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The aim of this study was to determine the effect of supplementing dairy goat diets with

rapeseed oil and sunflower oil on performance, milk composition, milk fatty acid profile,

and in vitro fermentation kinetics. Nine Danish Landrace goats with 42 ± 5 days in milk

were allocated to three treatment groups for 42 days. Animals received a basal diet,

formulated with 85:15 forage:concentrate ratio, and the basal diet was supplemented

with either rapeseed oil or sunflower oil at 4% of dry matter. Goat milk was sampled on

days 14, 21, and 42. Milk composition was similar between treatments. From day 14 to

day 42, milk yield increased (1.03 vs. 1.34 kg/d), while milk fat (2.72 vs. 1.82 g/d) and total

solids (11.2 vs. 9.14 %) were reduced. Compared to control and rapeseed oil, sunflower

decreased (P < 0.05) C4:0 (1.56, and 1.67 vs. 1.36 g/100 g) and both oils decreased

(P < 0.05) C18:3n3 (0.60 vs. 0.20 and 0.10 g/100g). Rapeseed oil increased (P < 0.05)

C18:2 cis9, trans11 compared to control and sunflower oil (0.37 vs. 0.13 and 0.19

g/100 g). Untargeted milk foodomics revealed slightly elevated (P < 0.05) gluconic acid

and decreased hippuric acid (P< 0.05) in the milk of oil-fed goats compared to control. In

vitro dry matter degradation (63.2± 0.02%) was not affected by dietary treatments, while

individual volatile fatty acid proportions, total volatile fatty acids (35.7± 2.44mmol/l), CO2

(18.6 ± 1.15mol), and CH4 (11.6 ± 1.16mol) were not affected by dietary treatments.

Sunflower oil and rapeseed oil decreased (P < 0.05) total gas production at 24 and

48 h compared with control. Overall, the use of sunflower oil or rapeseed oil at 4% DM

inclusion did not compromise animal performance and milk composition.
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INTRODUCTION

Goat milk fat content and its chemical composition has
been extensively modulated by nutritional and genetic factors
(1, 2). The most practical way to modulate milk fatty acids
(FA) toward a healthier profile for human consumption is
by supplementing animals with vegetable lipid sources (3, 4).
However, responses will depend on individual FA chain length,
degree of saturation, and stereochemistry of double bonds as
previously shown at in vitro level in goat mammary gland cells
(5). When ruminants are fed with unsaturated FA sources, milk
FA profiles are changed because of rumen biohydrogenation,
whereby dietary unsaturated FA undergoes hydrogenation and
isomerization (6).

Dietary lipids induce changes during rumen fermentation (7)
and those could lead to decrease contents of volatile fatty acids
(VFA), CO2, and CH4 (8). Dietary fat reduces CH4 production
in the rumen by reducing hydrogen accumulation through FA
biohydrogenation, reducing the intake of fermentable organic
matter, reducing fiber digestion, and inhibiting the activity of
ruminal methanogens (9). This knowledge has been used to
design nutritional strategies that include fat and reduce CH4

production by dairy animals.
Consumers are aware that saturated fats from dairy products

could have negative effects on their health (10) and this has led to
the design of diets where unsaturated fats are added to improve
milk fat quality. For example, in goats, dietary supplementation
of rapeseed oil (11) and sunflower oil decrease milk contents of
saturated fatty acids (12, 13). Currently, it has been reported that
milk foodome could be changed by animal species or feeding
regime, which has been explored previously in goats and cows
(14, 15).

The possible effects of supplementing rapeseed or sunflower
oils in the goat milk foodome have been investigated (16),
reporting that feeding goats with sunflower oil can increase
relative concentrations of milk amino acids and organic acids
while rapeseed oil increased aliphatic alcohols, including ethanol
and organic acids. However, differently from the previous study,
this study shows the effect of supplementing dairy goat diets
with rapeseed oil or sunflower oil on milk yield, fatty acid
profile, and in vitro fermentation kinetics. For this purpose,
retail sunflower oil was chosen as a source of monounsaturated
FA (61 g /100 g of oleic acid) and retail rapeseed oil as a
source of polyunsaturated FA (60 g /100 g of linoleic acid).
Therefore, it is expected that these oilseed oils will exert
differential effects on goat lipid metabolism as they have
different numbers and locations of double bonds in their
FA structure.

MATERIALS AND METHODS

The present study was conducted in compliance with the Danish
Ministry of Justice LawNo. 474 (15May 2014) concerning animal
experimentation and the care of experimental animals. The
Animal Ethics Institutional Review Board from the University of
Copenhagen approved this study (ID 2021-08-PNH-008A).

Animals and Diets
The study was performed at a goat farm located in Tureby,
Denmark (55◦19’38.9”N, 12◦06’36.1”E). Nine Danish Landrace
goats with twin kids, with 42± 5 days in milk at the beginning of
the study were allocated to three treatment groups. At the onset of
the study average body condition score for the 3 groups were 3.2
± 0.2, 3.0± 0.1, and 2.8± 0.2 (scored on a five-point scale) while
body weights were 45.4 ± 4.9, 47 ± 11, and 40.1 ± 6.3. Goats
were group-housed with their kids in stalls (12 × 38m) with
continuous access to water. Body condition score (BCS; scored
on a five-point scale where 1 = emaciated to 5 = overly fat) and
body weight were recorded on days 14, 21, and 42.

For 42 days, all animals received a common forage portion
(Table 1). Forage was offered daily at 0700 h and the concentrate
(300 g/d/animal) was supplied during milking at 13:00 h. Dietary
treatments contained 85:15 forage to concentrate ratio. Diets
were formulated to meet the nutrient requirements of a mature
dairy doe with twin kids and a body weight between 40 and
50 kg according to the NRC (17). Diets were planned to supply
a dry matter intake of 2.39 kg/d, 3.38 Mcal/d of metabolizable

TABLE 1 | Diet and treatments composition.

Diets

Control Rapeseed oil Sunflower oil

Forage (%)

Alfalfa + grass hay 42 42 42

Clover haylage 23 23 23

Alfalfa + clover hay 21 21 21

Straw 14 14 14

Concentrate (%)

Rolled barley 37 37 37

Rolled oats 28 28 28

Rolled wheat 19 19 19

Rolled peas 9 9 9

Molasses 6 6 6

Vitamins and minerals premix 1 1 1

Rapeseed oil 0 4 0

Sunflower oil 0 0 4

Chemical composition, % DM

Dry matter of diet 82.5 83.2 82.8

Ether extract 2.39 6.92 6.93

Crude protein 1.40 1.38 1.35

Ash 3.18 3.18 3.40

Neutral detergent fiber 55.3 55.3 55.3

Acid detergent fiber 32.3 32.3 32.3

Lignin 4.8 4.9 4.8

Fatty acids, g/100 g

C16:0 0.6 5.4 4.1

C18:0 1.0 3.5 0.7

C18:1 18.0 24.5 54.0

C18:2 45.6 56.1 24.7

C18:3 32.6 9.5 15.8

>C20 2.2 0.9 0.8

Frontiers in Veterinary Science | www.frontiersin.org 2 June 2022 | Volume 9 | Article 899314

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Vargas-Bello-Pérez et al. Goat Milk Fatty Acids and Foodome

energy, and degradable intake protein of 84 g/d. The control
concentrate consisted of (% of dry matter) 93% of a grain mix
(rolled barley, rolled oats, rolled wheat, and peas), 6% of molasses
and 1% of a premix of vitamins and minerals. Oils-supplemented
concentrates contained 89% of the grain mix, 6% of molasses, 1%
of a premix of vitamins and minerals, and 4 % of either sunflower
oil or rapeseed oil. Oils were not rumen protected and were
mixed manually and homogenously into the daily concentrate of
each goat.

Diets were analyzed following standard procedures from
AOAC (18) to determine dry matter (934.01) and Kjeldahl N
(984.13). Ash and ether extract were analyzed according to
AOAC [(19); methods 942.05 and 920.39, respectively]. Neutral
detergent fiber, acid detergent fiber, and acid detergent lignin
were determined following Van Soest et al. (20). The chemical
composition of dietary treatments is shown in Table 1.

Milk Production and Composition
Milk yield was recorded at 07:00 h on days 14, 21, and 42
prior to a 12 h separation of does and their kids. Milk samples
(50ml) were pooled for each collection period and treatment
and were analyzed for fat, protein, lactose, casein, total solids,
citric acid, solids-not-fat, urea, free fatty acid, acidity, and density.
These analyses were done in duplicate by Fourier Transform
Infrared Spectroscopy using a MilkoScanTM FT2 (Foss Analytical
A/S, Hillerød, Denmark). For statistical analysis, means across
replicates were calculated and used. Individual milk samples
(200ml) were taken at 10:00 h on days 14, 21, and 42. All rawmilk
samples were stored at −4◦C for further FA analysis while milk
samples pooled by treatment were analyzed for foodome using
gas chromatography–mass spectrometry (GC–MS) and proton
(1H) nuclear magnetic resonance (NMR) spectroscopy.

Milk Fatty Acid Analysis
Lipid extraction and methylation of plasma samples were
done as reported previously by Vargas-Bello-Pérez (21). A
gas chromatograph (GC-2030) system (Shimadzu Scientific
Instruments AOC-20i Plus, Columbia, MD, USA) equipped with
a 100-m column (Rt-2560 column 100m × 0.32mm × 0.20µm
column; Restek, Bellefonte, PA, USA) was used with the following
conditions after injection, the oven temperature was set at 110◦C
for 4min and then raised to 170◦C at a rate of 5◦C/min for
10min, to 225◦C at 3◦C/min for 10min, and finally increased
to 240◦C at 3◦C/min. The temperature of the ionization flame
was 260◦C, injection volume was 2 µl, hydrogen flow was
32 ml/min, air flow was 200 ml/min, and nitrogen flow was
24 ml/min. The total running time was 59.33min. Fatty acid
peaks were identified using a fatty acid methyl ester (FAME)
standard (Supelco 37 Component FAME mix, Bellefonte, PA,
USA). Reference standards for C18:1, trans11 and C18:1 cis9,
trans11 (Nu-Chek Prep Inc., Elysian, MN, USA) methyl esters
were used.

Milk Foodome
Milk foodome was measured as previously described using GC–
MS and 1HNMR spectroscopy (16). Briefly, frozen milk samples
were thawed at room temperature and vigorously vortexed until

homogenization. After sonication, 200 µl milk was mixed with
300 µl of 80% methanol (containing 10 ppm internal standard,
sorbitol) and 100 µl dichloromethane and vigorously vortexed
followed by centrifugation at 13,572 g for 10min at 4◦C. Then
100 µl upper aqueous layer was transferred into a 200 µl glass
insert and dried overnight using ScanVac (Labogene, Lynge,
Denmark) at 40◦C and 1,000 rpm. Immediately after drying,
glass inserts were sealed with airtight magnetic lids into GC–
MS vials, stored at 4◦C,and analyzed by GC–MS within 24 h.
For 1H NMR analysis, frozen milk samples were thawed at
room temperature, vigorously vortexed until homogenization
and 1.8ml of milk samples were centrifuged at 13,572 g for
30min at room temperature. Then, 600 µl of an aliquot from
the clear solution was mixed with 135 µl of phosphate buffer in
deuterated water and transferred into NMR SampleJet tubes of L
= 103.5mm andO.D.= 5.0mm, kept at 5◦C and analyzed within
24 h. GC–MS and 1HNMR datasets were subsequently processed
using PARADASe (22) or SigMa (23) software, respectively,
to convert the raw milk foodomics data into an informative
metabolite table.

In vitro Fermentation Kinetics
Two 48-h in vitro fermentations were undertaken with four
technical replicates of each treatment. Equal amounts of rumen
fluid were taken from two cannulated Jersey heifers, owned by
the Large Animal Hospital at the University of Copenhagen,
and licensed according to Danish law (authorization nr.2012-15-
2934- 00648). The cannulated heifers were fed a maintenance
level diet consisting of ad libitum haylage (85% DM; 7.5 MJ/kg
DM; 11% CP), for 6 weeks before sampling.

A 500mg sample from each of the freeze-dried treatments to
be tested was weighed into each of four 100ml Duran R© bottles.
Each bottle was fitted with an automatic wireless in vitro gas
production module (Ankom Technology, Macedon, NY, U.S.A.)
with a pressure sensor (pressure range: from −69 to +3,447
kPa; resolution: 0.27 kPa; accuracy: ± 0.1% of measured value).
Each module sends measurements via a receiving base station to
an attached computer. The accumulated gas was automatically
released (250ms vent opening) when the pressure inside the
units reached 0.75 PSI above the ambient pressure. The absolute
pressure was recorded every 10min to calculate cumulative
pressure and later converted to milliliter using the ideal gas
law. A buffer solution was prepared as described by Menke
et al. (24). The buffer media was flushed with CO2 for 2 h to
ensure anaerobic conditions and the temperature of the media
was maintained at 39◦C before the addition of rumen fluid. A
reduction agent of sodium sulfide and sodium hydroxide was
added 10min before the addition of the rumen fluid.

The rumen content, including liquid and particulates, was
collected before morning feeding, and transported to the
laboratory in preheated thermos bottles. Rumen fluid was filtered
through two layers of cheesecloth to eliminate large feed particles,
and the particulate material was squeezed to collect microbes
attached to feed particles. The rumen fluid was added to the
buffer in a 1:2 ratio. A total of 90ml of this inoculum was added
to each bottle after which the headspace of each bottle was flushed
with nitrogen, closed with the module head, and incubated in a
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Thermoshaker at 39.5◦C for 48 h. The initial pH of the inoculum
was 6.97. After 48 h of incubation, the modules were put into an
ice bath to stop fermentation, and pH was measured from each
bottle. The residual material in each bottle was filtered into a
weighed ANKOM F57 filter bag (Ankom Technology, Macedon,
NY, USA). Thereafter, the bag and residue were dried, weighed,
and burned at 550◦C for 12 h. The weight of the residue was
used to determine organic matter (OM) degradation. Two bottles
with no feed sample but rumen inoculum followed the entire
procedure to correct for total gas, residual dry matter, and ash
from the rumen fluid. The pressure of the accumulated gas was
converted into volume (ml) per gram OM sample at standard
pressure and temperature (STP).

Rumen fluid samples were preserved for VFA determination
by adding 25% metaphosphoric acid in a 5:1 ratio. Samples
were frozen (−20◦C) for later analysis. The VFA was determined
by gas chromatography (Nexis GC-2030, Shimadzu Scientific
Instruments Inc., Kyoto, Japan) equipped with a 30-m wall-
coated open-tubular fused-silica capillary column (Stabilwax-
DA; 30m × 0.32mm i.d., 0.25µm film thickness; Shimadzu,
USA). The running time per sample was 8.71min. The oven
temperature was programmed for 145◦C for 3min and then
increased from 145◦C to 245◦C at 16.6◦C/min. The injector and
flame ionization detector were maintained at 250◦C. Gas flows
were 24, 32, and 200 ml/min for N2, H2, and air, respectively.

The following calculations were performed to determine
fermentative CO2 and CH4 as described by Wolin (25) and
Makkar (26):

Fermentative CO2 = A/2+ P/41+ 1.5B

where A, P, and B are moles of acetic acid, propionic acid, and
butyric acid, respectively.

Fermentative CH4 = (A+ 2B)− CO2

where A and B are moles of acetic acid and butyric acid,
respectively and CO2 is moles of CO2 calculated from the
previous equation.

Statistical Analysis
Data on milk yield, milk composition, and milk FA profile were
analyzed using the MIXED procedure in SAS (SAS Institute Inc.,
Cary, NC). A model including diet, time, and diet × time as
fixed effects and goat within treatment as a random effect was
used. Least squares means (LSM) were separated using the PDIFF
(Piecewise Differentiable) statement in SAS.

Fermentation data were analyzed using the statistical program
R (27, 28). A linear mixed model was used for in vitro data.
The normality of the model was accessed using quantile–quantile
plots of the model. ANOVA was used to access the significance
of the predictor of the model. Significant differences between
each of the individual treatments were determined by using
Tukey’s Honest Significance difference test and significance was
considered at p < 0.05. All the results are expressed as least-
square means and standard error of the mean. A correlation
analysis was performed to see the correlation between different

TABLE 2 | Performance and milk composition from goats supplemented with

rapeseed oil and sunflower oil (4% DM).

Parameters Diets Treatment Period

Control Rapeseed Sunflower SEM P-value P-value

Body condition

score

2.43 2.77 2.66 0.136 0.056 0.875

Body weight, kg 40.6 46.3 44.0 4.05 0.378 0.960

Milk yield, kg/d 1.03 1.26 0.92 0.133 0.056 0.049

Fat, % 2.017 2.270 2.260 0.174 0.356 0.014

Protein, % 2.607 2.417 2.823 0.163 0.155 0.744

Lactose, % 4.76 4.08 4.62 0.250 0.106 0.233

Casein, % 2.143 1.783 2.223 0.196 0.171 0.428

Total solids, % 10.19 9.35 10.56 0.453 0.122 0.025

Citric acid, % 0.123 0.100 0.096 0.124 0.180 0.070

Solids-not-fat, % 8.32 7.28 8.33 0.395 0.091 0.186

Urea, mg/100mL 29.2 24.5 37.0 7.77 0.363 0.377

Free fatty acid,

mEq/L

0.753 0.811 0.775 0.076 0.759 0.130

Freezing point

depression, ◦C

566 500 565 42.0 0.306 0.367

Acidity, ◦Th 10.27 11.60 9.93 1.05 0.346 0.142

Density, kg/l 1027.27 1023.20 1027.57 1.56 0.085 0.265

SEM, standard error of the mean.

fatty acids. The following model was used to run the analysis for
in vitro fermentation parameters.

Y = Treatment + Random(Run) + Error

A one-way ANOVA with Benjamini–Hochberg’s multiple test
correction approaches (29) using a false discovery rate (FDR)
of 5% was applied to investigate the possible effect of dietary
treatments on milk metabolites as measured by GC–MS and
1H NMR. Foodomics data analysis was performed in MATLAB
(MathWorks Inc., Massachusetts, USA) using customized scripts
written by the authors.

RESULTS

Performance and Milk Composition
Milk composition was similar between treatments (Table 2).
From period 1 to period 3, milk yield increased (1.03 vs. 1.34
kg/d), while milk fat (2.72 vs. 1.82 kg/d) and total solids (11.18
vs. 9.14 %) were reduced.

Milk Fatty Acid Profile
Compared to the control and rapeseed oil, sunflower decreased
C4:0 and both oils decreased C18:3n3 (Table 3). Rapeseed
increased C18:2 cis9, trans11 compared to control and sunflower
oil. From period 1 to period 3, contents of C12:0 (2.20 vs. 7.19
g/100g), C18:2n6 trans (0.35 vs. 1.04 g/100 g), C18:2 cis9, trans11
(0.139 vs. 0.198 g/100 g) were increased while C18:1 trans11 (1.16
vs. 0.49 g/100 g) and C18:1 cis9 (27.8 vs. 17.3 g/100 g), C18:3n3
(0.601 vs. 0.101 g/100 g), and MUFA (31.1 vs. 21.2 g/100 g)
were decreased.
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TABLE 3 | Milk fatty acid profile from goats fed rapeseed oil and sunflower oil (g/100 g of fatty acid methyl esters).

Diet P-value

Fatty acid (FA) Control Rapeseed Sunflower SEM Treatment (T) Period (P) T×P

C4:0 1.56a 1.67a 1.36b 0.08 0.025 0.138 0.084

C6:0 1.62 1.73 1.63 0.25 0.904 0.507 0.528

C8:0 2.19 2.12 2.16 0.34 0.978 0.153 0.549

C10:0 8.31 8.08 8.88 1.25 0.809 0.081 0.463

C11:0 2.72 1.62 2.59 0.98 0.515 0.613 0.921

C12:0 3.48 4.22 4.91 2.03 0.788 0.043 0.646

C14:0 6.85 7.91 6.47 1.51 0.639 0.028 0.843

C14:1 0.61 0.48 0.55 0.20 0.731 0.858 0.768

C15:0 1.07 0.77 0.19 0.30 0.454 0.010 0.124

C15:1 0.46 0.64 0.58 0.31 0.841 0.319 0.700

C16:0 27.3 24.1 29.8 2.94 0.233 0.108 0.298

C16:1 1.58 0.65 0.96 0.75 0.492 0.511 0.490

C17:0 0.70 0.52 0.52 0.24 0.709 0.991 0.728

C18:0 11.8 14.9 12.6 2.48 0.490 0.326 0.031

C18:1 trans11 0.56 0.89 0.44 0.29 0.345 0.014 0.691

C18:1 cis9 22.2 25.9 23.0 3.38 0.563 0.004 0.621

C18:2n6 trans 0.81 0.57 0.41 0.24 0.324 0.044 0.339

C18:2n6 cis 2.79 0.87 0.43 1.48 0.309 0.230 0.424

C20:1n9 0.66 0.24 0.16 0.30 0.277 0.087 0.241

C18:3n3 0.60a 0.20b 0.10b 0.15 0.041 <0.001 0.008

C18:2 cis9, trans11 0.13b 0.37a 0.19b 0.16 0.035 0.028 0.239

C18:3n6 0.09 0.22 0.15 0.10 0.480 0.058 0.671

C20:0 0.93 0.29 0.49 0.18 0.389 0.346 0.113

C22:1n9 0.06 0.09 0.08 0.09 0.930 0.888 0.167

C20:3n3 0.33 0.14 0.34 0.17 0.451 0.430 0.242

C20:5n3 0.6 0.32 0.08 0.37 0.339 0.314 0.364

C24:1n9 0.32 0.26 0.30 0.25 0.973 0.213 0.895

6 Saturated FA 67.3 68.2 71.8 1.79 0.098 0.279 0.213

6 Monounsaturated FA 26.4 29.2 26.2 2.43 0.442 0.002 0.557

6 Polyunsaturated FA 5.32 2.33 1.53 1.95 0.206 0.090 0.190

SEM, standard error of the mean; a,bMeans in the same row with different superscript letters are significantly different (P < 0.05).

Milk Foodome
Compared to control group, both rapeseed oil and sunflower
oil groups had a lower levels of hippuric acid in milk samples
measured by 1H NMR spectroscopy (Figure 1). GC-MS data
revealed a total of five tentatively identifiedmetabolites inmilk, at
level 2 based on the metabolomics standard initiative, including
D-allopyranose, D-gluconic acid, inositol, 2-pentadecyl-1,3-
dioxolane and serine. These metabolites were significantly
different between the three treatments groups (Figure 2). The
milk samples in the rapeseed oil group had a similar levels of α-
D-allopyranose compared to the control group, while the samples
in the sunflower oil group had a had significantly lower levels of
this metabolite. Figure 2 shows a notable high level of D-gluconic
acid and inositol in the milk samples from the sunflower oil
group than the other two. The milk samples in the rapeseed oil
group had a higher concentration of D-gluconic acid but lower
inositol than the control group. 2-Pentadecyl-1,3-dioxolane and
serine had a similar trend among the three groups, and the
highest level of both metabolites was observed in the control

group followed by the rapeseed oil group and the sunflower
oil group.

In vitro Fermentation Kinetics
Sunflower oil and rapeseed oil decreased total gas production at
24 and 48 h compared with control. Dry matter degradation was
not affected by dietary treatments (Table 4). Individual volatile
fatty acid proportions, total VFA, CO2, and CH4 were not affected
by dietary treatments (Table 5).

DISCUSSION

It is important to mention that milk from small ruminants
such as goats is of particular interest due to its unique FA
configuration where caproic (C6:0), caprylic (C8:0), and capric
(C10:0) represent from 15 to 18% of the goats milk fat
(30). Therefore, research focused on improving goat milk fat
composition is needed, especially in countries where not much
research on small ruminants is done, as it is the case in Denmark.
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FIGURE 1 | Relative concentration of hippuric acid in goat milk detected by
1HNMR spectroscopy across control, rapeseed oil and sunflower oil diets.

The lack of effects on productive traits, such as milk yield,
body conditions score, and body weight may be due to the
relatively small amount of oil supplementation used in this study
(4% DM). This agrees with previous studies where goats were
fed with calcium soaps from palm, canola, and safflower oils (4)
and when goats were supplemented with sunflower and linseed
whole seeds (31). In those studies, oilseeds fed as calcium soaps
or as whole seeds did not promote negative effects on overall
animal productive traits and treatments were offered at <5%
DM inclusion. This is the threshold level before dietary lipids
start to cause digestive disruptions with concomitant effects
on productivity (6). In this study, the choice of the amount
of lipid included in the diet was conceived as a factor to
promote a healthier milk FA profile without deleterious effects
on productive parameters.

Milk fat was reduced over time while milk yield was increased
which could have led to a dilution effect that was also observed for
total solids. These results are positive as milk composition was
not negatively affected by dietary oils. Normally, oils are added
to goat diets to increase energy density but also to promote the
formation of FA with potentially positive effects on human health
(32). In this study, rapeseed oil increased the contents of C4:0
(butyric acid) and C18:2 cis9, trans11 (rumenic acid). Butyric
acid is a short-chain FA that possesses antimicrobial activity and
has been related to anti-diarrheic, antioxidant, anti-carcinogenic,
and anti-inflammatory activities (33). Rumenic acid has been
related to positive effects on serum lipid profile, blood glucose,
insulin sensitivity, blood pressure, and cardiovascular disease
risk factor in humans (34). Goat milk is mainly used for
cheese manufacturing, and milk fat and protein are essential
components needed for further processing (35). Therefore, our
results show that using sunflower oil or rapeseed oil could be used

in goat diets as a feeding strategy for modulating milk fat quality
without negative effects on overall productive traits.

Dietary fat increases energetic efficiency in lactating
ruminants, such as cows, and this is due to increased total
energy intake. The energy intake is even greater than that coming
from volatile fatty acids or protein. The increased energy can be
directly incorporated into the products, as well as promoting
nutrient partition toward milk production. However, large
amounts of dietary fat in ruminant diets may possess deleterious
effects on the rumen fermentation kinetics, decrease intestinal
absorption, decrease contribution to total oxidation of nutrients,
increase sensitivity to nutrient imbalance, causing reduced
energy intake (36).

Production of rumen volatile FA has been used to estimate
enteric methane production (37). In this study, we used our
in vitro fermentation data to estimate methane production,
however, this was not affected. It is important to note that
the inhibitory response of fats to methane production depends
on the concentration, type, the fatty acid composition of fats,
and nutrient composition of diets (8). This study used 85%
forage inclusion and 4% DM inclusion of dietary oils and
probably the combination of both variables was not enough to
produce changes during rumen fermentation. Further studies
should use an in vivo approach to corroborate our findings on
methane production.

It is well known that adding fats or oils to ruminant diets
can affect the rumen microbiome and fermentation processes.
Oil supplements can be toxic to the microbial community as is
the case for species of gram-positive bacteria and ciliate protozoa
or limit the microbial colonization of feed particles and the
access of microbial enzymes to the substrates. Consequently, feed
digestion (ruminal and total tract) may be adversely affected by
the addition of lipids (38). At least at in vitro level, it has been
suggested that the addition of vegetable oils to ruminant diets
can improve feed efficiency and attenuate the environmental
impact of ruminal fermentation contributing to more efficient,
sustainable, and cleaner animal production (38).

Biohydrogenation of unsaturated fatty acids can compete with
methanogenesis for metabolic H2 (39). It can be expected that
considerable amounts of H2 will be used for the saturation of
fatty acids provided with the oil supplemented diets, and thus
diverted from methanogenesis (38). Our results on methane
production should be corroborated by in vivo determinations of
gas emissions or indirectly by studying the rumen microbiome
with special regard to achaea populations.

Regarding milk foodome profile obtained from 1H NMR, the
decrease of hippuric acid in milk obtained from rapeseed oil
and sunflower oil compared to control could be correlated with
pasture feeding (40), high dietary fiber and polyphenol-rich feeds
(41), as well as negative energy balance status in cattle (42).
Interestingly, hippuric acid has been proposed as a biomarker
of pasture-derived milk (43) but in this study the presence of
polyphenols in dietary oils (44) could be the reason for the
increase of this metabolite. However, contents of polyphenols in
dietary oils were not analyzed.

Glycine, glutamine, arginine, and serine appear to be the most
abundant free amino acids in goat milk and milk formula, similar
to the case for human milk or cow milk infant formula (45).
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FIGURE 2 | Relative concentrations of goat milk metabolites detected by GC-MS across control, rapeseed oil and sunflower oil diets.

TABLE 4 | Total gas production at different time points and dry matter

degradation (dDM).

ml/g DM % DM

6h 9h 12h 24h 48h dDM

Control 20.71 34.97 51.40 103.48b 137.24b 63.45

Sunflower 22.15 33.79 48.76 93.69a 124.42a 63.34

Rapeseed 19.80 34.58 50.34 96.30a 125.83a 62.89

SEM 1.13 1.44 1.92 2.06 3.35 0.027

P-value 0.350 0.790 0.410 0.010 0.029 0.640

SEM, standard error of the mean; a,bMeans in the same column with different superscript

letters are significantly different (p < 0.05).

In this study, with the use of 1H NMR spectroscopy, serine
was found to be decreased by supplementing goats with either
rapeseed or sunflower oils, however, no other significant effects
were found in free amino acids that could represent a negative
effect on the goat milk amino acid profile. However, further study
is needed to validate our findings.

Gluconic acid was increased with sunflower oil. This organic
acid is the product of glucose oxidation and has been used in the
dairy industry to prevent or remove milk stone deposition and in
the prevention of cloudiness in beverages (46). Further attention
must be paid to the presence of this metabolite which was
produced naturally when goats are fed with sunflower oil as it has
a promising use for dairy processing. In this study, scyllo-inositol

was higher in milk from sunflower oil. This metabolite is a
stereoisomer of inositol and it has been reported as a promising
therapeutic agent for Alzheimer’s disease since it prevents the
accumulation of beta-amyloid deposits, which are typical of this
disease (47).

α-D-allopyranose was increased by rapeseed oil compared
to sunflower (not compared to control) while 2-pentadecyl-
1,3-dioxolane was decreased by sunflower oil compared to the
control group. Information on the biological role of those
metabolites related to goat milk is scarce. What is known is
that lactose has partly protected derivates and those could yield
precursors for the synthesis of higher oligosaccharides such as α-
D-allopyranose (48). With regard to 2-pentadecyl-1,3-dioxolane,
it has been related to long-chain cyclic acetals of glycerol (49)
but at this point, it is difficult to understand its role in the
milk metabolome of goats. It is important to note that when
performing foodome profile using GC–MS and 1H NMR, milk
samples were pooled by treatment and therefore, this data
should be cautiously interpreted. Further studies should consider
analyzing individual milk samples for foodome analysis.

CONCLUSION

Overall, the use of sunflower oil or rapeseed oil at 4%
DM inclusion did not compromise animal performance and
milk composition.
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TABLE 5 | Individual volatile fatty acid proportions (VFA; mol/100mol), total VFA (mmol/L), CO2 mol and CH4 mol.

Acetic Propionic Isobutyric Butyric Valeric Isovaleric Caproic Total VFA CO2 CH4

Control 22.63 6.54 0.67 3.65 0.90 0.81 0.21 35.41 18.42 11.50

Sunflower 23.36 6.77 0.68 3.72 0.91 0.82 0.21 36.47 18.95 11.85

Rapeseed 22.63 6.48 0.67 3.58 0.89 0.81 0.20 35.27 18.31 11.49

SEM 2.59 0.28 0.08 0.19 0.03 0.18 0.01 2.44 1.15 1.16

P-value 0.560 0.610 0.890 0.710 0.960 0.730 0.530 0.620 0.630 0.590

SEM, standard error of the mean.
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