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Bromethalin toxicosis is an increasingly common clinical presentation in dogs that may

be fatal depending on the extent of intoxication. Antemortem diagnosis of bromethalin

toxicosis was achieved in three dogs by demonstration of the active metabolite

desmethylbromethalin in fat or serum. Magnetic resonance imaging (MRI) findings were

consistent with a diffuse leukoencephalopathy with restricted diffusion and prominent

involvement of the corticospinal motor tracts on T2-weighted and diffusion-weighted

sequences. Imaging findings were confirmed in one non-surviving dog at necropsy.

Resolution of MRI abnormalities was demonstrated in one surviving dog that was

consistent with the associated resolution of clinical signs. Initial findings in these dogs

support further investigation of specific MRI patterns in cases of leukoencephalopathy to

aid differential diagnosis. While antemortem detection of bromethalin and its metabolites

confirms exposure, quantitation may be informative as a prognostic biomarker.

Keywords: biopsy, bromethalin, canine, corticospinal tract, desmethylbromethalin, leukoencephalopathy,

restricted diffusion

INTRODUCTION

Rodenticide intoxications are one of the most common canine toxicoses, and the use of the
over-the-counter rodenticide bromethalin has increased substantially the following action by the
Environmental Protection Agency to phase out second-generation anticoagulant rodenticides
(1–4). Bromethalin (N-methyl-2,4-dinitro-N-[2,4,6-tribromophenyl]-6-[trifluoromethyl]
benzenamine) is a lipophilic diarylamine and weak acid that can locate within the
mitochondrial inner membrane and act as a protonophore (5, 6). Bromethalin is a pro-
pesticide that is converted by hepatic N-demethylation to the more active diphenylamine
desmethylbromethalin, a potent central nervous system (CNS) toxicant with no antidote
(7). Mitochondrial adenosine triphosphate (ATP) generation occurs through oxidative
phosphorylation, comprised of two coupled processes: electron transport, generating a proton
gradient across the inner mitochondrial membrane, and passage of protons through the
ATP-synthase complex to create ATP (6). Desmethylbromethalin, a protonophore, uncouples

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.879007
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.879007&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vishal.murthy@wsu.edu
https://doi.org/10.3389/fvets.2022.879007
https://www.frontiersin.org/articles/10.3389/fvets.2022.879007/full


Murthy et al. Bromethalin Toxicosis in Three Dogs

these two processes by shuttling protons back across the
inner membrane and discharging the electrochemical gradient,
impairing ATP generation (6). CNS signs are commonly seen
in both experimental and clinical cases (8–15). Pathology is
consistent with diffuse spongy degeneration of predominantly
CNS white matter with intramyelinic edema (7, 9–12, 16,
17), however, fatal intoxication with CNS signs and minimal
histological lesions has been reported (18). Increased total brain
water and sodium concentrations and intracranial hypertension
have been documented experimentally in rats and dogs, and
failure of ATP-dependent Na+-K + ion channel pumps has been
proposed as a primary mechanism for cellular pathology (7, 15,
19). However, specific pathophysiology has not been defined, and
other contributory mechanisms have also been proposed, such as
increased lipid peroxidation and disruption of the blood-brain
barrier (19).

Clinical signs of bromethalin intoxication are primarily
neurological, however, gastrointestinal signs are also reported
(7, 8, 13, 15, 20). In dogs, a “convulsive syndrome” (tremors,
seizures, obtundation, and death) is reported at doses above
the median lethal dose (LD50), while lower doses may result
in a delayed “paralytic syndrome” characterized by muscle
tremors, ataxia, paresis, and obtundation (15). Once severe signs
of toxicosis, such as seizures, stupor, or coma, are seen, the
prognosis is poor (15). Specific signs and severity may depend
on several variables, such as species, total dose, drug absorption
and metabolism, exposure time, and time to presentation.
Cats appear to less commonly develop seizures as compared
to dogs, and individual variability has been documented in
experimental dogs receiving the same oral dose (15, 21). The
LD50 of bromethalin varies by species within the range of 1–
15 mg/kg (7, 13, 15). Cats and rats are more sensitive than
dogs or rabbits, while guinea pigs are resistant to bromethalin
(though not desmethylbromethalin) due to their inability to
metabolize bromethalin to its more toxic metabolite (7). Clinical
diagnosis of bromethalin intoxication is often presumptive
based on the history of exposure and evidence of bait in
feces or stomach contents (8). Magnetic resonance imaging
(MRI) reports are limited, and a diffuse leukoencephalopathy
with restricted diffusion based on diffusion-weighted imaging
(DWI) has been reported in two cats (12). Definitive diagnosis,
although infrequently utilized antemortem in the clinical setting
(12, 14, 16, 18, 22), is through qualitative demonstration of
desmethylbromethalin in tissues, such as adipose, kidney, liver,
brain, or serum (23, 24), in conjunction with compatible
clinical signs. The prognostic value of quantitative assessment of
bromethalin and its metabolites in tissues and serum has not been
determined in clinical cases.

In this case series, we report the antemortem assessment
of desmethylbromethalin assays in three dogs with variable
clinical outcomes and document MRI findings with marked
similarities to those recently reported in cats with bromethalin
intoxication (12). Specific MRI features and potential prognostic
value of quantitative bromethalin assays are discussed in the
context of clinical assessment of dogs exposed to bromethalin-
based rodenticides.

Case 1
A 10-year-old female spayed, 21 kg Catahoula Leopard Dog
was presented for non-localized pain, following a 1-month
progressive history of lethargy, inappetence, refusal to jump,
and intermittent pacing and vocalization. Complete blood
count (CBC), serum biochemistry, prothrombin time (PT), and
partial thromboplastin time (PTT) were normal. Screening for
heartworm disease, Lyme disease, ehrlichiosis, and anaplasmosis
was negative. Thoracic and abdominal radiographs revealed
no abnormalities. No history of trauma or toxicant exposure
was reported.

At presentation, the dog was markedly reactive and aggressive
on handling with non-localizable apparent pain and mild
obtundation, interpreted as a manifestation of pain. The dog
was ambulatory with no gait or postural abnormalities, and
menace response was present bilaterally [oculus uterque (OU)].
Cranial nerve examination was unremarkable but spinal reflex
testing was not possible. Definitive neuroanatomic localization
was not possible, but lumbar pain was suspected. The abdominal
ultrasound was unremarkable. MRI of the thoracolumbar
vertebral column revealed multiple degenerative intervertebral
discs and a region of contrast enhancement within the left
sartorius muscle. Soft tissue injury or myositis could not be ruled
out. A lumbar cerebrospinal fluid (CSF) sample was normal.
While a definitive etiology was not identified, lumbar radicular
pain was suspected based on the clinical presentation. Following
anesthesia, the dog was observed to pace the kennel periphery
and lean facing the wall. The patient was rested with trazodone
(5 mg/kg q8 h) to facilitate confinement and prednisone (1
mg/kg q24 h) for nerve root pain. Clinical signs failed to resolve
following 5 days of treatment and the owner reported episodes of
getting stuck in corners. Cranial nerve examination and postural
reactions were unremarkable at this time and a neuroanatomical
localization of cerebral disease was made based on the head-
pressing and behavior changes.

MRI of the brain revealed extensive hyperintensity of
cerebral and brainstem white matter on T2-weighted (T2W) and
T2W fluid attenuated inversion recovery (FLAIR) sequences,
with no contrast enhancement (Figures 1, 2). Lesions were
prominent in the corona radiata, internal capsule, corpus
callosum, fornix, olfactory tracts, and cerebellar peduncles.
Elements of the corticospinal tracts (CST) were particularly
prominent at the level of the brainstem and cranial cervical spinal
cord. T2W hyperintense white matter structures also appeared
hyperintense on diffusion-weighted imaging (DWI) (Figures 1,
2) and hypointense on the apparent diffusion coefficient
(ADC) map (Figure 2), consistent with restricted diffusion.
These findings suggested a diffuse leukoencephalopathy, such
as bromethalin toxicosis. Transtentorial herniation and rostral
cerebellar flattening were identified, consistent with intracranial
hypertension. Under anesthesia, mean systemic systolic blood
pressure by direct measurement was consistently below 120
mmHg (ref 90–160 mmHg). An ∼10 g sample of dorsal
subcutaneous lumbar fat was biopsied and submitted for
desmethylbromethalin testing (23) at the California Animal
Health and Food Safety Laboratory (CAHFS).
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FIGURE 1 | Sequential transverse MR images from case 1. (A–E), diffusion-weighted (DWI); (F–J), T2-weighted (T2W): Diffuse bilaterally symmetrical hyperintensity

involving white matter tracts is present on DWI and T2W images. Hyperintensity consistent with the descending corticospinal tract (white arrows) is present at the level

of the internal capsule (A,F), midbrain crus (B,G), pyramidal tracts (C,H), pyramidal decussation (D,I), and lateral corticospinal tracts (E,J). Additional white matter

tracts are defined, including corona radiata [(A,F), white arrowheads] and hippocampal fornix [(A), black arrowhead].

The dog recovered from general anesthesia and was started
on phenobarbital (4 mg/kg PO q12 h) to reduce the risk of
epileptic seizures. Prednisone (1 mg/kg/day) to treat the cerebral
inflammation and trazodone (5 mg/kg q8 h) for confinement
were continued. Over 5 days, the dog became less reactive
to handling and touch, remained mildly obtunded, and was
discharged on the above medications with instructions to
taper and discontinue the corticosteroids over 1 week. In 2
weeks, the dog had returned to normal. Following normal
neurological examination, trazodone was discontinued, and
the phenobarbital was gradually tapered over 2 months and
discontinued. Desmethylbromethalin testing was positive with a
semi-quantitative concentration estimate of <0.1 ng/g based on
comparison with a standard curve.

Case 2
A 1.5-year-old intact female, 26 kg Labrador Retriever
dog developed an acute onset of lethargy, progressive
obtundation, hyper-reactivity to sound and touch, vocalization,
hypersalivation, loss of urinary continence, and apparent trismus.
No history of trauma or toxicant exposure was reported. CBC
and serum biochemical profiles were normal. On presentation,
general physical examination revealed fleas, otitis externa,
and increased abdominal respiratory effort. On neurological
examination, the dog was non-ambulatory tetraparetic with
waxing and waning obtundation. Menace response was reduced
OU with normal palpebral but absent corneal reflexes OU.
Nasocortical response was reduced bilaterally. Masticatory
muscle mass was normal. Mild anisocoria was noted with
miosis of the left eye [oculus sinister (OS)] and intact direct
and consensual pupillary light reflexes. Rotary nystagmus was
induced on placing the dog in lateral recumbency, with a vertical,
upbeat nystagmus in dorsal recumbency. A gag reflex could

not be elicited. Postural reactions were absent in all limbs.
Thoracic limb muscle tone was increased with normal myotatic
reflexes and reduced withdrawal reflexes. Pelvic limb tone
appeared normal with bilaterally hyper-reflexive patellar reflexes.
A neuroanatomical localization of multifocal brain disease,
characterized by the brainstem and cerebral disease, was made,
with high concern for diffuse intracranial hypertension. Over the
course of the examination, the dog developed opisthotonos.

MRI of the brain and cervical spinal cord (Figure 3) revealed
generalized T2W and T2W-FLAIR hyperintensity of white
matter tracts. Lesions were most prominent in the corona
radiata, internal capsule, CST, and C1 white matter tracts.
Diffuse hyperintensity was seen throughout the rest of the
cervical spinal cord. Transtentorial and transforaminal cerebellar
herniation were present. Faint meningeal and multifocal intra-
axial cerebral contrast enhancement were noted. Findings
were consistent with a diffuse leukoencephalopathy, such
as bromethalin toxicosis with intracranial hypertension and
syringohydromyelia. Under anesthesia, mean systemic blood
pressure by direct measurement was consistently below 110
mmHg (ref 90–160 mmHg). The dog was treated with mannitol
(0.5 g/kg IV) with concurrent intravenous (IV) fluid therapy
and dexamethasone sodium phosphate (0.2 mg/kg IV). CSF
collection was not attempted. An ∼10 g sample of dorsal
subcutaneous lumbar fat was biopsied and submitted for
desmethylbromethalin testing at the CAHFS and the dog was
recovered from anesthesia.

Following initial transient improvement in gait and
mentation, a progressive decline was seen over 24 h with
episodes of head pressing, vocalization, generalized hypertonia,
opisthotonos, and loss of physiological nystagmus. The
dog was treated with two additional doses of mannitol (0.5
g/kg IV), dexamethasone sodium phosphate (0.2 mg/kg
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FIGURE 2 | (A–C) MR images at the level of the thalamus from case 1 demonstrating restricted diffusion of defined lesions. Hyperintensity of corona radiata (white

arrowheads) on T2W (A) and diffusion-weighted imaging (DWI) (B) images with hypointensity on the corresponding apparent diffusion coefficient map (C) is consistent

with restricted diffusion. Parasagittal (D) and midsagittal T2W images (E) highlight the descending [(D), white arrowhead] and pyramidal components [(E), white arrow]

of the corticospinal tract. The olfactory tract [(D), white arrow], rostral commissure [(F), white arrow, transverse T2W image], and columns of the fornix [(F), white

arrowhead] ventral to the hyperintense corpus callosum are also clearly defined.

IV), 2.5 mL/kg IV 7.2% hypertonic saline, and IV lipid
emulsion therapy (15 mL/kg/h, reduced to 7.5 mL/kg/h
following lipemia) (14, 22). The dog continued to decline
and experienced respiratory arrest. Post-mortem lumbar CSF
sampling revealed clear CSF with a mononuclear pleocytosis
(127 cells/uL; ref <5 cells/uL), few erythrocytes (399/uL; ref
0/uL), and increased protein (37 mg/dL; ref <35 mg/dL).
Desmethylbromethalin testing was positive with a semi-
quantitative concentration estimate of >280 ng/g based on
comparison to a standard curve. Necropsy revealed cerebellar
herniation and diffusely turgid, flat cerebral gyri separated by
shallow sulci. Histopathology revealed diffuse intramyelinic
edema with segmental axonal swelling with gliosis. There
was moderate syringohydromyelia, and dorsomedial and
ventromedial white matter edema throughout the cervical
and thoracic spinal cord. Additional anticoagulant rodenticide
testing on the liver detected trace amounts of brodifacoum
and increased levels of diphacinone (190 ppb), which were
considered incidental findings in this dog, given the lack of
hemorrhagic lesions.

Case 3
A 5-year-old female spayed, 18 kg German Shepherd-cross dog
developed acute behavior changes, panting, and ataxia. CBC,
serum biochemistry panel, urinalysis, thoracic, and abdominal
radiographs were unremarkable. Toxin exposure was considered
possible. Activated charcoal with sorbitol (43mL), IV lipid
emulsion therapy (288mL total), and 24 h of IV fluids were
administered, transient improvement was seen, and the dog was
discharged. Upon subsequent worsening of clinical signs, the dog
was re-presented 4 days after the initial onset of clinical signs.
The dog was obtunded with intermittent dysphoria, moderate
generalized ataxia, circling to the left, and low head carriage.
Other than an inconsistent menace response of the right eye
(oculus dextrus: OD) and postural reaction deficits in all limbs,
the neurological examination was normal. Due to concern for
diffuse, potentially left-sided thalamocortical disease, MRI of the
brain was performed (Figure 3) and revealed diffuse, bilaterally
symmetrical T2W, T2W-FLAIR hyperintensity of the cerebral
white matter tracts with no contrast enhancement. The white
matter appeared hyperintense on DWI and hypointense on
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FIGURE 3 | MR images from cases 2 (A,B) and 3 (C–L) demonstrating similar hallmark corticospinal tract lesions in both cases and demonstrating resolution of MRI

changes in case 3. Transverse T2W images at the level of the midbrain and medulla oblongata for cases 2 (A,B) and 3 (C,D) demonstrate hyperintensity of corona

radiata (white arrowheads) and prominence of the corticospinal tracts (white arrows) within the brainstem as in case 1. Lesions are again most noticeable on

diffusion-weighted imaging (DWI) images from case 3 [(E,F), white arrows]. Case 3 initial transverse T2W (G), DWI (I) and apparent diffusion coefficient (ADC) map (K)

images at the level of the caudate nuclei confirm restricted diffusion within white matter tracts as in case 1. Reversal of imaging abnormalities on repeated T2W (H),

DWI (J), and ADC map (L) 6 months later was consistent with resolution of clinical signs.

ADC maps (Figure 3). Abnormalities were most prominent
in the CST, corona radiata, internal capsule, and corpus
callosum. These findings suggested diffuse leukoencephalopathy,
such as bromethalin toxicosis. Slight flattening of the caudal
cerebellum was noted, with no signs of herniation. CBC, PT, and
PTT were normal. Cisternal CSF analysis showed 4 nucleated
cells/uL and total protein content of 30.4 mg/dL. Polymerase
chain reaction (PCR) testing (Neurologic REALPCRTM PANEL,
IDEXX, Westbrook, ME) of CSF for rickettsial, viral, fungal,
and protozoal pathogens was negative. A serum sample was
submitted to CAHFS for desmethylbromethalin testing.

The dog was treated with dexamethasone sodium phosphate
(0.1 mg/kg IV), maropitant (1 mg/kg IV), and hospitalized
overnight on IV fluid therapy. Mentation was improved
but an inconsistent menace response OD, postural reaction
deficits in all limbs, and intermittent circling to the left

persisted. Desmethylbromethalin testing was positive with a
semi-quantitative estimated concentration between 25 and 100
ng/g based on comparison with a standard curve. Following
discharge on prednisone (0.5 mg/kg PO daily) for cerebral
inflammation, maropitant (2 mg/kg PO daily) as an antiemetic
and omeprazole (20mg total PO q12 h) to reduce the risk of
gastrointestinal ulceration, the dog returned to normal within 18
days of the initial onset of signs. Prednisone dose was tapered
over 2 weeks, and the dog was neurologically normal with normal
MRI 6 months later (Figure 3).

DISCUSSION

Three dogs were presented with multifocal neurological
deficits and MRI consistent with a symmetrical, generalized
leukoencephalopathy characterized by restricted diffusion
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TABLE 1 | Reported desmethylbromethalin tissue levels and clinical outcomes in dogs.

Bromethalin dose mg/kg Neurological signs DMB level ng/g Death Reference

3 Exp. Beagles 6.25 YES FAT 49,58,325 YES Dorman et al. (9)

Beagle NA Found dead* FAT 390 YES Romano et al. (18)

Case 1 NA YES FAT <0.1 NO

Case 2 NA YES FAT >280 YES

Norwich Terrier NA YES SERUM 0.5 NO Lyons et al. (14)

Pit Bull Terrier 0.17** NO SERUM 1–4*** NO Heggem-Perry et al. (22)

Case 3 NA YES SERUM 25–100 NO

* normal within 24 h of death.
** owner reported.
*** Limit of detection.

Analysis in Dorman et al. (9) is quantitative; all other analyses are semiquantitative based on limited internal control samples.

and prominent involvement of the CST. Qualitative and
semiquantitative evaluation of antemortem serum/fat
desmethylbromethalin levels provided a diagnosis of
bromethalin intoxication, and serum/tissue concentrations
were broadly predictive of outcome consistent with experimental
data. MRI findings in dogs appear to be similar to those
previously reported in cats (12).

While a “neuron-centric” approach to CNS energy imbalance
and excitotoxicity is often taken, oligodendroglia are highly
sensitive, resulting in leukocentric disease presentations
(25–28). A variety of human genetic and dog breed-related
leukodystrophies have been reported, such as adult-onset
human disorders (29–47); however, more relevant, non-breed
related differentials in this case series included other toxicants
known to disrupt oxidative phosphorylation (hexachlorophene,
carbon monoxide (CO), and triethyltin) (6, 48–54) and systemic
hypertension (55–58). Human hypertensive encephalopathy
is associated with the leukotrophic syndrome posterior
reversible encephalopathy (PRES), which is linked to other
factors, such as eclampsia, chemotherapy, immune-mediated
disease, immune suppression, renal disease, sepsis, and
transplantation (57, 58). Somewhat confusingly, human acute
toxic leukoencephalopathy (ATL), which is often reversible
and characterized by periventricular restricted diffusion, is also
reported in association with chemotherapeutics, heroin, cocaine,
opioids, immunosuppressants, acute hepatopathy, and uremia
(59, 60).

Less likely differential diagnoses for leukoencephalopathy
based on history, signalment, bloodwork, and lesion
distribution included radiation-associated encephalopathy
(61), cobalamin and copper deficiency (62), hypotensive
periventricular leukoencephalopathy (PVL) (63, 64), age-
associated periventricular lesions (”leukoaraiosis“) (65),
and leukocentric presentations of infectious or immune-
mediated diseases, such as distemper (66), parvovirus
(67), and granulomatous meningoencephalomyelitis (68).
Progressive multifocal leukoencephalopathy associated with
John Cunningham (JC) virus, (69), diffuse leukoencephalopathy
associated with COVID-19 (70), and acute leukoencephalopathy
with restricted diffusion associated with bacterial/viral infections
are reported in humans (71), but not dogs. Hypoglycemia can

predominantly affect white matter in humans (72), although
gray matter involvement is common and such lesions may also
predominate in CO exposure depending on exposure timing
(49, 73, 74). Fumonisin B1 toxin (Fusarium spp.) is associated
with leukoencephalomalacia in horses, but not documented in
dogs (75, 76).

Imaging and pathology can be variable for many
leukoencephalopathies and involvement of more restricted
white matter regions and variable components of gray matter
can be seen. Bromethalin-related pathology appears to be almost
exclusively white matter-oriented. Restricted diffusion and
prominence of CST were notable MRI findings in the described
dogs and have additional diagnostic value in this context.
Leukoencephalopathy with restricted diffusion, potentially
reflecting cytotoxic pathology, is reported with toxic and
metabolic causes, such as CO, organotin compounds, ATL,
hypoglycemia, and PVL (49, 59, 60, 72, 77). Hypertensive
encephalopathy and PRES are not generally associated with
restricted diffusion, consistent with a vasogenic origin of MRI
signal changes (55, 57, 58). Pronounced CST involvement, often
with restricted diffusion, has been reported in humans with
amyotrophic lateral sclerosis (ALS) (78, 79), cerebral insults
(80, 81), chemotherapy (82), and a variety of human neonatal
and adult syndromes of inborn errors of metabolism (29, 83).
Conspicuous CST involvement is reported in some cases of
Krabbe disease (84, 85), adrenoleukodystrophy (ALD) (86), and
some mitochondriopathies (83, 87, 88); selective involvement
of CST was reported in ∼25% of mitochondrial leukodystrophy
patients with brainstem involvement in one human study
(87). Anatomical factors, including tract relative volume and
length, may contribute to imaging findings; however, given
the pathogenesis of bromethalin intoxication, the potential
mitochondrial associations are intriguing. Mitochondrial
defects have emerged as a common finding in ALS (78) and
ALD-associated very-long-chain fatty acids have been shown to
impair mitochondrial oxidative phosphorylation (89). Similarly,
the accumulation of psychosine in Krabbe disease has been
shown to interfere with mitochondrial electron transfer by
altering the lipid membrane (90). Mechanisms for potentially
increased sensitivity of CST neurons specifically are not defined,
however, mitochondria are neither homogenous nor respond
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stereotypically in the same disease setting. ”Striking“ differences
in mitochondrial replication, mitochondrial DNA copy number,
and gene expression exist in different tissues (91), and recent
data have shown that within the CNS, regulation of even basic
mitochondrial functions differs between specific cell types and
even neuronal subtypes providing potential mechanisms for
”selective vulnerability of specific neuronal populations“ during
disease (92).

The LD50 for technical-grade (7) and rodenticide-based
bromethalin (15) in dogs is reported at 4.7 and 3.65 mg/kg,
respectively, with the lowest reported lethal dose of 2.5 mg/kg
(15). American Society for the Prevention of Cruelty to Animals
Animal Poison Control Center unpublished the data that
documented deaths following bromethalin doses as low as 0.95
mg/kg [referenced in (93)]. Limited experimental data showed
adipose levels of desmethylbromethalin of 49–325 ng/g following
a lethal 6.25 mg/kg dose of bromethalin. Antemortem testing
for bromethalin exposure is uncommon (8) but was essential in
these cases where the specific history of exposure was lacking.
Conclusions related to serum or fat biopsy concentrations and
outcome are limited due to variable sources and timings of
diagnostic samples, treatment regimens, and limited quantitative
data available from the testing methodology (18, 23). However,
reviewing available data from these and previously published
experimental and clinical cases (Table 1), a predictable trend is
apparent with sample desmethylbromethalin levels below those
previously associated with bromethalin LD50 levels (9) being
associated with a favorable outcome. No data relating serum
levels to lethality and bromethalin dose in dogs are available,
although a plasma elimination half-life of 5.6 days has been
reported in mice (7).

Neurological patients presented with MRI-defined diffuse
leukoencephalopathy with restricted diffusion on DWI and
ADC maps and prominent involvement of CST should have
bromethalin intoxication as a major differential diagnosis in
both dogs and cats. Serum or fat biopsies should be considered
for both diagnosis and potential prognostic evaluation and
given the lipophilic nature of desmethylbromethalin, an adipose
tissue biopsy may provide the broadest diagnostic window
(17). Prospective studies evaluating desmethylbromethalin
in serum and adipose samples in a quantitative and
temporal setting would be beneficial to further evaluate
prognostic value.
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