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The threat of bovine respiratory disease (BRD) for cattle operations is exacerbated by

increasing prevalence of antimicrobial resistance (AMR) in Mannheimia haemolytica,

a leading cause of BRD. Characterization of AMR in M. haemolytica by culture and

susceptibility testing is complicated by uncertainty regarding the number of colonies

that must be selected to accurately characterize AMR phenotypes (antibiograms) and

genotypes in a culture. The study objective was to assess phenotypic and genotypic

diversity of M. haemolytica isolates on nasopharyngeal swabs (NPS) from 28 cattle

at risk for BRD or with BRD. NPS were swabbed onto five consecutive blood agar

plates; after incubation up to 20 M. haemolytica colonies were selected per plate (up

to 100 colonies per NPS). Phenotype was determined by measuring minimum inhibitory

concentrations (MIC) for 11 antimicrobials and classifying isolates as resistant or not.

Genotype was indirectly determined by matrix-assisted laser desorption/ionization time

of flight mass spectroscopy (MALDI-TOF MS). NPS from 11 of 28 cattle yielded at least

one M. haemolytica isolate; median (range) of isolates per NPS was 48 (1–94). NPS

from seven cattle yielded one phenotype, 3 NPS yielded two, and 1 NPS yielded three;

however, within a sample all phenotypic differences were due to only one MIC dilution. On

each NPS allM. haemolytica isolated were the same genotype; genotype 1 was isolated

from three NPS and genotype two was isolated from eight. Diversity of M. haemolytica

on bovine NPS was limited, suggesting that selection of few colonies might adequately

identify relevant phenotypes and genotypes.
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INTRODUCTION

Bovine respiratory disease (BRD), the leading cause of morbidity
and mortality in U.S. beef cattle (1), poses a threat to cattle
operations. The prevalence of antimicrobial resistance (AMR)
appears to be increasing in Mannheimia haemolytica (M.
haemolytica), a leading contributor to BRD (2–4); research is
underway to determine the causes and impact of AMR in
M. haemolytica. Characterization of the AMR phenotype by
culture and antimicrobial susceptibility testing is complicated by
uncertainty regarding the number of M. haemolytica colonies
that must be selected to adequately characterize antimicrobial
susceptibility phenotypes (antibiograms) and genotypes in a
sample. While multiple colonies consistent with M. haemolytica
may be present on a primary culture plate from a bovine sample,
standard diagnostic methodology is to select one isolate for
characterization. It may be that selection of multiple colonies
is necessary to accurately identify important AMR isolates, but
this could substantially amplify the cost of testing. As research
is ongoing to characterize the extent and impact of AMR in the
bacteria that contribute to BRD, it is important to clarify whether
a single isolate from a respiratory sample adequately represents
the characteristics of all isolates that can be identified in the
same sample.

The number of colonies that must be isolated from a primary
culture plate to accurately represent the diversity of isolates on
the plate has been determined for other bacteria (5, 6), but
to our knowledge this number has not been estimated for M.
haemolytica. The study objective was to describe the phenotypic
and genotypic diversity of up to 100M. haemolytica isolates from
individual bovine nasopharyngeal swabs (NPS) collected from
live cattle at risk for BRD, or after treatment for BRD.

MATERIALS AND METHODS

Animals
Subject cattle (n= 28) were a convenience sample of post-weaned
mixed breed beef cattle of Bos taurus origin, weighing 180–
270 kg, with an estimated age of 6 months to 1 year. The cattle
were in different groups of recently purchased and comingled
cattle from various auction markets. At the time of sampling the
cattle had received zero to three treatments with an antimicrobial
approved for treatment of BRD. The cattle were sampled either at
a convenient time post arrival or when they were removed from
their pen to be treated for BRD. Because the primary objective
of the study was to describe the variability of M. haemolytica
phenotypes and genotypes isolated from bovine NPS, a mix of
both previously treated and untreated cattle was included so
that it was possible to ascertain whether previous treatment was
likely to impact variability. Sample collection for this study was
approved by theMississippi State University Institutional Animal
Care and Use Committee (IACUC 17-330).

Nasopharyngeal Swab (NPS) Collection
and Culture
Double guarded swabs (#022964 MWI, Nampa, ID, USA) were
used to sample the nasopharynx of cattle as previously described

(7). One swab was collected from each nostril then the two swabs
were placed together into transport media (Modified Amies
Clear gel, SP130X, Starplex Scientific Inc. Etobicoke, Ontario,
Canada) and transported back to the laboratory on ice for culture
within 6 h of collection. Both swabs were streaked together on
the first quadrant of 5 sequential plates containing tryptic soy
agar + 5% sheep’s blood (blood agar) plates. Five sequential
plates were streaked in order to account for the possibility that
overgrowth of contaminant bacteria might prevent identification
of M. haemolytica on the first plate. For each of the 5 plates a
new sterile loop was used to streak from the first quadrant to
the remaining 3 quadrants. Plates were streaked and evaluated
in a biosafety cabinet to prevent contamination. After streaking,
plates were incubated at 37◦C, 5% CO2 for 18–24 h, then colonies
phenotypically consistent withM. haemolytica (round white/gray
with a glossy edge and beta hemolysis) were collected, with one
colony tested by the oxidase (slow +), indole (–), catalase (+),
and KoH (+) tests to confirm identity. If there were fewer than
3 colonies on a plate the biochemical tests were not performed
until the isolates on the primary plate were subcultured. Isolated
colonies consistent with M. haemolytica were subcultured to a
new plate; a maximum of 20 colonies were collected from each
of the 5 plates, for up to 100 colonies per NPS. The subcultures
were incubated at 37◦C in 5% CO2 for 18–24 h, then for each
subculture plate all bacteria were swabbed off and transferred to
1ml of 50% glycerol in 1X phosphate buffered saline, and stored
at−80◦C.

Broth Microdilution for Determination of
Antimicrobial Susceptibility
Twelve to 14 months after the NPS were collected, isolates
were removed from −80◦C storage, transferred to ice, and
immediately streaked onto blood agar plates. After 18–24 h of
incubation at 37◦C in 5% CO2 each isolate was tested to confirm
genus and species using an automated system (Sensititre,
ThermoFisher etc., plate YGNID), and the minimum inhibitory
concentration (MIC) for 11 antimicrobials was determined
by broth microdilution (Sensititre, ThermoFisher etc., plate
YBOPO7F) at the Mississippi State University College of
Veterinary Medicine Diagnostic Laboratory (MSU CVM DL).
MICs were determined for ceftiofur, danofloxacin, enrofloxacin,
florfenicol, gamithromycin, penicillin, spectinomycin,
tetracycline, tildipirosin, tilmicosin, and tulathromycin; each
isolate was identified as susceptible, intermediate, or resistant
based on CLSI-defined breakpoints forM. haemolytica in bovine
respiratory disease. For subsequent evaluation in this study,
intermediate isolates were grouped with susceptible isolates,
so that each isolate was defined as resistant or non-resistant.
A figure representing the phenotypes represented by isolates
(Figure 1) was constructed in R v4.0.4, using the Bioconductor
package ComplexHeatmap v2.10.0 (8). Color scaling was
performed with the R package viridis v0.6.2 (9) to allow ease of
visual interpretation for individuals with color blindness.

MALDI-TOF MS
For each isolate, the broth used for MIC determination was
also used to inoculate a blood agar plate which was incubated
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for 18–24 h at 37◦C in 5% CO2 for confirmation of identity by
matrix-assisted laser desorption/ionization-time of flight mass
spectrometry (MALDI-TOFMS). If a plate inoculated with broth

FIGURE 1 | Antimicrobial resistance (AMR) phenotypes (antibiograms) of M.

haemolytica isolates from nasopharyngeal swabs (NSP) collected from 11

cattle. The median number (range) of M. haemolytica isolates obtained from

each animal was 48 (1–94). Antimicrobials: ampicillin (AMP), ceftiofur (CEF),

danofloxacin (DAN), enrofloxacin (ENR), florfenicol (FLO), gamithromycin

(GAM), penicillin (PEN), spectinomycin (SPE), tetracycline (TET), tildipirosin

(TLD), tilmicosin (TIL), and tulathromycin (TUL). Yellow cells indicate that the

isolates were not resistant to the antimicrobial indicated, while purple cells

indicate resistance. While multiple AMR phenotypes were identified among M.

haemolytica isolates from four cattle (260, 277, 53–49, and 56–8), the

difference in phenotype was in all cases due to a difference of only a single

dilution in the broth microdilution assay, which led to the isolate changing from

not resistant to resistant for only one or two antimicrobials. The relevant

minimum inhibitory concentration (MIC) data are presented in

Supplementary Material 1.

used for antimicrobial susceptibility testing yielded no growth
or contaminated growth, so that the isolate could not also be
confirmed as M. haemolytica by MALDI-TOF MS, that isolate
was omitted from the analysis. This led to exclusion of 9 of 57
isolates from animal 205, 10 of 51 isolates from animal 260, 3 of
73 isolates from animal 277, and 2 of 61 isolates from animal 256.
For MALDI-TOF MS isolates were shipped by overnight mail to
theUniversity of Nebraska-Lincoln VeterinaryDiagnostic Center
(UNL VDC), where isolated colonies were prepared in duplicate
according to manufacturer’s recommended procedures for the
direct smear method using a α-cyano-4-hydroxycinnamic acid
matrix (Bruker Daltonics, Billerica, MA, USA) and subjected to
automatic detection in positive linear mode between 2 kDA and
20 kDAm/z, with a laser frequency of 60Hz using a Microflex LT
MALDI-TOF mass spectrometer (Bruker Daltonics) calibrated
for reference masses of 3,637–16,952 Da using the manufacturer’s
supplied bacterial test standard. Identifications were determined
using commercial software (Bruker Biotyper, Bruker Daltonics)
and the manufacturer’s database (BDAL v10 containing 9,607
reference spectra) that has been supplemented with an in-house
developed library with additional Mannheimia spp. reference
spectra. Isolates were identified to the species level if match
scores on at least one replicate were ≥ 2.2. The MALDI-TOF
MS profile generated during identification was also used to
assign each isolate to genotype 1 or 2 as previously described
using Clinprotools 3.0 software (Bruker Daltonics) with quick
classifier model, which was developed based on whole genome
sequences of known genotype 1 and genotype 2 M. haemolytica
isolates, of which there are >26,000 nucleotide polymorphisms
that discriminate between the two genotypes. In addition to
the classifier model, a manual review of raw mass spectrum

TABLE 1 | Information regarding cattle from which Mannheimia haemolytica (M. haemolytica) was isolated from nasopharyngeal swabs (NPS), the number of AMR

phenotypes (antibiograms) of M. haemolytica identified among all isolates, and the genotype of M. haemolytica isolated based on MALDI-TOF MS.

Animal ID Housing

group

Clinical signs of

BRD when sampled

Antimicrobials received

before sampling (days

before)

Number of AMR

phenotypes

Genotype

205 A no none 1 1

232 A no none 1 1

260 A no none 3 2

277 A no none 2 2

256 A no none 1 1

262 A no none 1 2

56–8 B yes CEF (34)

TUL (19)

FLO (9)

2 2

53–49 C yes CEF (8) 2 2

49–16 D yes CEF (35)

TUL (15)

FLO (12)

1 2

54–8 D yes CEF (21)

TUL (3)

1 2

54–211 D yes CEF (14)

TUL (7)

1 2

Cattle in the same housing group were housed and managed together. Although multiple phenotypes of M. haemolytica were isolated from some cattle, all isolates identified from each

animal were a single genotype, either genotype 1 or genotype 2. Antimicrobials: CEF, ceftiofur, TUL, tulathromycin, FLO, florfenicol.
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TABLE 2 | Number of Mannheimia haemolytica (M. haemolytica) isolates recovered from nasopharyngeal swabs (NPS) from 11 cattle.

Animal ID

Plate number 205 232 260 277 256 262 56–8 53–49 49–16 54–8 54–211

1 8 0 4 14 13 6 8 17 0 10 9

2 11 0 7 15 5 0 19 19 4 11 13

3 7 0 10 15 11 0 12 18 3 8 12

4 16 0 9 14 15 0 6 20 2 2 13

5 6 1 11 12 15 1 11 20 1 5 13

Total M. haemolytica Isolates 48 1 41 70 59 7 56 94 10 36 60

Number of AMR phenotypes 1 1 3 2 1 1 2 2 1 1 1

M. haemolytica genotype 1 1 2 2 1 2 2 2 2 2 2

Two NPS (one from each nostril) were together streaked onto the first quadrant of 5 consecutive blood agar plates (plate numbers 1 through 5), then the remaining three quadrants of

each plate were streaked with a new sterile loop. Each individual colony (up to 20 for each plate) was subcultured once for determination of minimum inhibitory concentrations for 11

antimicrobials to determine AMR phenotype, and for MALDI-TOF MS to determine genotype.

peaks was also included to verify proper genotype classification
(10). Mannheimia haemolytica genotypes 1 and 2 that are
identified by this MALDI quick classifier model were previously
described by Clawson et al. (11), with genotype 2 isolates
primarily originating from the lungs of cattle with clinical or
pathological signs of respiratory disease, and typically harboring
integrative conjugative elements (ICE) conferring multi-drug
antimicrobial resistance, and genotype 1 isolates originating from
the upper respiratory tract of cattle with no signs of disease, and
typically not including ICE. For strains where there is genomic
information available, genotype 1 strains are likely serotype 2
based on molecular analysis and genotype 2 strains are either
serotype 1 or serotype 6 based on the same analysis, suggesting
a strong relationship between serotype and genotype (12).

RESULTS

Animals and Bacterial Culture Results
Nasopharyngeal swabs were collected from cattle in four different
groups (A–D) between March - May 2018 or in May 2019. Seven
cattle were sampled in group A, six cattle were sampled in group
B, five cattle were sampled in group C, and 10 cattle were sampled
in group D. The seven cattle in group A were each sampled
on two different occasions 15 days apart, but M. haemolytica
was isolated from each animal only once, or not at all (four
cattle positive when sampled the first time, two cattle positive
when sampled the second time, and one animal negative at both
sampling times). Cattle in groups B–D were only sampled once.
Nasopharyngeal swabs from 11 of the 28 cattle yielded at least
one M. haemolytica isolate. Details regarding the 11 cattle from
whichM. haemolyticawere isolated are presented inTable 1. Two
cattle (205 and 260) had not been treated with antimicrobials at
the time of sampling, but they were treated for BRD based on
clinical signs 2 days after they were sampled; none of the other
cattle in that group (group A) were ever treated for BRD in the
approximately 90-day period during which they were monitored.
For each animal the median number (range) of M. haemolytica
isolates obtained from the first plate streaked was 8 (0 −17), and
the median number (range) of isolates from all 5 plates streaked

was 48 (1–94) (Table 2).M. haemolyticawas not identified on the
first plate streaked for two of the cattle, and for one of these two
cattle (232), only one M. haemolytica isolate was identified, on
plate 5.

Phenotypes of Isolates
The AMR phenotype, or antibiogram, of each M. haemolytica
isolate from each NPS was defined by the antimicrobial
susceptibility to each antimicrobial tested in the broth
microdilution assay. Isolates were defined as resistant or
not resistant, with isolates having MIC in the intermediate
range included with isolates in the sensitive range. The AMR
phenotypes identified in the M. haemolytica isolates from
each of the 11 animals described in Table 2 are presented in
Figure 1, and the MIC data for all antimicrobials for each isolate
are presented in Supplementary Material 1. Nasopharyngeal
swabs from 7 cattle yielded M. haemolytica with only one
phenotype, NPS from 3 cattle yielded M. haemolytica with
2 phenotypes, and an NPS from one animal yielded M.
haemolytica with 3 phenotypes. Differences in MIC among
isolates from an individual animal that led to changes in
phenotype were found for penicillin, tetracycline, or tilmicosin
(Supplementary Material 1). However, when more than one
phenotype was identified among the M. haemolytica isolates
from the NPS from an individual animal, the difference between
the phenotypes was always due to a difference of only one
dilution near the breakpoint, which led to some isolates from an
animal being defined as sensitive while others were identified as
resistant. Since a difference of one dilution can be interpreted to
be within the error of the broth microdilution assay, in this study
allM. haemolytica isolates from the same NPS had essentially the
same AMR phenotype.

Genotypes of Isolates
All isolates confirmed to be M. haemolytica by both Sensititre
and by MALDI-TOF MS were assigned to genotype 1 or 2 based
on the MALDI-TOF MS profile as described (10). All isolates
obtained from the NPS from an individual animal were the same
genotype. The isolates from NPS from 3 cattle were genotype
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1, and the isolates from NPS from 7 cattle were genotype 2
(Tables 1, 2 and Supplementary Material 1).

DISCUSSION

Planning research to evaluate AMR in BRD leads to a recurring
question: “How many M. haemolytica colonies do we need to
select from a primary culture plate to have confidence that
we have identified all the relevant isolates?”. This research
was undertaken to address this question. In work evaluating
gamithromycin susceptibility of M. haemolytica isolates from
bovine NPS or bronchoalveolar lavage fluid samples, Capik et
al. (13) found that, when up to 12 M. haemolytica colonies
were selected from primary plates, a mixture of sensitive and
resistant isolates was sometimes found. However, that report
did not provide exact numbers of sensitive and resistant
isolates identified in individual samples, and it did not provide
information for antimicrobials other than gamithromycin. To
our knowledge no other research has described the number
of different AMR phenotypes that can be identified in M.
haemolytica isolated from the same bovine respiratory sample.

The number of colonies that need to be selected from a
primary culture plate to accurately represent the diversity of
isolates on the plate has been estimated for other bacterial
pathogens. Singer et al. (5) developed a model to predict the
number of isolates that need to be tested to determine with a high
level of confidence the diversity of Escherichia coli (E. coli) isolates
from cases of avian cellulitis. In this work the E. coli phenotype
was defined by DNA pulsed field gel electrophoresis, and the
model developed indicated that if 3 randomly selected colonies
were phenotypically identical, the probability was 98.8% that
only one phenotype was present on the plate. In other research,
Döpfer et al. (6) developed a model to predict the number
of isolates that need to be selected to identify all phenotypes
of E. coli, Listeria monocytogenes, Klebsiella pneumoniae, or
Streptococcus uberis on a culture plate, with phenotype defined
by ribotyping, pulsed-field gel electrophoresis, or PCR-based
strain-typing methods. The model of Döpfer et al. indicated that,
for the bacteria evaluated, between 2 and 20 isolates needed to
be selected and characterized to identify all phenotypes in the
sample with 95% certainty. While the models of Singer et al.
or Döpfer et al. should be applicable to M. haemolytica, they
are based on Bayesian inferences that require an estimate of the
number of different phenotypes (“prior information” or “prior
probability”) expected. The work presented here was undertaken
to obtain this prior information, so that such models could be
used to estimate the number of M. haemolytica colonies that
need to be selected from a plate to provide a high level of
confidence regarding the number of AMR phenotypes on the
plate. However, the results indicated a surprising uniformity of
phenotype, with essentially no diversity, and therefore the data
did not support the use of a model to predict diversity. Since
the phenotypes and genotypes of isolates from a sample were
quite uniform, it appears that selecting one isolate may indeed
adequately represent the characteristics ofM. haemolytica isolates
from bovine NPS. Put another way, the data suggest that a very
large number of isolates would need to be tested to identify rare

diverse isolates, which may not be feasible in terms of logistics
or cost.

In addition to uniformity of AMR phenotype, the samples
evaluated here revealed uniformity of M. haemolytica genotype,
which was identified by the MALDI-TOF MS profile (10).
This finding is similar to the results reported by Capik et
al. (13), who showed that, when up to 12 M. haemolytica
isolates were selected from culture plates from individual bovine
NPS or bronchoalveolar lavage fluid samples, DNA sequencing
and construction of phylogenetic trees revealed more than
one genotype in only one of 12 samples described. In other
work by the same group, characterization of multiple M.
haemolytica isolates from the same bovine NPS culture showed
little diversity as defined by DNA pulsed-field gel electrophoresis
(14). Similarly, characterization of plasmid types from up to
8 M. haemolytica isolates from nasal swabs from feedlot cattle
with or without BRD revealed that fewer than 10% of samples
yielded more than one plasmid type (15), and evaluation of at
least three M. haemolytica isolates from nasopharyngeal swabs
from feedlot cattle demonstrated that isolates were in most
cases identical based on pulse field gel electrophoresis (16). It
should be noted that none of the genotyping methods used to
characterize diversity of M. haemolytica isolates obtained from a
single bovine respiratory sample, including our use of theMALDI
quick classifier model to identify genotypes 1 and 2 described by
Clawson et al. (11), provide the same resolution as whole genome
sequencing. The genotyping approach used in this report is more
similar to serotyping, where strains are classified broadly based
on >26,000 nucleotide polymorphisms and have associations
with capsular genes. Therefore, some differences among these
apparently uniform isolates may have been present that would
have been identified by whole genome sequencing or typing
methods with higher resolution.

It has been reported (11) that genotype 2 M. haemolytica
are most often isolated from cattle with clinical signs of
BRD, while genotype 1 isolates are most often isolated from
cattle that are clinically healthy. The results of the present
study were generally consistent with this pattern, in that
NPS from five of five cattle sampled at the time of BRD
treatment yielded a genotype 2 M. haemolytica. Of the six
cattle sampled when not showing signs of BRD, three cattle
yielded a genotype 1 M. haemolytica, while genotype 2 M.
haemolytica was isolated from the other three. However,
one of the three “non-BRD” cattle with a genotype 2 M.
haemolytica (animal 260) was treated for BRD 2 days after it
was sampled.

In this study, NPS were streaked onto the first quadrant of
five consecutive plates, in order to increase the likelihood of
finding diverse M. haemolytica isolates that might have been
overgrown by other bacteria on the first plate. This technique is
not a standard practice in diagnostic laboratories, but given the
fact that M. haemolytica was not identified on plate 1, but was
identified on subsequent plates for two of the 11 cattle fromwhich
M. haemolytica was identified, the approach may be warranted
in research. The lack of diversity across plates for each sample
suggests that, once M. haemolytica is identified on one plate, the
phenotype and genotype are likely to be similar to those identified
on another plate from the same sample.
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Limitations of this study include the relatively small number
of cattle and cattle groups sampled, and the fact that sampled
cattle came from a relatively limited geographic region. Given the
lack of diversity found in this study, and the cost of characterizing
large numbers of isolates from a single sample, it may be
difficult to justify the cost to repeat this research with a larger
number of cattle or groups. However, it is important to note
that the results reported here may not be representative for other
types of respiratory samples (e.g. nasal swabs or bronchoalveolar
lavage samples), or for samples from other types of cattle, such
as dairy calves, or for other BRD agents, such as Pasteurella
multocida or Histophilus somni. Confirmation of the diversity of
respiratory isolates as related to these other variables will require
additional research.
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