots of all the quantitative variables are
reported in Figure 5. It seems clear from analysis of the box plots
that differences are mainly evident between sarcomas and other
lesions. In particular the only statistically significant differences
in the HU values of pre-contrast lesions and of post-contrast
lesions are between OBLs and SAs. Only differences between NH
and SAs were evident for bothmaximumdimension and ellipsoid
volume (two highly correlated values).

The first two main components of the FDA (called F1
and F2) together explained about 86% of the total variability.
The coefficients for F1 and F2 are reported in Table 3. The
first component, explaining 63.82% of the total variability, is
positively correlated (|r|>0.6) mainly with the HU value of the
pre- and post-contrast lesion and with a solid appearance of
the lesion, and is inversely correlated with maximum dimension
and cystic appearance. The second component, explaining only
22% of the total variability, is moderately related only to

pre-contrast hyperattenuatuation (|r|>0.5). Case distribution
using the Cartesian system, based on classification by the two
main components, is represented in Figure 6. From the graph in
Figure 6A, and from the positions of the centroids (Figure 6B), it
appears evident that the sarcoma group lies (almost completely)
in the negative part of the x-axis, and is therefore associated
with characteristics such as larger maximum dimensions and a
cyst like appearance (that had a negative correlation to F1). The
NH and OBL groups are both positioned in the positive part
of the x-axis, and are therefore mainly characterised by smaller
dimensions, higher pre- and post-contrast mean HU values and
a solid appearance (positive correlation with F1). Furthermore,
OBLs and NH are separated on the y-axis (F2), with OBLs
exhibiting higher values than nodular hyperplasia. Lastly, RCTs
are located in the centre of the Cartesian axis system and thus do
not show any distinctive CT feature. Lastly, although an overall
tendency for each group is noted, the large superimposition
of the cases around the 0 on the Cartesian axes indicates that
the subdivision of SA, OBL, and NH based on the CT features
is suboptimal.

The decision tree resulting from the analysis is reported
in Figure 7. Three variables (max dimension, mean HU value
of the pre-contrast lesion and HU value of the post-contrast
lesion) were used for classification. Following the first split (max.
dimensions<3.6 cm), the decision tree classified 48% of the cases
as nodular hyperplasia (max. dimension <3.6 cm) and 52% of
the cases as sarcoma (max dimension > 3.6 cm). Of these 48%
classified as NH 56% were actually NH, 24% were OBLs, 16%
were RCTs and only 4% were SAs. Instead, of the 52% of the cases
classified as SA 7% were NH, 30% were OBLs, 15% were RCTs,
and 48% were actually SAs. Following the second split on the
left (mean HU value of the post-contrast lesion < 126), 35% of
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FIGURE 1 | Pre- (A) and post- (B) contrast images of NH showing

isoattenuation and hypoenhancement, diffuse enhancement pattern with

heterogeneous distribution, well-defined margins, irregular surface, and a

cyst-like appearance. Pre- (C) and post- (D) contrast images of NH showing

hypoattenuation and hypoenhancement, diffuse enhancement pattern, with

heterogeneous distribution, ill-defined margins, regular surface, and cyst-like

appearance. Pre- (E) and post- (F) contrast images of NH showing

hypoattenuation and hyperenhancement, rim enhancement pattern with

heterogeneous distribution, well-defined margins, irregular surface, and solid

appearance. The ROI is placed inside the lesions.

the cases were classified as NH (67% actually NH, 11% actually
OBL, 17% actually RCT, 6% actually SA) and 13% (HU lesion
post mean > 126) were classified as OBL (29% actually NH, 57%
actually OBL, 14% actually RCT, and 0% actually SA). On another
decision tree branch (mean HU values of pre-contrast lesion
≥44), 23% of the cases were classified as OBLs (17% actually
NH, 58% actually OBL, 17% actually RCT, and 8% actually SA).
On another secondary branch the algorithm classified 29% of the
cases as sarcomas (0% actually NH, 7% actually OBL, 13% RCT,
80% actually SA).

Therefore, the following observations summarise the main
findings of the decision tree. If the lesion is smaller than 3.6 cm
and has a post-contrast HU value lower than 126 there, is a 67%
chance that is NH (a 78% combined chance that it is benign if
classing NH and OBLs together). If the lesion is smaller than
3.6 cm and has a post-contrast HU value higher than 126, there is
a 57% chance that it is an OBL (an 86% combined chance that

FIGURE 2 | Pre- (A) and post- (B) contrast images of an OBL (diagnosed as

extramedullary haematopoiesis) showing hypoattenuation and

hypoenhancement, diffuse enhancement pattern with heterogeneous

distribution, well-defined margins, irregular surface, and solid appearance.

Pre- (C) and post- (D) contrast images of an OBL (diagnosed as

extramedullary haematopoiesis) showing isoattenuation and

hyperenhancement, diffuse enhancement pattern with homogeneous

distribution, well-defined margins, regular surface, and solid appearance. Pre-

(E) and post- (F) contrast images of an OBL (diagnosed as haematoma)

showing hypoattenuation and hypoenhancement, diffuse enhancement

pattern with heterogeneous distribution, well-defined margins, regular surface,

and cyst-like appearance. The ROI is placed inside the lesions.

it is benign if classing OBLs and NH together). Instead, if the
lesion is larger than 3.6 cm and has a mean pre-contrast mean
HU value higher or equal to 44, there is a 58% chance the lesion
is an OBL and a cumulative 75% chance it is benign. Lastly, if
the lesion is larger than 3.6 cm and has a pre-contrast HU lower
than 44, there is an 80% chance it is a SA and a cumulative
93% chance it is malignant (classing RCT and SA together).
Not surprisingly, the algorithm did not identify any specific
feature enabling the differentiation of RCTs from the remaining
histopathological categories. The overall accuracy of the decision
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FIGURE 3 | Pre- (A) and post- (B) contrast images of a RCT (diagnosed as

lymphoma) showing isoattenuation and hyperenhancement, diffuse

enhancement pattern with homogeneous distribution, ill-defined margins,

irregular surface, and solid appearance. Pre- (C) and post- (D) contrast

images of a RCT (diagnosed as mastocytoma) showing hypoattenuation and

hyperenhancement, rim enhancement pattern, with heterogeneous

distribution, well-defined margins, regular surface, and solid appearance. Pre-

(E) and post- (F) contrast images of a RCT (diagnosed as mesenchymal

neoplasia) showing hypoattenuation and hypoenhancement, diffuse

enhancement pattern with heterogeneous distribution, well-defined margins,

irregular surface, and cyst-like appearance. The ROI is placed inside the

lesions.

tree, when reapplied on the original data, was 0.67 and the k was
0.54. The sensitivity, the specificity and the balanced accuracy of
the decision tree for each FSL category is reported in Tables 4, 5.

DISCUSSION

The complex relationship occurring between the CT features and
the FSL histotypes were described using both a classical statistical
and a machine learning-based approach. The classical statistical
analysis revealed some significant differences between groups,
mainly for the quantitative features, whereas no significant
differences, with the exception of surface and appearance,
were evident for the qualitative features. The machine learning
algorithms substantially confirmed the results of the classical

FIGURE 4 | Pre- (A) and post- (B) contrast images of a sarcoma (diagnosed

as haemangiosarcoma) showing hypoattenuation and hypoenhancement, rim

enhancement pattern with heterogeneous distribution, well-defined margins,

irregular surface, and cyst-like appearance. Pre- (C) and post- (D) contrast

images of a sarcoma (diagnosed as sarcoma) showing isoattenuation and

hypoenhancement, diffuse enhancement pattern with heterogeneous

distribution, well-defined margins, irregular surface, and cyst-like appearance.

Pre- (E) and post- (F) contrast images of a sarcoma (diagnosed as stromal

sarcoma) showing hypoattenuation and hyperenhancement, diffuse

enhancement pattern with heterogeneous distribution, well-defined margins,

irregular surface, and cyst-like appearance. The ROI is placed inside the

lesions.

statistical analysis; indeed, all the features included in both
in the FDA and the decision tree resulted as significantly
different between the different groups in the classical statistical
analysis tests. Nonetheless, the main advantage of FDA is
that it allows identification of subtler trends than the classical
statistical analysis does. As a result of the FDA, it emerged
that while SAs were characterized both by larger dimensions
and a cyst-like appearance, strong similarities were evident in
the appearance of NH, OBLs and SAs than based on classical
statistical analysis. Furthermore, the decision tree provided a
straightforward and easy-to-use chart that could be directly
used to classify lesions based on their CT features with a
very high accuracy for SAs and a moderate accuracy for OBLs
and NH, while RCTs could not be classified through the
decision tree.
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FIGURE 5 | Box and whisker plot of the maximum dimension (A), ellipsoid volume (B), HU value of the pre-contrast normal spleen (C), HU value of the post-contrast

normal spleen (D), HU value of the pre-contrast lesion (E), HU value of the post-contrast lesion (F).

NH nodules are reported as having a variable appearance
(both homogeneous and heterogeneous) and as being markedly
hyperenhancing on post-contrast CT images (2, 6, 7). The

results of both the discriminant analysis and the decision tree
confirm such findings and, in fact, NHs were characterised
by higher pre- and post-contrast HU values and a smaller
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TABLE 3 | F1 and F2 values of the factorial discriminant analysis based on 8

qualitative and 5 quantitative predictors.

F1 F2

Well-defined margins −0.384 0.255

Ill-defined margins 0.384 −0.255

Regular surface 0.54 0.189

Irregular surface −0.54 −0.189

Solid appearance 0.636 0.144

Cyst-like apperance −0.636 −0.144

Normal lymph nodes 0.413 −0.161

Abnormal lymph nodes −0.413 0.161

Homogeneous distribution 0.381 0.089

Heterogeneous distribution −0.381 −0.089

Diffuse

contrast-enhancement

pattern

0.174 0.075

Rim enhancement pattern −0.174 −0.075

Hypoattenuation −0.421 −0.006

Isoattenuation 0.338 −0.202

Hyperattenuation 0.225 0.528

Hypoenhancement −0.426 0.028

Isoenhancement 0.143 −0.035

Hyperenhancement 0.371 −0.011

Maximum dimension −0.769 0.38

HU value of pre-contrast

normal spleen

0.533 0.191

HU value of post-contrast

normal spleen

−0.064 0.018

HU value of pre-contrast

lesion

0.69 0.401

HU value of post-contrast

lesion

0.593 0.178

volume than SAs were. Interestingly, but not unexpectedly since
several extramedullary haematopoiesis cases were present in the
OBL group, NH showed an overall lower enhancement than
the OBLs did.

In this paper we placed all benign lesions other than NH
(i.e. haematomas and extramedullary haematopoiesis) in theOBL
group and, therefore, a straightforward comparison with the
features reported by other authors for this lesion category is not
possible. Haematomas are reported as mainly heterogeneously
enhancing masses in all phases by both Kutara et al. (2) and
Jones et al. (7). Splenic extramedullary haematopoiesis nodules
have been described as having a very variable appearance and
as hyperenhancing in all phases (4). The CT features of all the
other possible OBLs (e.g., splenitis, lipoma, etc.) have not yet been
reported in the literature.

The literature reporting the CT features of malignant splenic
lesions is fragmentary and different authors have grouped
malignant lesions differently. Both Fife et al. (6) and Jones et al.
(7), grouped all malignant lesions into a single category during
statistical analysis. To date only Kutara et al. (2) have considered
sarcoma and haemangiosarcoma as individual categories during

statistical analysis. In the present study, all the sarcoma cases
were grouped together due to the presence of only three
haemangiosarcomas in the database. To the best of the authors’
knowledge, this is the first manuscript considering RCT as an
individual category for the analysis. The results of the present
study confirm the finding that sarcomas have a lower attenuation
and larger dimensions compared to benign splenic lesions (both
NH and OBLs). Instead, RCTs did not show any distinctive CT
feature. Therefore, splenic lesions should not be classified based
on their CT features alone since other diagnostic procedures (e.g.,
cytology) are necessary to determine the histotypes. Interestingly,
the splenic lymph nodes were normal in 63 % of RCTs and 43%
of SAs, whereas the lymph nodes were abnormal in 23% of the
benign lesions. Therefore, it is the author’s opinion that lymph
node evaluation also has poor value in determining whether a
lesion is benign or malignant.

Fife et al. (6), reported the presence of abdominal effusion as
significantly correlated with the presence of malignant splenic
lesions. Instead, abdominal effusion was not detected in any
of the cases included in the present study and, therefore, the
significance of such a finding was not evaluated. The significance
of abdominal effusion was also not evaluated by Lee et al. (8), and
Jones et al. (7).

Contrast-enhanced ultrasound has seldom been reported as
useful in the differentiation between benign and malignant
FSLs (23, 24). However, these reports are largely outdated and
based on a relatively low number of cases (26 and 29 cases,
respectively), and the full efficacy of this imaging technique has
yet to be proven.

In human medicine, FSL diagnosis based on diagnostic
imaging findings alone poses challenges similar to those of
the veterinary context (25). Nonetheless, the combination of
CT, MRI and 18F-FDG PET/CT enables attainment of a high
degree of confidence for lesion characterisation (25). However,
due to the limited availability of such imaging devices and of
properly developed techniques (18F-FDG PET/CT) in veterinary
medicine, the MRI features of FSLs have seldom been described
in dogs (26). It is likely that the combination of different
imaging techniques could enable attainment of a higher degree
of confidence in FSL diagnosis also in the veterinary field.
Nonetheless, this will require a broad standardisation of the
features of FSLs in each individual diagnostic imaging technique.

Most of the results of the present study are in agreement
with those reported in the literature. In particular, Lee et
al. (8) reported the HU values of the lesion in pre-contrast
phase, along with the regular and irregular margination
of the lesion as statistically significant features in the
distinction between malignant and benign tumors. Results
of this study confirmed, the appearance of the surface and
the HU values of the lesion during pre-contrast phase to
be useful in the distinction among the four considered
pathological categories.

Fife et al. (6) reported the HU values of the lesion during
pre- and post-contrast phase as significantly different between
malignant lesions, hematomas andNH. Nevertheless, the authors
found a threshold of <55HU in post contrast scans for
classification of malignant lesions. In our study, the decision
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FIGURE 6 | Distribution of the cases (A) and of the centroids (B) based on the F1 and F2 components of the factorial discriminant analysis classification.

FIGURE 7 | The machine learning-based decision tree developed on the qualitative and the quantitative CT features of the focal splenic lesions. The second line in

each box shows the probability of each class at that node (i.e., the probability of the class conditioned on the node) and the third line shows the percentage of

observations used at that node.

tree, used a threshold of <44 HU to distinguish between
sarcoma and OBL, and of <126 HU to distinguish between NH
and OBL.

Lastly, Kutara et al. (2) found the size of the mass
as statistically different between NH, hematomas,
hemangiosarcoma, and undifferentiated sarcoma. In particular,
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TABLE 4 | Confusion matrix that summarises the performance of the machine learning-based decision tree, giving the number of predicted cases.

Actual

Nodular hyperplasia Other benign lesions Round cells tumors Sarcoma Total

P
re
d
ic
te
d

Nodular hyperplasia 12 2 3 1 18

Other benign lesions 4 11 3 1 19

Round cells tumour 0 0 0 0 0

Sarcoma 0 1 2 12 15

Total 16 14 8 14 52

TABLE 5 | Results of the classification of the focal splenic lesions based on the

machine learning-based decision tree.

Nodular

hyperplasia

(n = 16)

Other benign

lesions

(n = 14)

Round cells

tumors

(n = 8)

Sarcoma

(n = 14)

Sensitivity 0.75 0.79 0.00 0.86

Specificity 0.83 0.79 1.00 0.92

Balanced

accuracy

0.79 0.79 0.50 0.89

the size was smaller for NH. Our results confirmed that the size
is significantly smaller in case of NH, with a 3.6 cm cut-off value.

One limitation of the present study is that, since most of the
FSLs were occasional findings on CT scans performed for other
reasons (e.g., staging of neoplasia), the lesions were evaluated
only in the pre-contrast and in the delayed phase and no arterial
phase was available for the selected cases. Previous reports on
the CT features of FSL (2, 6–8) used both dual-phase (6, 7) and
triple-phase (2, 8) scanning protocols. To the best of the authors’
knowledge, no CT features specifically related to the arterial
phase have yet been shown as useful in differentiating between
the different FSL histotypes.

Another limitation is that no specific RCTs were differentiated
by the proposed decision tree. A possible explanation of this is
that several different histotypes (lymphoma, histiocytic sarcoma,
mastocytoma, mesenchymal neoplasia, plasma-cell neoplasia)
with different imaging features were included in the RCT
category. By including a larger number of cases in a future
study, a larger number of groups could likely be considered
during analysis, which would therefore provide a more detailed
description of the CT features of FSLs.

The third possible limitation is related to the use of
cytopathology to classify the cases. Indeed, the agreement
between cytopathological and hystopathological diagnoses of the
spleen is reported to be only moderate (Cohen’s Kappa = 0.473)
(27). In the present study histopathology was performed only in
19 cases, while the remainder 33 cases were evaluated only by
means of cytopathology. To improve the classification accuracy
both non-diagnostic cases and cases with doubtful cytological
diagnosis were excluded. It is the authors’ opinion that, including
only cases with high quality cytopathological samples increase the
diagnostic accuracy of the cytological exam.

CONCLUSIONS

The CT features of different groups of FSL have been
described and analysed using both classical statistical analysis
and machine learning algorithms. SAs are characterised by
large dimensions, a cystic appearance and an overall low post-
contrast enhancement. NH and OBLs are characterised by
small dimensions, a solid appearance and a high post-contrast
enhancement. OBLs show higher post- contrast values than
NH. Lastly, RCTs do not exhibit any distinctive CT features.
A straightforward, easy-to-use decision tree for classifying FSLs
is proposed.
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